OM 502
 5 DIGIT
 PROGRAMMABLE INSTRUMENT

DC VOLTMETER/AMMETER
PROCESS MONITOR
INTEGRATOR
LINEARIZATOR
DISPLAYS FOR LINEAR POTENTIOMETERS
DISPLAY INSTRUMENT FOR TENSIDMETER

SAFETY INSTRUCTIONS

Please, read the enclosed safety instructions carefully and observe them!
These instruments should be safeguarded by isolated or common fuses (breakers)!
For safety information the EN 61 010-1 + A2 standard must be observed.
This instrument is not explosion-safe!

TECHNICAL DATA

Measuring instruments of the OM 502 series conform to the European regulation no. 73/23/EHS and no. 2004/108/EHS

The instruments are up to the following European standards:
EN 61010-1, Electric safety
EN 61326-1, Electronic measuring, control and laboratory devices - Requirements for EMC "Industrial use"

The instruments are applicable for unlimited use in agricultural and industrial areas.

CONNECTION

Supply of energy from the main line has to be isolated from the measuring leads.

C e

ORBIT MERRET, spol. s r.o.
Vodnanska 675/30
19800 Prague 9
Czech Republic
Tel: +420-281040 200
Fax: +420-281040 299
e-mail: orbit@merret.eu
www.orbit.merret.eu

2 | INSTRUCTIONS FOR USE OM 502

1. CONTENTS 3
2. INSTRUMENT DESCRIPTION 4
3. INSTRUMENT CONNECTION 6
Measuring ranges 6
Termination of RS 485 communication line 6
Instrument connection 7
Recommended connection of sensors. 8
4. INSTRUMENT SETTING 10
Symbols used in the instructions 12
Setting the DP and the [-] sign 12
Control keys function 13
Setting/permitting items into "USER" menu 13
5. SETTING "LIGHT" MENU 14
5.0 Description "LIGHT" menu 14
Setting input - Type "DC" 18
Setting input - Type "PM" 20
Setting input - Type "I" 22
Setting input - Type "LX" 24
Setting input - Type "DU" 26
Setting input - Type "T" 28
Setting Limits 30
Setting analog output 32
Selection of programming menu "LIGHT"/nPROFI" 34
Restoration of manufacture setting 34
Automatic calibration - input range [only "DU") 35
Selection of instrument menu language version 36
Setting new access password 36
Instrument identification 37
6. SETTING "PROFI" MENU 38
6.0 Description of "PROFI" menu 38
6.1 "PROFI" menu - INPUTS
6.1.1 Resetting internal values 40
6.1.2 Setting measuring type, range, mode, rate. 41
6.1.3 Setting the Real Time 43
6.1.4 External input function selection 46
6.1.5 Optional accessory functions of the keys 47
6.2 "PROFI" menu - CHANNEL
6.2.1 Setting measuring parameters
[projection, filters, decimal point, description] 50
6.2.2 Setting mathematic functions 55
6.2.3 Setting integrator parameters 58
6.2.4 Selection of evaluation of $\mathrm{min} / \mathrm{max}$. value 62
6.3 "PROFI" menu - OUTPUT
6.3.1 Setting data logging 64
6.3.2 Setting Limits 66
6.3.3 Setting data output 69
6.3.4 Setting analog output 70
6.3.5 Selection of display projection 72
6.4 "PROFI" menu - SERVICE
6.4.1 Selection of programming menu "LIGHT"/„PRDFI" 74
6.4.2 Restoration manufacture setting 75
6.4.3 Automatic calibration - input range 76
6.4.4 Selection of instrument menu language version 77
6.4.5 Setting new access password 77
6.4.6 Instrument identification 77
7. SETTING ITEMS INTO "USER" MENU 78
8. DATA PROTOCDL 80
9. ERROR STATEMENTS 82
10. TABLE OF SYMBOLS 83
11. TECHNICAL DATA 84
12. INSTRUMENT DIMENSIONS AND INSTALATION 86
13. CERTIFICATE OF GUARANTEE 87

2. INSTRUMENT DESCRIPTION

DESCRIPTION

The OM 502 model series are 5 digit panel programmable instruments.
The instrument is based on 8-bit microcontroller with hight-rate 24 -bit sigma-delta converter, which secures high accuracy, stability and easy operation of the instrument.

