CFM 2
BOOKLET 03.10

How to measure CFM
Deliverity tesl and measurement advantages for HVAC/R professianals warldwide Test the TPI advantage

APPLIGATIONS

- Air flow measurements in heating, ventilation and air conditioning systems
- Air duct analysis
- Fume hoods
- Flue Registers
- Exhaust grills
- Hotwire velocity meter enables user to read below 80fpm applications (low flow)

Comes with protective hoot (A604) And the A901Soft Carrying Case

Test Products

Intemational, Inc.
Headquarters:
9615 SW Allen Blvd.
Beaverton, OR 97005
USA
503-502-9197
Fax: 503-520-1225
email:
info@tpi-thevalueleadercom
The
Value
Leader ${ }^{\text {rM }}$

Features

- (Vane) Air flow 0.4 to $25 \mathrm{~m} / \mathrm{s}$ (Also reads km/s, ft/min, knots/h, miles $/ \mathrm{h}$)
- (Hotwire) Air flow 0.2 to $20 \mathrm{~m} / \mathrm{s}$ (Also reads km/s, ft/min, knots $/ \mathrm{h}$, miles $/ \mathrm{h}$
- Temperature -5° to $175^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.80^{\circ} \mathrm{C}\right)$
- Data record function for maximum and minimum temperature and air velocity reading
- 39" cable length with Lemo connector
- Data Hold
- Auto Power Off
- Protective boot and soft carrying case included

Galculating GFiM Worksheet

To do a proper airflow measurement (CFM) you should do traverse readings to obtain the true average airflow through the duct. We recommend doing at least 12 points of measurement.

Rectangular Ducts

1. Divide the duct into at least 12 equal boxes, you will need to take the reading in the center of each box. Be sure that the sample points are no more than $4^{\prime \prime}$ apart from center to center. If needed you can add more sample points (boxes) to cover larger duct sizes.
2. You will need to determine the easiest access to take your readings. Normally it is best to enter from the side (or Height) of the duct since you will have to drill less holes, but you may have to drill from the bottom (or Width) of the duct.

3. Take your measurements in the center of each box. Be sure you have the tip of the hotwire pointed into the flow of air, there is a white dot on the tip, this should be inline with the flow.
HINT: If you turn the probe you will see the readings change up or down, when the reading is at the highest you are in the proper position.

4. Record your readings in each box where it was taken.
5. Add up all of your readings and record the total.

6. Divide your total reading by 12 (if you used more readings (boxes) divide by the total number of readings (boxes) used instead) This will give you an average of all your readings.
\qquad $\mathrm{ft} / \mathrm{min}$

- $12=$ \qquad average reading

7. We now have to determine the area of the duct. This is done by multiplying the duct width by the height. Or refer to table on 6 page.

WIDTH \mathbf{X} HEIGHT $=$ sq.inches
X \qquad $=$ \qquad
8. We now have to convert sq.inches to sq.feet
\qquad sq.inches \qquad sq.feet
9. We now multiply our average reading by our area (sq.ft)
\qquad sq.feet \times AVERAGE READING= \qquad CFM

Round Ducts

You will also have to take traverse readings in round ducts.

1. You will need to take a minimum of 10 readings (more depending on duct size). You will need to drill 2 holes at 90 degrees to each other, similar to the drawing below.

2. Take your measurements by inserting the hotwire probe into the drilled holes and use the insertion depth chart to determine how far in the duct you will go for each point. Then you will repeat for the other hole.

DUCT	Insertion length for each test point - 10 point transverse									
SIZE	1	2	3	4	5	6	7	8	9	10
8"	1/4"	$5 / 8^{\prime \prime}$	$11 / 8^{\prime \prime}$	$13 / 4^{\prime \prime}$	$23 / 4$ "	51/4"	61/4"	67/8"	$73 / 8^{\prime \prime}$	73/4"
10"	1/4"	$7 / 8^{\prime \prime}$	11/2"	$21 / 4^{\prime \prime}$	$33 / 8{ }^{\prime \prime}$	$65 / 8^{\prime \prime}$	$73 / 4^{\prime \prime}$	81/2"	91/8"	$9^{3 / 4 "}$
12"	1/4"	$1{ }^{\prime \prime}$	$13 / 4 "$	$23 / 4{ }^{\prime \prime}$	41/8"	77/8"	$9^{1 / 4}{ }^{\prime \prime}$	$101 / 4^{\prime \prime}$	11"	$113 / 4^{\prime \prime}$
14"	$3 / 8 "$	11/8"	$2^{\prime \prime}$	$31 / 8{ }^{\prime \prime}$	43/4"	91/4"	$107 / 8^{\prime \prime}$	$12^{\prime \prime}$	$127 / 8^{\prime \prime}$	$135 / 8^{\prime \prime}$
16"	$3 / 8 "$	$11 / 4^{\prime \prime}$	$23 / 8^{\prime \prime}$	$35 / 8^{\prime \prime}$	$51 / 2^{\prime \prime}$	$101 / 2^{\prime \prime}$	$123 / 8^{\prime \prime}$	13 5/8'	$143 / 4^{\prime \prime}$	15 5/8"
18"	1/2"	11/2"	$25 / 8^{\prime \prime}$	41/8"	61/8"	$117 / 8^{\prime \prime}$	$137 / 8{ }^{\prime \prime}$	$153 / 8{ }^{\prime \prime}$	$161 / 2^{\prime \prime}$	171/2"
$20^{\prime \prime}$	$1 / 2^{\prime \prime}$	15/8"	$27 / 8^{\prime \prime}$	41/2"	67/8"	$131 / 8^{\prime \prime}$	$151 / 2^{\prime \prime}$	$171 / 8{ }^{\prime \prime}$	$183 / 8{ }^{\prime \prime}$	19 1/2"
22"	$1 / 2^{\prime \prime}$	13/4"	$31 / 4^{\prime \prime}$	5"	$71 / 2^{\prime \prime}$	14 1/2"	17"	$183 / 4^{\prime \prime}$	$201 / 4^{\prime \prime}$	21 1/2"
$24^{\prime \prime}$	5/8"	$2^{\prime \prime}$	$31 / 2^{\prime \prime}$	$53 / 8{ }^{\prime \prime}$	81/4"	$153 / 4^{\prime \prime}$	18 /8"	$201 / 2^{\prime \prime}$	22 "	$233 / 8^{\prime \prime}$

