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With classical mosquito control methods, such as chemical fogging, struggling to
provide sustainable long-term reductions in mosquito populations, new approaches
are constantly being sought to combat vector-borne diseases such as dengue. The
Mosquito Home System (MHS), an auto-dissemination mosquito trap, is one such
example, and aims to kill off mosquito larvae before they can hatch into adult
mosquitoes. In the following paper, a novel hybrid stochastic-deterministic model
is presented and successfully used to predict the effect of deploying the MHS traps
within high-rise flats in Selangor, Malaysia. Stochastic SIR (Susceptible-Infected-
Recovered) equations for the flats are paired with an existing deterministic SIR
model for the wider population in Kuala Lumpur. The predictions of the model are
shown to provide excellent agreement with data collected from a 44 week, real-world
trial of the MHS within the flats. These results provide validation that the stochastic
model may be used as a powerful tool in predicting the short-term and long-term
impact of deploying this style of trap within similar environments in the future. The
results show a significant, sustainable reduction in the mosquito population within
the flats where the MHS traps have been deployed: predicting a mean of 9 (95%
Uncertainty Range (UR): 1, 30) cases during the 44 week MHS trial, compared to
35 (95% UR: 1, 234) cases when no MHSs are present. The model also projects
the distribution of possible outcomes within the flats at endemic equilibrium in the
long-term. On introducing the MHSs, this distribution narrows significantly and the
number of cases declines: from a mean of 5 (95% UR: 0, 52) cases with no MHS, to
1 (95% UR: 0, 8) case annually when the MHSs are introduced. This supports the
value of the traps for controlling the mosquito population and dengue cases.
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1. Introduction

Dengue fever

Globally, around 390 million cases of dengue are reported annually, with around 500,000 hos-
pitilisations, and 20,000 dengue related deaths each year [1]. Dengue fever is a mosquito-borne
viral-disease that is primarily transmitted by the Aedes Aegypti mosquito, although other car-
riers do exist, with the Aedes Albopictus mosquito being the second most prevalent carrier of
the disease [2, 3]. More than 125 countries are affected by the disease, and with international
travel on the rise, the potential for infected travellers to unwittingly spread the disease further
across the globe increases as well [4]. In Malaysia alone, in 2018, there were 80,615 new cases
and 147 deaths attributed to the disease [5]. In 2010, the cost of the Malaysian dengue vector
control program was 73.5 million USD [6]. Dengue fever is generally not fatal, although in some
cases it can develop into a more serious form called dengue haemorrhagic fever (DHF), which
can be life threatening. Thus, due to the huge financial and health implications, it has become
a priority for health organisations across the globe to find a more efficient way of eliminating
the dengue threat.

In the past, there was no vaccine available for dengue, and so the only course of treatment was
simply to treat the symptoms of the infected patients, possibly combined with vector control.
More recently, however, the first ever dengue vaccine was released in 2015. Unfortunately there
are still some complications with its use, and for whom it is effective, and so it has not yet been
widely adopted [7].

Control methods

The dengue spreading Aedes Aegypti mosquitoes like to lay their eggs in dark, artificial con-
tainers, containing water, such as plant pots, flower vases and even old disguarded car tyres [8].
Their ideal breeding sites contain a source of still, clean water, as well as a nearby source of
blood to feed upon. Thus, built up, urban, human environments represent the perfect breeding
ground for these mosquitoes [9].

Recent years have seen a shift in the approaches used to combat mosquito-borne diseases
around the world. Classical mosquito control methods, such as chemical fogging (or space-
spraying) with pesticide sprays, are very effective in the short-term, and produce a rapid decrease
in the adult mosquito population. However, since fogging fails to affect newly laid mosquito
larvae, which remain protected underwater, the long-term effects are minimal [10], and larvae
are ready to replace every adult mosquito killed. In addition, fogging is generally carried out
only once a case of dengue has already been reported within a given area, so it cannot stop an
outbreak before it begins. Concerns about the evolution of pesticide resistant mosquitoes and
the potentially negative health effects of the chemical sprays on humans are also growing [11].
Combined, these factors have driven an increase in research activity focussing on alternative
methods of mosquito control.

The new focus has been on ways to eliminate mosquito larvae, before they can develop into
fully grown adult mosquitoes. Examples of these techniques generally revolve around some form
of modified ovitrap that will be lethal to either the adult female mosquito [12], or the newly
laid larvae that are deposited within the trap.

The Mosquito Home System

The Mosquito Home System (MHS) is a novel design of this style of trap, see Figure 1. It is
classed as an auto-dissemination trap [13], and consists of an ovitrap type container, containing a
solution that attracts the ovipositing female mosquitoes, and a strip of tissue paper, upon which
they can lay their eggs. A reservoir of the solution is contained within an easily replaceable
bottle in the centre of the trap, and this slowly drip feeds fresh solution into a pool at the bottom
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Figure 1: A simplified illustration of the Mosquito Home System. Mosquitoes are attracted by
the special solution (blue), enter the trap through the small (orange) openings at the
top, and lay their eggs on the solution-soaked tissue paper near the bottom (yellow).
A reservoir of solution is contained in an easily replaceable bottle that screws into the
MHS, and feeds the pool at the bottom of the container with fresh solution, as the
existing pool evaporates.

of the container at the same rate at which the existing pool of liquid is evaporating. The solution
used contains an insect growth regulator (pyriproxifen) that is toxic to the mosquito larvae, but
not the adults, and so any eggs that are laid within the trap are completely killed off [14].
In addition to killing the larvae, the female mosquitoes also become contaminated with the
solution, which they may then transfer to nearby hidden breeding sites. This, in turn, kills off
any eggs that are laid in these sites as well, hence the terminology “auto-dissemination”, as the
mosquitoes distribute the toxic solution among the various local breeding sites.

Standard ovitraps have been used for years as a tool to monitor mosquito populations in a
given area. They usually consist of a small dark container, containing water, and a substrate on
which mosquitoes can lay their eggs. The eggs then fall off the substrate, through a mesh, and
into the water below. The eggs eventually hatch and grow into adult mosquitoes, but are then
trapped below the mesh and cannot escape. The trapped mosquitoes may then be counted, to
allow an estimation of the local mosquito population size. These traps are one of the methods
used to obtain the mosquito population data used later in this paper.