TYPES AND RANGES

DC DC Voltmeter/Ammeter

$\pm 999,99 \mathrm{mV} ; \pm 999,99 \mathrm{mV} ; \pm 9,9999 \mathrm{~V}_{i} \pm 99,999 \mathrm{~V}_{i} \pm 300,00 \mathrm{~V}$ $\pm 999,99 \mathrm{~A}_{i} \pm 9,9999 \mathrm{~mA} ; \pm 99,999 \mathrm{~mA} ; \pm 999,99 \mathrm{~mA} ; \pm 5,0000 \mathrm{~A}$

PM Process monitor

$0 . .5 \mathrm{~mA} / 0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA} / \pm 2 \mathrm{~V} / \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$
I

Integrator

$0 . .5 \mathrm{~mA} / 0$... $20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA} / \pm 2 \mathrm{~V} / \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}$

L Linearizator

$$
0 . .5 \mathrm{~mA} / 0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA} / \pm 2 \mathrm{~V} / \pm 5 \mathrm{~V} / \pm 10 \mathrm{~V}
$$

DU Display unit for linear potentiometers

Linear potentiometer (min. 500 ת)

T
Weighing indicator
1... 4 / 2... 8 / 4... 16 mVN

PROGRAMMABLE PROJECTION, FUNCTION

Measuring range:
Setting:

Projection:
Integration (I):
Weighing function [T]:
with time base 1 s , projection of integrated and current value
manual or automatic calibration, signalization of stabilized equilibrium, zero stabilization, automatic zero monitoring, defined number of sections on the scale
Projection [T]: $\quad \pm 99999$ (Mode - Standard]
selection of size of the section - 0,001/0,002/0,005/0,01/0,02/0,05/0,1/0,2/0,5/1/2/5/ 10/20/50/100 (Mode - WEIGHT)

LINEARIZATION

Linearization:
Linearization [LX]:
by linear interpolation in 50 points [solely via OM Link]
linear interpolation in 256 points and 16 tables

DIGITAL FILTERS

Floating average:
Exponen.average:
Rounding:
from 2... 30 measurements
from 2... 100 measurements setting the projection step for display

MATHEMATIC FUCTIONS

Min/max. value:
Tare:
Fixed tare:
Peak value:
Mat. operations:
registration of min./max. value reached during measurement
designed to reset display upon non-zero input signal
fixed preset tare
the display shows only max. or min. value
polynome, $1 / x$, logarithm, exponential, power, root, $\sin x$

EXTERNAL CDNTROL

Lock:
Hold:
Tare:
Resetting MM: Memory:
control keys blocking
display/instrument blocking
tare activation/resetting tare to zero
resetting $\mathrm{min} / \mathrm{max}$ value
data storage into instrument memory

2.2

OPERATION

The instrument is set and controlled by five control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes:

LIGHT Simple programming menu
 - contains solely items necessary for instrument setting and is protected by optional number code
 PROFI
 Complete programming menu
 - contains complete instrument menu and is protected by optional number code
 USER User programming menu

- may contain arbitrary items selected from the programming menu [LIGHT/PROFI], which determine the right [see or change]
- acces without password

All programmable parameters are stored in the EEPROM memory [they hold even after the instrument is switched off).

OMLINK

Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments.
The operation program is freely accessible [www.orbit.merret.eu] and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232 or RS 485 (without the need of the OML cable).
The program OM LINK in "Basic" version will enable you to connect one instrument with the option of visualization and archiving in PC. The OM Link "Standard" version has no limitation of the number of instruments connected.

