CYLI	NDER	140034.11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1	AJ 0455	/ /			
2	AJ 0454	39			****
3	AJ 04547	2			
4	AJ 04550	5			
5	AJ 045507	7			
6	AJ 04549	7			
7	AJ 045566				
8	AJ045548	3			
9	AJ 045517				
10	AJ 045542	? =			
	AJ 045556				
12	AJ 045529	>			
13	AJ 045544	<u> </u>			
14	AJ045481	····	· · · · · · · · · · · · · · · · · · ·		
15	AJ 045494				
16	AJ 045528	*		7.00	
17	AJ 045569	7	,		
18	AJ 0455 14				
19 20	AJ 045561				
21	AJ				
22	AJ	- 			
23	AJ				
24	AJ				

(59659)

MTE Report No: 59659 Part#: 140034 WO#:

Certificate of compliance and test report – welded or brazed cylinders Manufactured under Dept. of Transportation regulations

Manufacturer: MANCHESTER TAN	NK & EQUIP.
	ELKHART, IN 46514 USA
CYLINDER DESCRIPTION AND DESIGN C	RITERIA:
DOT spec. 4BW	Service Pressure: 400 psi
Nominal size: 10.000in. O.D.x 47.375in. L	
Nominal volumetric capacity: 123.0 lb	Minimum wall: 0.109 in.
Tare weight range:51.00 - 53.00 lb	Calculated stress @ T.P: 34685 psi
Joint Efficiency: Spot X-Ray for 90% Joint Ef	ficiency.
MANUFACTURING PROCESS:	
Construction: (Welded, brazed, type seams, etc)	These Cylinders were made by process of electric arc welding
semi-elliptical heads to a rolled shell. The Long	itudinal butt seam was butt welded, per 178.61-(d)(3)(i).
The circumferential seams were Joggle butt wel	ded, per 178.61(d)(2).
MATERIAL AND HEAT TREATMENT:	
Material was type 3 authorized in Table 1 of Ar	ppendix A of Part 178.
The material was identified by Heat Numbers:	227105,228300
REPORT DETAILS: Quantity: 207	Test date: 10/2018
Serial# Range: <u>AJ045386 – AJ045592</u>	Heat no. or code: 72B,71V
Identifying symbol: M4499	Lot numbers: 1-2
MARKINGS:	Inspector's mark: _JS
MANUFACTURED FOR: Stock	
CONSIGNED TO:	
I hereby certify that I have determined that cylin Dept. of Transportation specification <u>Title 49 C</u>	nders described on this report comply with the requirements of FR, Part 178.61
Remarks:	\mathcal{I}
	Signed: Mr Dunn
	JIM SOMMER Location: ELKHART, IN
	Date: 10-12-18

Record of chemical analysis of material for cylinders

Serial no range: AJ045386	_ to <u>AJ0455</u>	92	inclusive
Cylinder size: 10.000in.	O.D. x	47.375in.	long
Cylinder Manufacturer: MANCHESTER TANK	& EQUIP.		

Heat and	Type of		Chemical Analysis							
Code number.	Analysis (ladel/check	C Ni	Mn Cu	P Cr	S Mo	Si Ti	Al Mg	Cb Zn	V Fe	Other 1 Name – Sym Other 2 Name - Sym
72B - 227105 MANUF BY: NORT TESTED BY: NORT		0.040 0.040	0.840 0.100	0.011 0.070	0.003 0.010	0.020 0.001	0.030 0.000	0.033 0.000	0.001 0.000	-
71V - 228300 MANUF BY: NORT TESTED BY: NORT		0.040	0.840 0.100	0.012	0.003 0.010	0.020 0.001	0.020	0.033	0.002	-

Material manufacturer:_	Manufacturers listed in above data.
•	been verified to comply with material authorized by the specification. Chemical Companies listed in above data.
	Location: ELKHART, IN
	Date: 10-12-18

Record of physical test of material for cylinders

Serial no range: <u>AJ045386</u>	_ to <u>AJ04559</u>	92	inclusive
Cylinder size: 10.000 in.	O.D. x	47.375 in.	long
Cylinder Manufacturer: MANCHESTER TANK &	EQUIP.		
Type of heat treatment: <u>Cylinders were heat treated</u>	in excess of 1	100F, in accordance with the 4B	W Cylinder Spec.

First Serial# Last Serial# Min Wall Thick Wall Stress	Lot number	Heat Code	Yield strength Psi	Tensile strength Psi			Red in area	Weld test * tensile bend	Flat test *	Burst test *	Cycle test *
AJ045386 AJ045585 0.115 in 32877 psi	1-HT 1-HB 1-S 1-W	72B 72B 71V	79132		% %			SAT SAT		PASS	
AJ045586 AJ045592 0.115 in 32877 psi	2-HT 2-HB 2-S 2-W	72B 72B 71V			% %	3.096 22.4 2.760 24.5		SAT SAT			
									THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS		
					de de la facilità de						
					a de la constanta de la consta						

HT – Head Top	HB – Head Bottom	S – Side Wall	W – Weld	PM – Parent Material	SAT - Satisfactory

Location:	ELKHAF	RT, IN	 	
Date: 10-	-12-18			

^{*} Where applicable

** Insert gage length of specimen

Record of hydrostatic tests of cylinders (sample basis)

Serial no range: AJ045386	toAJ()45592	inclusive
Cylinder size: 10.000 in.	O.D. x	47.375 in.	long
Cylinder Manufacturer: MANCHESTER TA	NK & EQUIP.		
Test method: Water Jacket method, per CG	A C-1.		
Test pressure: 800 psi			

Lot # Serial # R	ange Lot Size	Permanent Expansion Cm ³	Total Expansion Cm ³	% Ratio of Permanent to Total Expansion	Volumetric Capacity (lbs.)
1 AJ045386 - AJ045585 2 AJ045586 - AJ045592	200	1.10 1.30	128.70 128.90	0.9 1.0	123.0 123.0

ne above results represent sample cylinders selected from each lot. All other cylinders in the lot were subjected a proof pressure of 800 psi and showed no defects.
Lacation DI MILADE IN
Location: ELKHART, IN

Date: 10-12-18