Outline of paper

In what follows, a brief outline of previous MHS field studies is provided, alongside general
results from each of these trial locations. Following this, a novel hybrid deterministic-stochastic
model is presented, that can simulate the effect of deploying the MHS within a built-up, res-
idential, urban environment. Results from a series of test cases are presented to validate the
predictions of the model against both real-world data, and predictions from an existing deter-
ministic model. The stochastic model is then used to provide unique insights into the effect
of the MHS on the dengue dynamics within a block of flats. Simulating the stochastic model
many times, we produce the distribution of all possible outcomes for a given parameter set.
Our findings clearly suggest that the use of the MHS significantly limits the potential for large
numbers of residents to become infected within the flats. Similar investigations are also carried
out for the case where the dengue virus has reached endemic equilibrium levels within the same
block of flats. Concluding remarks and limitations are then highlighted at the end. This model
can become a valuable tool for predicting the impact of the MHS traps, and help dengue control
experts worldwide formulate effective strategies for deploying the traps at new locations.
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2. Background

Selangor flats — MHS field study

In 2014, a 44 week trial of the MHS was conducted within three blocks of high-rise flats that
make up the Ridzuan Court Sunway in Selangor, Malaysia. This densely populated area is
part of the Klang Valley, which is centred in Kuala Lumpur, and responsible for around 60% of
Malaysia’s dengue cases [15] and was declared a dengue hotspot at the end of 2013. Combatting
the spread of the disease, within the flats in particular, has proven very difficult via conventional
control methods, and so this made it an ideal location to trial the MHS [16].

Each of the three blocks is 26–27 storeys high, with ten units on each floor, occupying a
floorspace of approximately 7,500 ft2 on each level [14]. This adds up to 800 housing units,
across the three blocks, and 3,200 residents in total, if we assume that each house has an
average of four occupants. Originally four MHS traps were deployed per floor, in each of the
three blocks of flats. Then after the first 12 weeks, an additional eight traps per floor were added
to one of the blocks of flats which appeared to have a significantly larger mosquito population
than the other two. This brought the total number of MHS traps to 552 [14, 16].

Over the course of the 2014 trial, only 13 dengue cases were reported within the flats. This
demonstrated a significant reduction, compared to the 53 confirmed cases for the same period
in 2013, and the 57 cases that occurred in 2015 once the traps were removed [14]. The trial also
noted that the mean number of eggs laid in each MHS decreased as the trial progressed, with
the mean decreasing by around 70.65% for one block of flats in particular [16].

The full results of the field study can be found in [16], whilst an existing deterministic model
that simulates the effect of the MHS within the same three blocks of flats can also be found in
[17]. The results from this deterministic model will be used alongside the findings of the field
study, to help validate the new stochastic model presented below.

Singapore Botanic Gardens Trial

Another trial of the MHS was conducted at the Jacob-Ballas Childrens’ Park in the Singapore
Botanic Gardens from December 2015 – January 2016. This concluded that the introduction
of the MHS traps led to a 58.89% reduction in the Aedes mosquito population within the area
[18]. The trial also found that the MHS traps were twelve times more attractive than standard
ovitraps to mosquitoes laying eggs.

Statistics for Kuala Lumpur

The total population of Kuala Lumpur in 2013 was approximately NH1 = 1,720,000 [19]. The
human and mosquito death rates, µH and µV , can also be approximated from existing data.
These are simply the reciprocal of the average life expectancy of each species. It is known that
in 2015 the average life expectancy in Malaysia was 75 years [20], whilst the average lifespan
of an Aedes mosquito is 2 weeks [21]. Thus, we have that µH = 1/(75 × 365) = 3.653× 10−5

day−1 and µV = 1/14 = 7.143× 10−2 day−1.
In 2013, the incidence rate of new, symptomatic, dengue cases in Kuala Lumpur was 150.2 per

annum, for every 100,000 people [22]. It is also known that, in the period from 1995 to 2012, the
total number of cases in Malaysia was approximately 505,264, with Kuala Lumpur responsible
for around 3–10% of these [23]. As well as these obvious, symptomatic cases, dengue causes
asymptomatic infections, which show no symptoms at all and are not counted. The literature
disagrees on the ratio of symptomatic to asymptomatic cases. A ratio 1:3 is often cited, however
this figure varies from as little as 1:1 all the way up to 1:18 [24]. In what follows, we will assume
this ratio is 1:4 [25, 26], such that, for every person showing symptoms, another four people are
asymptomatic. Thus, assuming 5% of dengue cases in Malaysia are from Kuala Lumpur, the
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total number of people that had recovered from dengue, in Kuala Lumpur in 2013, is estimated
to be 126,316 (= 0.05× 5× 505,264).

3. The mathematical model

The mathematical model consists of two sets of six differential equations that allow the sim-
ulation of the dengue dynamics within the flats. The first set takes a deterministic approach
to model the disease in the wider population of Kuala Lumpur, whilst the second set adopts
a stochastic approach to evolve the same dynamics within the flats themselves. Both of these
submodels are outlined separately below.

The Ross-MacDonald approach

In what follows, a set of deterministic, Ross-MacDonald style differential equations are used to
evolve the human and mosquito population dynamics across the whole of Kuala Lumpur. The
information from these can then be fed into the stochastic model for the flats.

Developed over a seventy year period, the Ross-Macdonald equations are one of the most
established approaches to modelling vector-transmitted diseases mathematically, and take the
form of a Susceptible-Infected-Recovered (SIR) model [27]. The model divides the human
population within Kuala Lumpur into three groups: Susceptible humans who are at risk of
becoming infected with dengue; infected humans who are currently infected with the disease;
and recovered humans who have now recovered from the disease. These three groups will be
denoted SH1(t), IH1(t) andRH1(t), respectively, with the subscript “1” being used to specify that
these represent the populations in Kuala Lumpur. Later, the subscript “2” will be introduced
to represent the same populations within the block of flats, as outlined in Table 1. Using this
model, it is assumed that once recovered, humans become immune until they die.

The mosquito population in Kuala Lumpur is also divided into three different groups. These
are SV1(t), the number of susceptible mosquitoes; LV1(t), the latent mosquitoes; and IV1(t), the
infectious mosquitoes. Under this model, it is assumed that mosquitoes may become infected by
biting an infected human, and if they do, then there is an incubation (latent) period of length
τ days before they themselves become infectious. Once infected, it is assumed that a mosquito
is infected for life, until it dies.

Variable Description Variable Description

SHj (t) Susceptible humans SVj (t) Susceptible mosquitoes

IHj (t) Infected humans LVj (t) Latent mosquitoes

RHj (t) Recovered humans IVj (t) Infected mosquitoes

NHj Total no. humans NVj Total no. mosquitoes

Table 1: The main model variables. The subscript j distinguishes between the wider population
in Kuala Lumpur and that in the flats: For example, SH1(t) denotes the number of
susceptible humans in Kuala Lumpur, whilst SH2(t) denotes the susceptible humans
in the flats. In general j = 1 denotes Kuala Lumpur and j = 2 represents the flats.

Deterministic models are generally the first approach adopted when modelling a new epi-
demiological scenario. This is usually due to their ease of implementation and their low com-
putational expense [28]. They produce the same results each time, since the future state of the
system has no dependence upon random events (like those found in a stochastic model). How-
ever, since the spread of dengue is dictated by a series of random events in nature, a stochastic
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approach is a better representation of reality. This is especially true when modelling smaller
population sizes, as it is entirely possible that the disease may randomly become extinct due to
the much smaller numbers infected at any one time [29].