2.3 OPTIONS

Excitation is suitable for supplying power to sensors and transmitters. It has a galvanic separation.
Comparators are assigned to monitor one, two, three or four limit values with relay output. The user may select limits regime: LIMIT/DOSING/FROM-TO. The limits have adjustable hysteresis within the full range of the display as well as selectable delay of the switch-on in the range of $0 \ldots 99,9 \mathrm{~s}$. Reaching the preset limits is signalled by LED and simultaneously by the switch-on of the relevant relay.
Data outputs are for their rate and accuracy suitable for transmission of the measured data for further projection or directly into the control systems. We offer an isolated RS232 and RS485 with the ASCII, MESSBUS, MODBUS - RTU or PROFIBUS protocol.
Analog outputs will find their place in applications where further evaluating or processing of measured data is required in external devices. We offer universal analog output with the option of selection of the type of output - voltage/current. The value of analog output corresponds with the displayed data and its type and range are selectable in Menu.
Measured data record is an internal time control of data collection. It is suitable where it is necessary to register measured values. Two modes may be used. FAST is designed for fast storage (100 records $/ \mathrm{s}$] of all measured values up to 8000 records. Second mode is RTC, where data record is governed by Real Time with data storage in a selected time segment and cycle. Up to 266000 values may be stored in the instrument memory. Data transmis sion into PC via serial interface RS232/485 and OM Link.

3. INSTRUMENT CONNECTION

The instrument supply leads should not be in proximity of the incoming low-potential signals. Contactors, motors with larger input power should not be in proximity of the instrument.
The leads into the instrument input [measured quantity] should be in sufficient distance from all power leads and appliances. Provided this cannot be secured it is necessary to use shielded leads with connection to ground (bracket E).
The instruments are tested in compliance with standards for use in industrial area, yet we recommend to abide by the above mentioned principles.

MEASURING RANGES

TYPE	INPUTS I	INPUTS U
DC	$\begin{aligned} & \pm 999,99 \mu A_{i} \pm 9,9999 \mathrm{~mA}_{i} \pm 99,999 \mathrm{~mA} ; \\ & \pm 999,99 \mathrm{~mA} ; \pm 5,0000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 999,99 \mathrm{~m} \mathrm{~V}_{i} \pm 999,99 \mathrm{mV} \mathrm{~V}_{\mathrm{i}} \pm 9,9999 \mathrm{~V}_{i} \\ & \pm 99,999 \mathrm{~V}_{\mathrm{i}} \pm 300,00 \mathrm{~V} \end{aligned}$
PM	0...5/20 mA/4... 20 mA	$\pm 2 / \pm 5 / \pm 10 \mathrm{~V}$
1	0...5/20 mA/4... 20 mA	$\pm 2 / \pm 5 / \pm 10 \mathrm{~V}$
LX	0...5/20 mA/4... 20 mA	$\pm 2 / \pm 5 / \pm 10 \mathrm{~V}$
DU	Linear potentiometer (min. 500Ω)	
T	1...4/2...8/4...16 mV/N	

Termination of RS 485 communication line

X3 - Termination of commuication line RS 485

Full Significance
1-2 connect $\mathrm{L}+$ to $[+]$ source
3-4 termination of line 120 Ohm
5-6 connect L- to (-) source

Default terminalconnected disconnected terminalconnected

Recomendation
connect at the end of line do not disconnect

RS 485 line should have a linear structure - wires (ideally shielded and twisted) should lead from one device to another.

135

OM $502 T$

DMS supply
Sense
INPUT
INPUT
Sense
DMS supply
Shielding

OM 502DU

Terminal block "Shielding" is designed for connecting shielding of the supply lead (connected only on the side of the instrument). The "Shielding" and "GND" terminal blocks MUST NOT be connected

!

Signal „SENSE" measures supply voltage on tensionmeter upon 6-wire connection, for 4-wire connection join brackets $\mathrm{B}+\mathrm{C}$ and $\mathrm{F}+\mathrm{G}$ directly on the instrument. Whenusing the instrument in highly disturbing environemnt we recommend using 4 -wire connection.
!
!

Example connection of a 2-wire sensor with current signal output powered by instrument's excitation

Example connection of a 3 -wire sensor with current signal output powered by instrument's excitation

-

SETTING
 PROFI

For expert users
Complete instrument menu
Access is password protected
Possibility to arrange items of the USER MENU
Tree menu structure

SETTING
 LIGHT

For trained users
Only items necessary for instrument setting
Access is password protected
Possibility to arrange items of the USER MENU Linear menu structure

SETTING
 USER

For user operation
Menu items are set by the user [Profi/Light] as per request Access is not password protected Optional menu structure either tree (PROFI) or linear (LIGHT)

The instrument is set and controlled by five control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes:

LIGHT

PROFI

Simple programming menu

- contains solely items necessary for instrument setting and is protected by optional number code

Complete programming menu

- contains complete instrument menu and is protected by optional number code

USER

User programming menu

- may contain arbitrary items selected from the programming menu [LIGHT/PROFI], which determine the right (see or change)
- acces without password

Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments.
The operation program is freely accessible [www.orbit.merret.eu] and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232 or RS 485 (without the need of the OML cable).

