

USEFUL GENERAL FORMULAS AND DEFINITIONS

Name	Formula	Units	Defination
Kilowatt loss	= HP (.746) X (1.0 - efficiency)		
	_ efficiency		
Power Output	1HP = 745W = 0.746Kw		HP : hosepower
Current	$I = \frac{E}{B}$	l in Amp	E : Volt
	R		R : Ohm
Input power	$P_{in} = E.I. Cos \emptyset - (1 \emptyset)$	P in in W	E : Volt
	$P_{in} = \sqrt{3}$. E.I.CosØ - (3Ø)		I : ampere
Output power	$P \text{ out} = E.I. \eta. \cos \emptyset$ - (1 \emptyset)	P out in W	
	$P_{out} = \sqrt{3}$. E. I. η . Cos \emptyset - ($3 \notin$)		
Efficiency	$\eta = \frac{P \text{ out}}{P \text{ in}} X 100\%$		
Power factor	$\cos \phi = \frac{P_{\text{in}}}{\sqrt{3. \text{ E. I.}}}$ 1% - (3\$\phi\$)		
Synchronous speed	$Ns = \frac{120 f}{P}$	N s in min ^{– 1}	f : frenquency of the powe supply P : poles
Slip	$S = \frac{N s - N}{N s} \times 100\%$		N : motor speed
Torque	T = <u>974 Kw</u> N	T in kgf-m	1 kgf-m = 9.8 N-m
Power	P = 1.027 NT	P in W	
Reative power absorbed by the motor	Q = v3. E.I.SIN Ø - (3Ø)	Q in VAR	

- The Locked-Rotor Torque of a motor is the minimum torque which it will develop at rest for all angular position of the rotor, with rated voltage applied at rated frequency
- The **Pull-in torque** is the maximum constant torque under which the motor will pull its connected inertial load into synchronous speed at rated voltage and frenquency, when its field excitation is applied.
- The **Pull-out Torque** is the maximum sustained torque under which the motor will develop at synchronous-speed with rated voltage applied at rated frequency and with normal excitation
- The **Full-Load Torque** is the torque necessary to produce its rated horsepower at full-load speed. In Kg at a 1 meter radius, it is equal to the KW times 974 divided by the full-load speed
- The **Accelerating Torque** is the difference between the motor torque and the load torque from 0 to pull-in speed. A 10% or higher margin is desired to avoid a possible stalled or locked rotor position.
- The Power Factor or and alternating- current motor or generator is the ratio of the KVA input (or output) to the Kilowatt input