Provided the population is large enough, however, the deterministic approach gives a good
approximation to the more realistic results of a stochastic model [30, 31]. Subsequently, the
deterministic approach is perfect for modelling the wider population across Kuala Lumpur. It is
also noted that, in general, we expect that the average results from a large number of stochastic
simulations should tend towards the deterministic results when they model the same situation.
This convergence towards the deterministic results is a fact that is later used to examine the
predictions of the new stochastic model. The models assume that the population being modelled
is homogeneous; an assumption that may not hold true if super-infectors or super-connected
individuals are present.

The stochastic model approach

Since both the human and mosquito populations within the flats are fairly small, it is more
appropriate to adopt a stochastic model to evolve the population dynamics within the three
blocks of flats. Within the literature, deterministic models are used far more commonly than
stochastic models. Of the few stochastic dengue models that do exist, the Skeeter Buster tool by
Magori et. al [32] is perhaps the most thorough that is currently available. Their model keeps
track of the entire life history of mosquitoes, incorporating stochastic events, spatial hetero-
geneity and mosquito genetics, to predict mosquito dynamics at distinct locations (individual
houses). Another approach is discussed by Samat and Percy in [33], where they incorporate
a Poisson-Gamma process into a stochastic SIR model to map the relative risk of dengue, on
a state-by-state basis, for all 16 states in Malaysia. The numerical analysis of an SEIR (Sus-
ceptible, Exposed, Infectious, Recovered) type model for dengue can be found in [34], whilst
[35] presents a minimalistic stochastic SEIR model, incorporating seasonality and spatial vector
dynamics, to estimate the risk of a dengue epidemic in Buenos Aires, Argentina. However,
none of these existing models incorporate the effects of mosquito traps, or other vector control
solutions.

The stochastic approach is generally far more versatile than the deterministic equivalents,
as it can be used to address questions such as the probability of epidemic fade out, as well as
predict both the distribution and variance of the total number of cases that may occur. One
of the key benefits of the stochastic model presented here, is its unique ability to account for
all possible outcomes when dengue is introduced into the flats, producing the distribution of
possible outcomes within the flats. This allows for the aleatory (or intrinsic random) uncertainty
to be estimated as well as evaluation of the effects of the epistemic uncertainty (the uncertainty
in the model assumptions or parameters), whereas the deterministic model allows only for
evaluation of the effects of the epistemic uncertainty. Overall, the output from the stochastic
model is both more realistic, and easier to understand. This is a very important consideration,
as the work presented here is being carried out in collaboration with entomologists and vector
control specialists who have little experience of mathematical modelling and may be more readily
convinced by a model with a realistic output. It is also hoped that the model presented here
can be incorporated into a publicly available app that is being developed in conjunction with
the MHS, thus it is imperative that the predictions of the model can be easily interpreted.
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Equations for Kuala Lumpur

The Ross-Macdonald style equations used to describe the human and mosquito dynamics within
Kuala Lumpur are taken from [17, 36], and take the form:

dSH1(t)

dt
= −a b IV1(t)

SH1(t)

NH1︸ ︷︷ ︸
Newly infected

− µHSH1(t)︸ ︷︷ ︸
Natural death

+ µHNH︸ ︷︷ ︸
Natural birth

,

dIH1(t)

dt
= a b IV1(t)

SH1(t)

NH1︸ ︷︷ ︸
Newly infected

− µHIH1(t)︸ ︷︷ ︸
Natural death

− γ IH1(t)︸ ︷︷ ︸
Newly recovered

,

dRH1(t)

dt
= γ IH1(t)︸ ︷︷ ︸

Newly recovered

− µHRH1(t)︸ ︷︷ ︸
Natural death

,

dSV1(t)

dt
= −a c SV1(t)

IH1(t)

NH1︸ ︷︷ ︸
Newly latent

− µV SV1(t)︸ ︷︷ ︸
Natural death

+ µVNV1︸ ︷︷ ︸
Natural birth

,

dLV1(t)

dt
= a c SV1(t)

IH1(t)

NH1︸ ︷︷ ︸
Newly latent

− µV LV1(t)︸ ︷︷ ︸
Natural death

− a c SV1(t− τ)
IH1(t− τ)

NH1

exp
[
−µV τ

]
︸ ︷︷ ︸

Newly infectious

,

dIV1(t)

dt
= a c SV1(t− τ)

IH1(t− τ)

NH1

exp
[
−µV τ

]
︸ ︷︷ ︸

Newly infectious

− µV IV1(t)︸ ︷︷ ︸
Natural death

. (1)

Here, SH1(t), IH1(t) and RH1(t) represent the number of susceptible, infected and recovered
humans within Kuala Lumpur at time t. Similarly, the number of susceptible, latent and
infected mosquitoes are given by SV1(t), LV1(t) and IV1(t), as summarised in Table 1. The
constant parameters µH , µV and γ, represent the natural human and mosquito mortality rates
(per capita) and the per capita human recovery rate from infection, respectively. The constants
a and τ are respectively the mosquito daily biting rate and the dengue extrinsic incubation
period for a mosquito. The dengue transmission probability when an infected mosquito bites a
susceptible human is denoted by b, and c is the dengue transmission probability when an infected
human is bitten by a susceptible mosquito. The values of these parameters are summarised in
Table 2.

We assume that the human population in Kuala Lumpur is constant and equal to NH1 ,
with the natural per capita death rate, µH , equal to the per capita birth rate. Similarly, we
assume the mosquito population is constant, with a per capita death rate µV and a total of NV1

mosquitoes across Kuala Lumpur.

Stochastic equations for the Selangor flats

It is known that the risk of infection from mosquitoes living within the flats will be directly
proportional to the amount of time a person is physically inside the flats [17]. Thus, it is
assumed that the per capita rate at which susceptible residents of the flats become infected is
given by

λH = a b
[P IV1(t)

NH1

+
(1− P ) IV2(t)

NH2

]
. (2)

Here, the parameter P represents the proportion of time an average flat’s resident spends away
from the trial site, outside in Kuala Lumpur, whilst (1 − P ) corresponds to the proportion of
time they are physically inside the block of flats. The values of the parameters a and b are
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Parameter Description Value

µH Natural human mortality rate (per capita) 3.653× 10−5 day−1

µV Natural mosquito mortality rate (per capita) 7.142× 10−2 day−1

γ Human recovery rate from infection 0.143 day−1

a Mosquito daily biting rate 0.200 day−1

b Dengue transmission probability (Mosquito to Human) 0.750

c Dengue transmission probability (Human to Mosquito) 0.375

τ Dengue extrinsic incubation period 8 days

Table 2: The main model parameters, and their corresponding values for Malaysia [37, 38].

assumed to be the same constants as for the wider population in Kuala Lumpur, the values of
which can be found in Table 2.