Scheme of processing the measured signal

Setting and controlling the instrument is performed by means of 5 control keys located on the front panel. With the aid of these keys it is possble to browse through the operation menu and to select and set required values.

Symbols used in the instructions

DEF values preset from manufacture

symbol indicates a flashing light [symbol)
inverted triangle indicates the item that can be placed in USER menu
$\ulcorner, \overline{\mathrm{NT}} \mathrm{EG} \neg$. broken line indicates a dynamic item, i.e. it is displayed only in particular selection/version
after pressing the key the set value will not be stored
after pressing the key the set value will be stored continues on page 30

Setting the decimal point and the minus sign

DECIMAL POINT

Its selection in the menu, upon modification of the number to be adjusted it is performed by the control key with transition beyond the highest decade, when the decimal point starts flashing . Positioning is performed by

THE MINUS SIGN

Setting the minus sign is performed by the key on higher decade. When editing the item substraction must be made from the current number (e.g..: $013>\boldsymbol{*}$, on class $100>-87$]

Setting items into "USER" menu

- in LIGHT or PROFI menu
- no items permitted in USER menu from manufacture
- on items marked by inverted triangle

item will not be displayed in USER menu
item will be displayed in USER menu with the option of setting
SHOW
Item will be solely displayed in USER menu

5. SETTING LIGHT

SETTING LIGHT

For trained users
Only items necessary for instrument setting
Access is password protected
Possibility to arrange items of the USER MENU
Linear menu structure

```
!
Upon delay exceeding 60 s the program- ming mode is automatically discontinued and the instrument itself restores the measuring mode
```

Preset from manufacture

Password	"O"
Meny	LIGHT
USER menu	off
Setting the items	DEF

$$
142.8
$$

(c) ${ }^{-}$

Type „DC*	[d] 18
Type "PM"	[1] 20
Type „"	[d] 22
Type „LX"	[1] 24
Type „ロU*	[1] 26
Type "T"	[d] 28

5. SETTING LIGHT

FOR INSTRUMENT > OM 502DC

5. SETTING LIGHT

5. SETTING LIGHT

FOR INSTRUMENT > OM 502LX

5. SETTING LIGHT

III

OM 502DU

MI N A
Setting display projection for minimum value of input signal
the DP is automatically shiffed affer the value is confirmede
range of the setting: ± 99999 (-99999...999999) position of the DP does not affect display projection