3. Record your readings.
4. Add up all of your readings and record the total.

5. Divide your total reading by 10 (if you used more readings divide by the total number of readings taken). This will give you an average of all your readings.
\qquad $\mathrm{ft} / \mathrm{min} \bullet 10=$ \qquad AVERAGE READING $\mathrm{ft} / \mathrm{min}$
6. We now have to determine the area of the duct. Select the area from the list below. Or you can use this formula.

$$
\begin{aligned}
& \text { Area(sq.in) }=\boldsymbol{\pi} \times\left(\left(\frac{d}{2}\right) \times\left(\frac{d}{2}\right)\right) \\
& \boldsymbol{\pi}=3.14 \\
& d=\text { diameter }
\end{aligned}
$$

DUCT SIZE	AREA	DUCT SIZE	AREA
$4^{\prime \prime}$	$0.087 \mathrm{sq} . \mathrm{ft}$	$16^{\prime \prime}$	$1.40 \mathrm{sq} . \mathrm{ft}$
$6 "$	$0.196 \mathrm{sq} . \mathrm{ft}$	$18^{\prime \prime}$	$1.77 \mathrm{sq} . \mathrm{ft}$
$8^{\prime \prime}$	$0.349 \mathrm{sq} . \mathrm{ft}$	$20^{\prime \prime}$	$2.18 \mathrm{sq} . \mathrm{ft}$
$10^{\prime \prime}$	$0.545 \mathrm{sq} . \mathrm{ft}$	$22^{\prime \prime}$	$2.63 \mathrm{sq} . \mathrm{ft}$
$12^{\prime \prime}$	$0.785 \mathrm{sq} . \mathrm{ft}$	$24^{\prime \prime}$	$3.14 \mathrm{sq} . \mathrm{ft}$
$14^{\prime \prime}$	$1.07 \mathrm{sq} . \mathrm{ft}$		

7. We now multiply our average reading by our area (sq.ft)
\qquad sq.feet \times AVERAGE READING= \qquad CFM
Example of taking traverse readings of a 4 " $\times 10^{\prime \prime}$ grill. 1. Add up the readings and divide by the total number of readings to get your average velocity.
8. Multiply the average velocity by the area $=$ CFM
$552 \mathrm{tt} / \mathrm{min} \times 0.277 \mathrm{sq} . \mathrm{ft}=152.9 \mathrm{CFM}$
Area of Common Rectangular Ducts

DUCT SIZE	AREA	DUCT SIZE	AREA
8×8	0.444 sq.ft	10×10	$0.694 \mathrm{sq.ft}$
8×10	$0.555 \mathrm{sq} . \mathrm{ft}$	10×12	$0.833 \mathrm{sq.ft}$
8×12	$0.666 \mathrm{sq} . \mathrm{ft}$	10×14	0.972 sq.ft
8×14	$0.777 \mathrm{sq.ft}$	10×16	1.111 sq.ft
8×16	$0.888 \mathrm{sq} . \mathrm{ft}$	10×18	1.250 sq.ft
8×18	$1.000 \mathrm{sq.ft}$	10×20	$1.388 \mathrm{sq} . \mathrm{ft}$
8×20	$1.111 \mathrm{sq.ft}$	10×22	1.527 sq.ft
8×22	$1.222 \mathrm{sq} .$.	10×24	$1.666 \mathrm{sq.ft}$
8×24	1.333 sq.ft	10×26	$1.805 \mathrm{sq.ft}$
8×26	$1.444 \mathrm{sq.ft}$	10×28	1.944 sq.ft
8×28	$1.555 \mathrm{sq} . \mathrm{ft}$	10×30	$2.083 \mathrm{sq.ft}$
8×30	$1.666 \mathrm{sq} . \mathrm{ft}$	10×32	2.222 sq.ft
		10×34	2.361 sq.ft
		10×36	$2.500 \mathrm{sq} . \mathrm{ft}$

Other Common Areas: Floor Grills, Returns etc

750a

- 0.2 ounces per year sensitivity
- Detects all existing relrigerants and blends including 404A, PURON, and R507 (AZ50)
- 400 hour sensor life under normal use
- Easy one-hand, thumb wheel operation

753a

- 0.2 ounces per year sensitivity
- Detects all existing retrigerants and blends including 404A, PURON, and R507 (AZ50)
- 400 hour sensor life under normal use
- Pump driven finds and clears quicker for finding leads faster

315C

343C1

- Auto field calibrate to +/- 2F in less than 10 seconds in ice water
- Tapered stem (3.1 mm diameter)
to fit into a Pete's plug
- Reinforced, heavy duty Housing Ior strength
- Waterproof
- Fits in your pocket
- 58 to 300 F

265

- Auto lield calibrate in less than 10 seconds in ice water to achieve $+/-1 \mathrm{~F}$ system (tester \& probe) accuracy within 30 F to 120 temperature range.
- 343 can measure -58 to +2,462 depending upon

GK11M fiberglass probes
measure -40 to 950 F
Max, Data hold, Max, Data hold, and selectable C/F

- Comes with A304 tilt- stand protective boot, two GK11M, and A340 sott pouch