We assume that the number of new dengue infections within the flats follows a Poisson
process, with rate λH SH2(t), so that the number of new infections within a small time interval
[t, t+ ∆t) is given by the Poisson distribution with mean λH SH2(t) ∆t

XS→I
H2

(t,∆t) ∼ Poisson
(
λH SH2(t) ∆t

)
. (3)

Since people recover from dengue at a rate γ, and die naturally at a rate µH , it is assumed that
the number of infected humans recovering during the interval ∆t can be approximated by

XI→R
H2

(t,∆t) ∼ Poisson
(
γ IH2(t) ∆t

)
, (4)

whilst the number of infected humans dying naturally during the same interval is approximated
by

XI→D
H2

(t,∆t) ∼ Poisson
(
µH IH2(t) ∆t

)
. (5)

Similarly, the number of recovered humans dying in the interval [t, t+ ∆t) is assumed to follow
the Poisson distribution

XR→D
H2

(t,∆t) ∼ Poisson
(
µH RH2(t) ∆t

)
. (6)

A similar approach is taken to approximate the events involved in the evolution of the mosquito
population within the flats, using stochastic processes. Here, it is assumed that mosquitoes
become infected with dengue at a rate

λV = a c
IH2

NH2

, (7)

and that the number of mosquitoes becoming latent in the same small time period of length ∆t
can be approximated by the Poisson distribution

XS→L
V2

(t,∆t) ∼ Poisson
(
λV SV2(t) ∆t

)
. (8)

A Binomial process is then introduced to approximate the number of latent mosquitoes dying
in the small time interval [t, t+ ∆t), and is given by

Y L→D
V2

(t,∆t) ∼ Binomial
(
LV2(t), µV LV2(t) ∆t

)
. (9)
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We could equally have used a Poisson process here. The number of latent mosquitoes in the
flats at any one time is always very small (usually zero, one or two), so as ∆t becomes small the
results of the Binomial distribution will be the same as those from the corresponding Poisson
distribution (to the first order in ∆t). Thus, it makes no difference whether we model the deaths
of latent mosquitoes in the flats using a Binomial or a Poisson process.

For each latent mosquito, we also keep track of the time that has transpired since the mosquito
became infected. After a time τ has elapsed, any surviving latent mosquitoes are then trans-
ferred to the infected class. So at time t, a total of XL→I

V2
(t) mosquitoes transfer to the infec-

tious class. For simplicity, ∆t is chosen so that τ is an exact integer multiple of ∆t. Any latent
mosquitoes present at the start are assumed to have been infected at time t = 0.

For all of the death events presented here, where small populations are involved, care has
been taken to ensure non-negativity of the human and mosquito populations within the flats.
For example, in the case of latent mosquitoes dying naturally, if LV2(t) = 0, the number of these
latent mosquitoes dying within the flats is simply set to zero, i.e. Y L→D

V2
(t,∆t) = 0. The same

is done for infected humans and infected mosquitoes within the flats, as the numbers of these
are likely to be very small for all time.

Finally, a fifth Poisson process is introduced to approximate the number of infected mosquitoes
dying naturally within the period [t, t+ ∆t). This is denoted by

XI→D
V2

(t,∆t) ∼ Poisson
(
µV IV2(t) ∆t

)
. (10)

The terms from (2)–(10) above, are then used to construct a set of four stochastic equations
that describe the evolution of human and mosquito populations within the Selangor flats. These
are the equations:

IH2(t+ ∆t) = IH2(t) +XS→I
H2

(t,∆t)−XI→D
H2

(t,∆t)−XI→R
H2

(t,∆t) + o(∆t),

RH2(t+ ∆t) = RH2(t) +XI→R
H2

(t,∆t)−XR→D
H2

(t,∆t) + o(∆t),

LV2(t+ ∆t) = LV2(t) +XS→L
V2

(t,∆t)− Y L→D
V2

(t,∆t)−XL→I
V2

(t+ ∆t) + o(∆t),

IV2(t+ ∆t) = IV2(t) +XL→I
V2

(t+ ∆t)−XI→D
V2

(t,∆t) + o(∆t). (11)

Here, we adopt the convention that a random function f(ω, x) is of order x, denoted o(x),
if lim

x→0

[
f(ω,x)

x

]
= 0 for all ω ∈ Ω, where Ω is the sample space. Using (11), the number of

susceptible humans and mosquitoes within the flats, at time t + ∆t, may then be calculated
using the respective equations:

SH2(t+ ∆t) = NH2 − IH2(t+ ∆t)−RH2(t+ ∆t),

SV2(t+ ∆t) = NV2(t+ ∆t)− LV2(t+ ∆t)− IV2(t+ ∆t). (12)

Here, the total mosquito population within the flats is varied with time, to account for the
number of Aedes mosquitoes reducing at the start, as a direct result of the MHS traps. It is
assumed the rate of mosquito population decay is exponential, and thus the total number of
mosquitoes in the flats is given by the equation

NV2(t) = NV2(0)
[
(1− P ∗) + P ∗ exp(−µV t)

]
, (13)

where the parameter P ∗ represents the total percentage reduction in the number of Aedes
mosquitoes as a direct result of the MHS [17]. The human population within the flats (NH2) is
assumed to be constant for all time, in a similar way to the Kuala Lumpur deterministic model.

The equations in (1) for the wider population of Kuala Lumpur, combined with those in
(11)–(13), represent a comprehensive set of governing equations from which the human and
mosquito dynamics within the flats can be predicted.
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In the next section, to confirm our confidence in the output of the stochastic model, we
discuss comparisons between the stochastic results and the deterministic equivalent. This will be
illustrated by using both models to determine the effects of the MHSs by varying the parameters
P ∗ and P . After this, we proceed to use the new stochastic model to further our understanding
of the predicted effect of the MHSs on the flats. The conclusions section then summarises and
discusses the results.

4. Model validation

We numerically validate the model using R [39] to achieve the human and mosquito population
dynamics within the three blocks of the Ridzuan Court flats used for the 2014 MHS trial. The
deterministic differential equations for Kuala Lumpur (1) were evolved in time using Euler’s
method, whilst the new stochastic equations for the flats (11) – (13) were evolved in time using
a combination of R’s built in Poisson and Binomial functions. The model was comprehensively
verified and validated using detailed output from a large number of runs and the resulting R
script is available upon request. This section will outline a select few results used as part of
this process, whilst additional evidence to support our claims can be found in Appendix A.