DE

 $=0$```
 F) MAXA
```


(c) input signal


## MAX A

Setting display projection for maximum value of input
the DP is automatically shifted after the value is confirmede
range of the setting: $\pm 99999$ (-99999....999999)
position of the DP does not affect display
DEF $=100$
projection

Projection for the end $>$ MAXA $=5000$
Example




## 5. SETTING LIGHT





## 5. SETTING LIGHT




## LI M L4

Setting boundary for limit 4
range of the setting: -99999... 999999
contingent modification of hysteresis or delay may be performed in "PROFI" menu



## 5. SETTING LIGHT



DISPLAYED ONLY WITH OPTIONS > ANALOG OUTPUT








## 6. SETTING PROFI



# SETTING PROFI 

For expert users<br>Complete instrument menu<br>Access is password protected<br>Possibility to arrange items of the USER MENU<br>Tree menu structure

## SETTING "PROFI"

## PROFI Complete programming menu

- contains complete instrument menu and is protected by optional number code
- designed for expert users
- preset from manufacture is menu LIGHT


## Switching over to "PROFI" menu

- access to PROFI menu
- authorization for access to PROFI menu does not depend on setting under item SERVIC. > MENU
- password protected access (unless set as follows under the item SERVIC. > N. PASS. > PROFI =0)
C. $+8 \cdot$ access to menu selected under item SERVIC. $>$ MENU > LIGHT/PROFI
- password protected access [unless set as follows under the item SERVIC. > N. PASS. > LIGHT =0)
- for access to LIGHT menu passwords for LIGHT and PROFI menu may be used



## 6. SETTING PROFI


6.1 SETTING "PROFI" - INPUT


The primary instrument parameters are set in this menu



## CLEAR

Resetting internal values
CL.TAR. Tare resetting
CL.M.M. Resetting min/max value
resetting memory for the storage of minimum and maximum value achieved during measurement
$\square$ CL.INT. Resetting integrated value
only for instrument DM 5021

summation serves for cummulative totals of values [e.g. shift operation], when after resetting the integrator ["N. INT"] the display value is added to the total ["SUM"]
only for instrument OM 5021
CL.MEM. Resetting the instrument

- resetting memory with data measured in the
"FAST" or "RTC" modes
- not in standard equipmenthodnoty



## 6. SETTING PROFI




个


## TRACE 0 <br> Selection of automatic

 zero monitoringNO Function is off
YES Function is on
in $4 \%$ of the measuringrange zeroautomatically faces the condition that correction must not be larger than 0,5 section/sec
setting is possible only for mode "WEIGHT"





## 6. SETTING PROFI


6.1.4a EXTERNAL INPUT FUNCTION SELECTION



### 6.1.5a OPTIONAL ACCESSORY FUNCTIONS OF THE KEYS




## TMP . LE . Temporary projection of selected item

"TMP. LE." > temporary projection of selected values
"Temporary" projection of selected value is displayed for the time of keystroke
"Temporary" projection may be switched to permanent by pressing $\mathbf{C}+$ "Selected key" this holds until the stroke of any key

| NO | Temporary projection is off |
| :---: | :---: |
| CHAN.A | Temporary projection of "Channel A" value |
| Frocessing digit | Temporary projection of "Channel A" value after al filters |
| MAT.FN. | Temporary projection of "Mathematic functions" value |
| $-\mathrm{MIN}]^{2}$ | Temporary projection of "Min. value" |
| MAX $]$ | Temporary projection of "Max. value" |
| \| NTEG. | Temporary projection of "Integrated value" |
| LIM 1 | Temporary projection of "Limit 1" value |
| LIM 27 | Temporary projection of "Limit 2" value |
| LIM. 37 | Temporary projection of "Limit 3" value |
| LI M. 47 | Temporary projection of "Limit 4" value |
| TIME ${ }^{\text {a }}$, | Temporary projection of "TIME" value |
| DATE | Temporary projection of 'DATE" value |
| TARE | Temporary projection of "TARE" value |
| $\ulcorner$ P.TARE $]$ | Temporary projection of "P. TARE" value |
| SUMA $\lrcorner$ | Temporary projection of "SUM" (only for DM 5021) |
| $\begin{aligned} & \overline{\text { BRUTO }} \\ & \text { CHAN. A }+ \text { TARE } \end{aligned}$ | Temporary projection of the sum of the values of + P.TARE" |

## I

Setting is identical for LEFT, DOWN, UP and ENTER


## MNU.LE . Assigning access to selected menu item

„MNU. LE." > direct access into menu on selected item