To demonstrate the validity of the stochastic model, its output is compared to that of the
existing deterministic model presented by Greenhalgh et al. in [17], alongside real-life data from
field studies. Both models are used to simulate the effect of deploying the MHS within the flats
(by varying the parameter P ∗) and, for all simulations, a time-step of ∆t = 0.01 weeks has been
used. The simulations were repeated for smaller values of ∆t, down to 0.001 weeks, to check for
numerical integration error. In doing so, 1,000 simulations of a year long period were carried
out for each ∆t value, and the mean values for the human and mosquito populations within the
flats were calculated for each. For ∆t < 0.01 weeks, these average values were found to match
those produced when ∆t = 0.01 weeks (to two decimal places), however, the simulations were
noticeably more computationally expensive. Subsequently, it was concluded that reducing the
time-step further had no beneficial effect on the results.

In what follows, we demonstrate that the average results of the stochastic model are, in
general, similar to those of the deterministic model. Here, P ∗ is set to 0 to represent the case
when no MHS traps are present, and then changed to 0.5889 to simulate the case where the MHS
traps are deployed. This particular value of P ∗ corresponds to the reduction in the mosquito
population observed during the Singapore Botanic Gardens trial of the MHS [18], and also falls
within the expected range of P ∗-values suggested in Greenhalgh et al. [17].

To allow for easy comparison of the results, the initial conditions are taken to be the same as
those used by Greenhalgh et al. [17], for the existing deterministic model of the flats. Combined,
these initial conditions provide a good approximation to the real-world populations in the flats
at the start of 2014. These are rounded to nearest whole human or mosquito, and take the
form:

SH1(0) = 1,593,441, SV1(0) = 3,211,447, SH2(0) = 2,964, SV2(0) = 5,974,

IH1(0) = 242, LV1(0) = 207, IH2(0) = 0, LV2(0) = 0,

RH1(0) = 126,316, IV1(0) = 268, RH2(0) = 235, IV2(0) = 1. (14)

Using (14), the mosquito to human ratio is calculated to be m = NV1/NH1 = 1.867, whilst the
other parameters are assigned the values in Table 2, as per Greenhalgh et al. [17] and Deroich
and Boutayeb [38]. The total number of humans and mosquitoes in Kuala Lumpur are taken
to be NH1 = 1,720,000 and NV1 = 2,055,632, respectively, whilst the corresponding populations
for the flats are set to NH2 = 3,200 and NV2(0) = m×NH2 = 5,974.5. The proportion of time
spent outside the test site was set to be P = 0.1. The new stochastic model was used to run
1,000 independent simulations of the dengue dynamics within the flats, for the same 44 week
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(a) Susceptible humans, SH2(t). With MHS.
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Figure 2: Average stochastic results from 1,000 independent simulations of a 44 week period,
when the MHS is present. Here P = 0.1 and P ∗ = 0.5889. Plots show the mean
stochastic value at each time step, along with corresponding 95% uncertainty range
and quantiles, deterministic results and real world data from the 2014 MHS trial.

period, used by the 2014 MHS trial. The average results of these simulations, both with and
without the MHS can be found in Figures 2 and 3, respectively. These show the mean stochastic
value at each time step and corresponding 95% uncertainty range (95% UR: Q.025, Q.975) for
the stochastic results, from the lower 2.5% quantile (Q.025) to the upper 97.5% quantile (Q.975).
Real world data for the cumulative total number of cases is also plotted. This is obtained from
the 2014 MHS field study results, along with data for the corresponding period from 2013, when
no MHSs were present [16].

Clearly, the average results of the stochastic model are a good match for those from the
deterministic model, as both lines lie on top of each other in every plot in Figure 2 and Figure
3. From these plots, we can also clearly visualise the effect of deploying the MHS within the
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(a) Susceptible humans, SH2(t). No MHS.
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Figure 3: Average stochastic results from 1,000 independent simulations of a 44 week period,
when no MHSs are present. Here P = 0.1 and P ∗ = 0. Plots show the mean
stochastic value at each time step, along with corresponding 95% uncertainty range
and quantiles, deterministic results and real world data from 2013.
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flats. The uncertainty ranges in Figure 3, when no MHSs are used, are all much wider than the
corresponding ranges found in Figure 2. For example, Figure 2b, shows we can be 95% certain
that the total number of cases within the trial period will be less than 30 when the MHS is
present. Whereas, from Figure 3b, when no MHS is present, the upper limit on the same 95%
uncertainty range shows there is potential for up to 200 new cases in the same 44 week period.
Thus the MHS can greatly reduce the potential for a large numbers of infections.

We also note that the stochastic results in Figures 2b and 3b, both under-predict the fi-
nal value for the total number of cases observed within the 44 week period, compared to the
real-world data. There are a variety of possible reasons for this. It could be due to random
fluctuation, or it could be due to inaccurately estimating one of the parameters in the model.
For example, we have chosen a daily mosquito biting rate of 0.2 day−1, whilst the literature
generally references this value to be anywhere between 0− 3 day−1.

Combined with the additional verification results presented in Appendix A, these provide
quantitative evidence that the new hybrid deterministic-stochastic model is functioning cor-
rectly, and accurately evolving the dengue dynamics within the flats. In the next section, we
move on to demonstrate some of the unique insights that the new stochastic approach can
provide, as well as demonstrating its main advantages over the deterministic equivalent.

5. Simulations and results: Stochastic insights into the MHS

Example 1: Extended deployment, and distribution of possible outcomes

To begin, the hybrid deterministic-stochastic model is used to simulate the effect of deploying
the MHSs within the trial site for an extended three year period. The initial conditions are set
to be the same as those outlined in (14) and plots illustrating a single simulation of the three
year period are shown in Figures 4 and 5.

Figures 4 and 5, show a single simulation for the flats and the Kuala Lumpur populations,
respectively. It is noted that the number of humans infected within the flats is noticeably larger
than the corresponding number of infected mosquitoes within the flats. This to be expected,
and shows that the model accurately captures the fact that people may become infected when
they are away from the flats, in wider Kuala Lumpur. Comparing Figures 4e and 4f, it is evident
that the model also captures the fact that not all mosquitoes survive the latent period, with
the cumulative total number of infected mosquitoes over the three year period being less than
the culmulative total number of latent ones. Figure 4b shows roughly 30 new cases of dengue
over the three year period and an annual average of 10 new cases, which is in good agreement
with the 13 cases observed during the 44 weeks of the 2014 MHS system trial.

Plots showing the solution of the corresponding deterministic part of the model for the wider
population in Kuala Lumpur are shown in Figure 5. These are of course identical to those
presented in Greenhalgh et al. [17].

We never observe total extinction of dengue within the flats in the stochastic model. This
is because dengue is endemic in the broader population in Malaysia. So even if there were
no dengue infections within the flats, there will always be cases of residents becoming infected
while outside in wider Malaysia and reintroducing the disease into the mosquito population
when they return home. This is evident in Figures 4b and 4f, where newly infected humans are
observed, despite there being no infectious mosquitoes present at the same time.

The stochastic approach also allows us to investigate the distribution of the potential outcomes
for the simulations presented above, both with and without the MHS traps. Subsequently, the
frequency distribution of the potential total number of humans infected annually within the flats
is presented in Figure 6, for each of the three years. These distributions, and the figures below,
have been calculated using 1,000 independent simulations. It is noted that the x-axis range on
the distributions in Figure 6 has been cropped to allow for easy comparison of the results, and

12



Combatting Malaysia’s dengue outbreaks: Hybrid stochastic-deterministic model.

0 50 100 150

2
9

5
0

2
9

5
5

2
9

6
0

2
9

6
5

Time (weeks)

S
u

s
c
e

p
ti
b

le
 i
n

d
iv

id
u

a
ls

(a) Susceptible humans, SH2(t).
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(b) Infected humans, IH2(t).
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(c) Recovered humans, RH2(t).

0 50 100 150

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0

Time (weeks)

S
u

s
c
e

p
ti
b

le
 m

o
s
q

u
it
o

e
s

(d) Susceptible mosquitoes, SV2(t).
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(e) Latent mosquitoes, LV2(t).
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(f) Infected mosquitoes, IV2(t).

Figure 4: Stochastic simulation of the mosquito and human populations within the flats, over a
three year period. Here, P = 0.1 and P ∗ = 0.5889.
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(a) Susceptible humans, SH1(t).
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(b) Infected humans, IH1(t).
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(c) Recovered humans, RH1(t).
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(d) Susceptible mosquitoes, SV1(t).
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(e) Latent mosquitoes, LV1(t)
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(f) Infected mosquitoes, IV1(t)

Figure 5: Results from the solution of the deterministic model for the mosquito and human
populations in Kuala Lumpur, for a three year period with P = 0.1 and P ∗ = 0.5889.
This part of the model is identical to that used by Greenhalgh et al. [17].
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Figure 6: Frequency distribution of the total number of infected humans in the flats, per year,
for each of the three years. These frequencies were calculated using the results of
1,000 independent stochastic simulations, both with the MHS, where P = 0.1 and
P ∗ = 0.5889 and without the MHS, where P = 0.1 and P ∗ = 0.

subsequently some higher, outlier, values as well as larger summary statistics are not visible.
Corresponding summary statistics are displayed in the plot legends, and show the deterministic
result for the total number of cases, alongside the stochastic mean and 95% uncertainty range
from Q.025 to Q.975.

The MHS traps significantly reduce the potential for a large number of infections. When the
traps are present, a significant decrease in the mean number of new cases each year is observed,
along with a narrowing of the 95% uncertainty range (95% UR: Q.025, Q.975). When the MHS
is present, this mean number of new cases is 9.34 (95% UR: 1, 30) in the first year, 13.78 (95%
UR: 4, 36.03) in the second and 20.30 (95% UR: 7, 47.03) in the third. On the other hand,
when no MHSs are present, the mean number of new cases increases significantly to 35.35 (95%
UR: 1, 234.03) in the first year, 65.30 (95% UR: 5, 327.13) in the second and 95.65 (95% UR:
9, 346.05) in the third year. The 95% uncertainty ranges are also all significantly larger when
no MHS traps are present within the flats.

Example 2: Endemic equilibrium

Endemic equilibrium occurs when a disease has established itself within a population at a level
that will remain constant for all time, in the absence of any intervention or other exogenous
changes (e.g. to the environment) [40]. Thus, the number of infected, susceptible and recovered
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individuals within a population, at endemic equilibrium, gives insight into the long term impact
of a disease on a population.

In this example, we calculate the endemic equilibrium values within the flats in the absence of
the MHS traps (P ∗ = 0) and compare these values to those predicted after the MHS traps have
been introduced (P ∗ = 0.5889). The results are also compared to the endemic equilibrium values
from the deterministic model presented in [17], since the long-term, stochastic averages should
tend towards the deterministic endemic equilibrium values, provided the stochastic results are
averaged over a large enough period of time.

To simulate the endemic equilibrium for the flats, in the absence of the MHS traps, the
deterministic endemic equilibrium values (Table 2 in [17]) were used as the initial conditions.
Starting at these values greatly reduces the computational time required to reach endemic
equilibrium, as the stochastic model is significantly more computationally intensive than its
deterministic counterpart. For this case, where P = 0.1 and P ∗ = 0, these initial conditions
were:

SH1(0) = 1,593,441, SV1(0) = 3,211,447, SH2(0) = 2,753.155, SV2(0) = 5,975.446,

IH1(0) = 242, LV1(0) = 207, IH2(0) = 0.115, LV2(0) = 0.098,

RH1(0) = 126,316, IV1(0) = 268, RH2(0) = 446.730, IV2(0) = 0.127. (15)

Similarly, for the case where the MHS traps were introduced to the flats, with P = 0.1 and
P ∗ = 0.5889, the initial conditions were taken to be:

SH1(0) = 1,593,441, SV1(0) = 3,211,447, SH2(0) = 3,113.127, SV2(0) = 2,456.580,

IH1(0) = 242, LV1(0) = 207, IH2(0) = 0.022, LV2(0) = 0.008,

RH1(0) = 126,316, IV1(0) = 268, RH2(0) = 86.850, IV2(0) = 0.010. (16)

Because in the stochastic model all of the variables need to be whole numbers, the initial
numbers of infected and removed humans in the flats, and the initial numbers of latent and
infected mosquitoes in the flats, were rounded to the nearest whole number, and the initial
numbers of susceptible humans and mosquitoes in the flats adjusted accordingly. To allow
endemic equilibrium to be established, the model was used to simulate an arbitrary 2,400 year
period, starting in 2013. The average value of the stochastic results was then calculated over
the final 1,000 years. The endemic equilibrium values are presented in Table 3. Here, the results
from the deterministic model in [17] are again presented alongside the stochastic results to allow
for easy comparison.

P ∗ = 0 P ∗ = 0.5889

Endemic Equilibrium Value Stochastic Deterministic Stochastic Deterministic

SH2(t) 2,762.990 2,753.155 3,111.980 3,113.127
IH2(t) 0.117 0.115 0.023 0.022
RH2(t) 436.89 446.73 88.00 86.85
SV2(t) 5,976.22 5,975.44 2,456.57 2,456.58
LV2(t) 0.102 0.098 0.016 0.008
IV2(t) 0.128 0.127 0.010 0.010

Incidence Cases (Per week) 0.115 0.115 0.022 0.022
Total Cases (Per year) 5.99 5.96 1.146 1.158

Table 3: Endemic equilibrium values for the new stochastic model, presented alongside those
obtained using the existing deterministic model. Here, P = 0.1 for all simulations.