| $\ulcorner\quad \overline{\mathrm{LI}} \mathrm{M} 1 〕$ | Direct access to item "LIM 1" |
| :---: | :---: |
| $\ulcorner\overline{\mathrm{LI}} \mathrm{M} 2$ | Direct access to item 'LIM 2* |
| $\ulcorner\quad \overline{\text { LI M 3 }} \downarrow$ | Direct access to item "LIM 3* |
| $\ulcorner\quad \overline{\mathrm{LI}} \mathrm{M} 4$ | Direct access to item "LIM 4" |
| $\ulcorner\overline{H Y S} .1 〕$ | Direct access to item "HYS. 1 " |
| $\ulcorner\overline{\mathrm{HYS}} .2\urcorner$ | Direct access to item HYS. $2^{\prime \prime}$ |
| $\ulcorner\overline{\mathrm{HYS}} .3]$ | Direct access to item "HYS. 3" |
| $\ulcorner\overline{\boxed{H Y S} .4}$ | Direct access to item "HYS. 4" |
| $\ulcorner\quad \overline{\mathrm{O}} 1 \downarrow$ | Direct access to item "ON 1" |
| $\ulcorner\quad \overline{\mathrm{O}} 2$ | Direct access to item "ON 2" |
| $\ulcorner\quad \mathrm{ON3}]$ | Direct access to item "ON 3" |
| $\ulcorner\quad$ ON4 | Direct access to item "ON 4" |
| $\ulcorner\quad \overline{O F F} 1]$ | Direct access to item "OFF 1" |
| - $\overline{O F F} 2$ ] | Direct access to item "OFF 2" |
| $\ulcorner\quad \overline{O F F} 3$ | Direct access to item "OFF 3" |
| $\ulcorner\quad \overline{O F F} 4 \neg$ | Direct access to item "OFF 4" |

## !

Setting is identical for LEFT, DOWN, UP and ENTER

## 6. SETTING PROFI


6.2 SETTING "PROFI" - CHANNELS



## SET.A <br> Setting display projection

MI N A
signal

Setting display projection for minimum value of input
range of the setting is -99999... 999999
menu is dynamic, after using automatic calibration this item is no more displayed

## DEF = 0.00

MAX A

| Setting display projection |
| :--- |
| for maximum value of input |

signal

- range of the setting is -99999...999999
DEF ..... $=100.00$



## SET.A

## Setting display projection


range of the setting is $-99999 \ldots 999999$
menu is dynamic, in manual calibration this
Hem is not displayed
DEF $=0.00$
$\begin{array}{ll}\text { MAX A } & \begin{array}{l}\text { Setting display projection } \\ \text { for maximum value of input }\end{array} \\ \text { signal }\end{array}$
range of the setting is $-99999 \ldots 999999$
DE $=100.00$
$\square$ SENSE $\neg \begin{aligned} & \text { Setting the tensionmeter } \\ & \text { sensitiveness }(\mathrm{mV} / \mathrm{V})\end{aligned}$
range $1 \ldots 4 / 2 \ldots 8 / 4 \ldots 16 \mathrm{mV} / \mathrm{V}$
fixed resolution in 4 decimal points
menu is dynamic, the item is displayed only in automatic calibration

range: $0.001 / 0.002 / 0.005 / 0.01 / \ldots / 100$
MAX.W. $\begin{aligned} & \text { Setting the upper weighing } \\ & \text { limit }\end{aligned}$
range of the setting is $-99999 \ldots 999999$


## P.TAR.A Setting "Fixed tare" value

setting is designed for the event when it is necessary to firmly shift the beginning of the range by known size
when setting (P. TAR. A $\neq \square$ ) is in effect, display does not show the " T " symbol
range of the setting: - $99999 . . .999999$
DEF


DEF

## MOD.FA

Selection of digital filters
at times it is useful for better user projection of data on display to modify it mathematically and properly, wherefore the following filters may be used

arithmetic average from given number
[.CON. F.A") of measured values
range $2 \ldots 100$

## FLOAT. Selection of floating filter

floating arithmetic average from given number [.CON. F.A"] of measured data and updates with each measured value
range 2... 30

## EXPON. Selection of exponential filter

integration filter of first prvniho grade with time constant ["CON. F.A"] measurement
range 2... 100

## ROUND Measured value rounding

is entered by any number, which determines the projection step [e.g: „CON. F.A ${ }^{\prime}=2,5>$ display $0,2.5,5, \ldots$ ]

C $\overline{O N} . F A$ setting constants
this menu item is always displayed after selection of particular type of filter
(DEF $=2$


## FORM.A Selection of decimal

 pointthe instrument allows for classic projection of a number with positioning of the DP as well as projection with floating $D P$, allowing to display a number in its most exact form „FLOAT. P."

000000 . Setting $\mathrm{DP}-\mathrm{xxxxxx}$

000.000 Setting DP-xxxxxx

0.00000

Setting DP - X.xxxxx

FLOA.P. Floating DP