The results in Table 3 firmly support the conclusion that the stochastic model is functioning
as desired, and accurately simulating the evolution of the human and mosquito populations
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within the flats. It is also noted, that the implementation of the MHS clearly reduces both the
number of infected people and latent and infected mosquitoes present at endemic equilibrium.
This is accompanied by an increase in the number of susceptible individuals and a decrease in
the number of recovered individuals when the MHS is present, implying that fewer people have
contracted the disease as a direct result of the MHS.

The new model is also used to simulate the distribution of possible outcomes at endemic
equilibrium. This has been calculated in two ways: The first technique, Method I, uses a
single stochastic simulation of 1,500 years, and records the annual number of dengue cases for
every year. Combined, these give the distribution of possible outcomes pictured in Figure 7. The
second technique, Method II, can be found in Appendix B and uses a series of 1,000 independent
simulations of a three year period, starting at the deterministic endemic equilibrium values
outlined in (15) and (16), to produce the equivalent distribution. For each method, results are
obtained both with and without the MHS traps, using P ∗ = 0 and P ∗ = 0.5889, respectively.

The results produced by Method I are in Figure 7. These show the distribution of the total
number of dengue infections expected annually, both with and without MHS intervention in the
flats. The frequency distributions, the means and the modal frequencies are calculated using
the final 1,000 years.

It is observed that when the MHS is present, the range of potential new dengue cases at
endemic equilibrium is much narrower than the case where no MHS is used. This is evident
from the maximum value of the distribution of just 35 dengue cases annually with the MHS
present, compared to a potential for up to 335 cases without it. It is also noted here that the
x-axis range in Figure 7a has been cropped to allow ease of legibility, so these higher, outlier
values are not visible. It is observed that the modal frequency, both with and without the MHS,
is zero cases annually within the flats. However, the mean annual number of cases when no
MHS is present is 5.50 (95% UR: 0, 52.15), which is noticeably bigger than the corresponding
value of 1.17 (95% UR: 0, 8) when the mosquito traps are deployed, and so we can again safely
conclude that the MHS has a significant impact on reducing the potential for new dengue cases
within the flats.

Plots of the number of susceptible humans within the flats have also been included here, in
Figures 7b and 7d. These show the variations in the number of susceptible humans within the
trial site over the entire 1,000 year period, and are included to illustrate the way in which the
stochastic predictions oscillate around the deterministic endemic equilibrium values, indicated
by the red line.

Effect on Malaysian chemical fogging activities

In Malaysia, by law, health care practitioners are required to report new cases of dengue to the
Malaysian Ministry of Health within 24 hours of discovery. This triggers a chain of events that
results in chemical fogging with insecticide sprays being carried out in the area surrounding
every newly reported case. In 2010, within the Klang Valley district in which the flats are
located, the cost of this chemical fogging was estimated to be 811 USD per reported case [6].
On average, 61% of these costs were for human resources, whilst 14% of the costs were for the
chemical insecticides, and the remainder covered fogging equipment and vehicles.

In comparison, each MHS unit costs 2 USD, requires 18 USD worth of solution annually, and
incurs maintenance costs of 24 USD per year. These figures are obviously subject to change,
and increased production of the MHS will see costs reduce further. Based on these figures, the
552 MHSs used in the 44 week trial would incur an initial set-up cost of 1,104 USD to buy the
traps, and running costs would total 19,617 USD for the full 44 week period. In contrast, we
expect 35 cases on average for the same period, when no MHSs are present, which would result
in 28,385 USD worth of chemical fogging expenses. This translates to a 30% reduction in the
cost of dengue control activities when the MHSs are used within the Ridzuan Court flats if the
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(d) Stochastic SH2(t), plotted against de-
terministic endemic equilibrium , P ∗ =
0.5889.

Figure 7: Distribution of possible outcomes at endemic equilibrium, calculated using Method I.
Plots (a) and (c) show the results for P ∗ = 0 and P ∗ = 0.5889, respectively. Plots of
the average susceptible humans in the flats over each separate year are found in (b)
and (d), with the corresponding deterministic endemic equilibrium value plotted in
red.

start up MHS costs are spread over a three year period. If the MHSs were to be rolled out
across the Klang Valley, the district’s total savings are only expected to increase further.

6. Conclusion

A novel set of hybrid deterministic-stochastic equations has been outlined, and successfully
used to model the spread of dengue amongst the human and mosquito population within three
blocks of high-rise flats situated in Malaysia’s Klang Valley. This model is unique, in that it truly
captures the random nature of the dengue dynamics within the flats. One of the main benefits
of this approach is that it has the ability to capture uncertainty and variability, which are both
of high importance to decision makers across the globe. This makes the model a powerful tool
for epidemic modellers and disease control specialists worldwide, as it allows for quick and easy
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visualisation of all possible scenarios when designing control strategies to suppress the spread
of the virus. This is something that will be of key importance when the model is later rolled
out into the publicly available app that is being designed to complement the MHS traps.

A single stochastic simulation of the populations within the flats is also much more intuitive
to interpret. This is because only whole numbers of people or mosquitoes can become infected
at any one time. On the other hand, in the deterministic approach, it is commonplace to have
fractions of a mosquito infected, or a fraction of a human dying. Further, the stochastic model
may be used to simulate the distribution of all possible outcomes.

The MHS traps clearly produce a large reduction in the mean number of dengue cases observed
annually. This is accompanied by a significant narrowing of the corresponding uncertainty
range. For the 44 week MHS trial, the mean total number of cases decreased from 35 with no
MHSs, to just 9 cases when MHSs were introduced. The corresponding 95% uncertainty range
also narrowed from (1, 234) without the MHSs, to (1, 30) when the MHSs were introduced.
A significant reduction in the annual number of dengue cases at endemic equilibrium is also
observed, which can be directly linked to the introduction of the MHS traps. This figure
decreases from 5.99 cases annually, when no MHSs are present, to just 1.146 cases when the
MHS is introduced (see Table 3). This clearly implies that the MHS traps produce a sustainable
reduction in both the dengue-infected mosquito population, as well as the number of human
dengue cases observed within the local community.

The findings above have been echoed by other studies into the use of mosquito traps to
combat vector-borne diseases. In [41], Sharp et al. demonstrate that the presence of autocidal
gravid ovitraps (AGOs) is strongly linked to a significant reduction in Chikungunya virus cases
in Puerto Rico. The AGO traps attract, capture and kill ovipositing female mosquitoes using
a sticky lining, rather than an insecticide. With AGO traps present, Sharp et al. estimate that
only 10.3% of local residents will contract the Chikungunya virus, in contrast to 48.7% with
no traps. This further supports the downward trend in dengue cases that is observed when the
MHS traps are present.

Whilst the hybrid stochastic-deterministic model simulates a more realistic picture of the
random events within nature that spread the dengue virus, it does have a few minor limitations.
It is slightly more computer intensive than the purely deterministic approach, however the time
step ∆t can be chosen to minimise this increase, whilst maintaining the accuracy of predictions.
The model also does not account for seasonality or climate-forced changes, and the fluctuation
in the number of mosquitoes that this usually causes. However, as it is, it provides a very simple
and easy to use tool to give a quick, accurate approximation of the dengue dynamics within the
flats.

This paper has focused on the application of the hybrid deterministic-stochastic model to
three specific blocks of flats, however this model could easily be modified and implemented
anywhere in the world, to simulate the effect of any auto-dissemination type mosquito trap. It
can quickly and easily be used to predict the impact of deploying the mosquito traps within
similar environments, making it extremely useful when planning mosquito control activities. In
the right hands, it has potential to be a very useful and easy to use tool in the fight against
dengue.
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Appendix A Further verification of predictions

Test case 1: Comparison to deterministic results

To further verify the model is functioning as desired, average values were calculated for a year
long period, using 1,000 independent stochastic simulations, and compared to deterministic
results. The results are shown in Table 4. These were obtained by taking the mean value
for each variable (e.g. the mean value of SH2(t)) for every individual simulation, and then
calculating the average value of these, over all 1,000 simulations. The initial conditions used
were the same as (14), and the average values obtained allow for comparison to the results of
the existing deterministic model. The fact that the number of latent and infectious mosquitoes
in the stochastic model are very small, and never more than 2, means that this stochastic part
of the model is approximately a linear stochastic model. Thus, we can use the fact that the
average predictions of any linear stochastic model are expected to converge to the results of the
corresponding deterministic model, provided that the average is calculated over a large enough
number of independent simulations. This provides a further check that the stochastic model is
functioning correctly, and so the predictions of the deterministic model are included in Table 4
for easy comparison.

Clearly, the figures from the stochastic model show a good agreement with those predicted
by the deterministic model, both with and without the MHS present, for P ∗ = 0.5889 and
P = 0, respectively. When the MHS is deployed, the average total number of new cases for
the year is predicted to be 9.234 using the stochastic model, and 10.057 using the deterministic
model. Similarly, when no MHSs are present, the stochastic average for the year is 38.836 cases,
compared to the 40.06 cases predicted by the deterministic model. Both of these these show
good agreement between the stochastic and deterministic results, and so we can conclude that
the model is functioning as desired.

P ∗ = 0 P ∗ = 0.5889

Mean Value Stochastic Deterministic Stochastic Deterministic

SH2(t) 2,949.302 2,949.174 2,961.197 2,960.540
IH2(t) 0.732 0.748 0.178 0.189
RH2(t) 249.970 250.070 238.626 239.265
SV2(t) 5,974.274 5,974.25 2,456.421 2,591.720
LV2(t) 0.553 0.633 0.061 0.078
IV2(t) 0.782 0.787 0.117 0.123

Incidence Cases (Per week) 0.748 0.761 0.178 0.184
Total Cases (Per year) 38.836 40.06 9.234 10.057

Table 4: Results from the numerical solution of (11)–(13) over a year long period, with (P ∗ =
0.5889) and without (P ∗ = 0) the MHS traps. These results have been averaged over
1,000 runs of the stochastic model. The results from the original deterministic model
found in [17] are also included for comparison. Here the proportion of time the average
person spends in Kuala Lumpur was set to be P = 0.1.

Test case 2: Varying the parameter P

Clearly, the values chosen for P and P ∗ also have a large impact on the predictions of the
mathematical model, and the observed impact of the dengue virus within the flats. Since P
represents the proportion of time spent away from the flats, outside in Kuala Lumpur, it can
also be interpreted as the proportion of bites a person receives while away from the flats.

23



Combatting Malaysia’s dengue outbreaks: Hybrid stochastic-deterministic model.

Table 5 outlines the proportion of mosquito bites a person in Kuala Lumpur will generally
receive, depending on the period of the day that they usually spend outside, away from the
flats. These values were obtained using data on mosquito biting rates at different times of day,
and integrating these over the relevant time period [42]. To check the hybrid deterministic-
stochastic model is functioning as desired, these P values have been used within the stochastic
model for the flats, to check that the predictions agree with those of the existing deterministic
model [17].

Time period spent outside P value

6 a.m. – 7:45 p.m. 0.6610
6 a.m. – 6:45 p.m. 0.6210
9 a.m. – 7:45 p.m. 0.4770
8 a.m. – 5:45 p.m. 0.3190
9 a.m. – 4:45 p.m. 0.1280

Table 5: Average daily time spent outside in Kuala Lumpur, and the corresponding P values.
The P values are the approximate proportion of mosquito bites a person will receive
whilst they are away from the flats during these periods [42].

The simulations from test case 1 have been repeated using each of the P values presented in
Table 5, for a year long period, using the same initial conditions as in (14). The value of P ∗

was held fixed at 0.5889 for each simulation, and the stochastic results all show agreement with
the existing deterministic model for the flats [17]. This provides further clear evidence that the
new model is functioning as desired.

Appendix B Endemic equilibrium: An alternative approach

Method II: Distribution of possible outcomes
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Total cases in flats, per year

F
re

q
u
e
n
c
y

0 10 20 30 40 50

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Deterministic  

(b) Distribution of possible outcomes at
endemic equilibrium, P ∗ = 0.5889.

Figure 8: The distribution of possible outcomes at endemic equilibrium, calculated using
Method II, is shown in (a) and (b), for P ∗ = 0 and P ∗ = 0.5889, respectively.

An alternative approach to obtain the distribution of possible outcomes at endemic equi-
librium is to conduct a series of 1,000 independent simulations of a three year period, using
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the deterministic endemic equilibrium values from (15) and (16) as the initial conditions. The
total number of dengue cases that occur during the final year is recorded for each and these
are combined to produce the distribution of potential outcomes. The resulting distribution is
shown in Figure 8, where it is once again noted that the x-axes of the plots have been cropped
to allow for easy comparison of the results.

As expected, these results are very similar to those produced by Method I, pictured in Figure
7. The frequency distributions produced by each method are qualitatively the same, but not
statistically identical, and a Kolmogorov-Smirnov test has verified that the differences between
the two frequency distributions are not statistically significant. Using Method II, the frequency
distribution has a mean value of 5.077 (95% UR: 0, 65) cases annually without the MHS, com-
pared to just 1.821 (95% UR: 0, 14) cases when the traps are installed. From these uncertainty
ranges, it is clear that the MHS once again produces a much narrower range of potential out-
comes, with a maximum value of 207 cases annually without the MHS present, which drops
right down to just 31 cases when the traps are used. This provides further evidence to support
the claims of the MHS, whilst at the same time demonstrating the unique abilities and benefits
of the new hybrid deterministic-stochastic approach to modelling the spread of dengue within
these built up urban environments.

25