6.2.1f PROJECTION OF DESCRIPTION - THE MEASURING UNITS


## DESC.A Setting projection of

 descript. for "Channel A"projection of mesured data may be extended [at the expense of the number of displayed places] by two characters for description description is set by shiffed ASCII code, when two first places show the set description and two last characters their code in period 0... 95 description is cancelled by code 00

## (DEP = попе

Table of signs on page 83

## 6. SETTING PROFI



### 6.2.1g SELECTION OF STORING DATA INTO INSTRUMENT MEMORY



## SAVE.A <br> Selection of storing data into instrument memory

by selection in this item you allow to register values into instrument memory
another setting in item "OUTPUT. > MEMORY" [not in standard experiment]

| NO | Measured data is not stored |
| :---: | :---: |
| ALL | Measured data is stored in memory |
| \| N | Only data measured within the set interval is stored |
| in memory |  |
| OUT | Only data measured outside the set interval is stored |


| FROM A | Setting the initial interval value |
| :---: | :---: |
| - setting range: | -99999...999999 |
| TOA | Setting the final interval value |
| setting range: | -99999... 999999 |



## MATH.F. Selection of mathematic

 functions
## OFF <br> Mathematic functions are off

## MULTI N. Multinominal

$A x^{5}+B x^{4}+C x^{3}+D x^{2}+E x+F$

$$
1 / \text { MUL. }{ }^{1 / x}
$$

$\frac{A}{x^{5}}+\frac{B}{x^{4}}+\frac{C}{x^{3}}+\frac{D}{x^{2}}+\frac{E}{x}+F$
LOGAR. Logarithm
$A \times \ln \left(\frac{B x+C}{D x+E}\right)+F$
EXPON. Exponenciál
$A \times e^{\left(\frac{B x+C}{D x+E}\right)}+F$
POWER Power
$A \times(B x+C)^{(D x+E)}+F$
ROOT Root
$A \times \sqrt{\frac{B x+C}{D x+E}}+F$

$$
\operatorname{SINX} \operatorname{Sin} x
$$

$A \sin ^{5} \mathrm{x}+B \sin ^{4} \mathrm{x}+C \sin ^{3} \mathrm{x}+D \sin ^{2} \mathrm{x}$
$+E \sin \mathrm{x}+F$
$\ulcorner\quad \overline{T A B X}$ ㄱwitching on linearization
this menu can only be accessed in OM 502LX

- $\overline{\mathrm{CON}}$.

Setting constants for calculation of mat.functions
this menu is displayed only after selection of given mathematic function

## 6. SETTING PROFI





## FORM.M. Selection of decimal

 pointthe instrument allows for classic projection of a number with positioning of the DP as well as projection with floating DP, allowing to display a number in its most exact form „FLDA. P."



## DESC.M <br> Setting projection of description for "MAT. FN"

projection of mesured data may be extended [at the expense of the number of displayed places] by two characters for description
description is set by shiffed ASCII code, when two first places show the set description and two last characters their code in period 0... 95 description is cancelled by code 00

DEF = no description

## I

Table of signs on page 83


## 6. SETTING PROFI



6.2.3b SETTING CALIBRATION CONSTANTS

个


## SCALE Setting the multiplying

 constantthrough multiplying constant we may further mathematically adjust the data display projection
range of the setting is $1 \ldots 100000$

## DEF =

## DI VI D

Setting the dividing constant
through dividing constant we may further mathematically adjust the data display projection
range: 1/10/60/100/1000/3600

## DEF



## UNSEN.

## Setting the band of

 insensitivenessby setting this item it is possible to extend "Zero" and thus achieve integration of the input signal from the set value range of the setting is $0 . . .100000$

## DEF = 0



## 6. SETTING PROFI


6.2 .3

SELECTION OF AUTOMATIC RESETTING


## CLEAR Selection of automatic

 resettingin this step it is possible to allow automatic resetting upon display overflow

## NO Automatic resetting is off

upon display overflow error statement is displayed

## YES <br> Automatic resetting is

 enabledupon display overflow the instrument is automatically reset to zero and proceeds in continuous measuring



## DESC.I Setting projection of description for INTEGR.

projection of mesured data may be extended [at the expense of the number of displayed places] by two characters for description
description is set by shiffed ASCII code, when two first places show the set description and two last characters their code in period 0... 95 description is cancelled by code 00

DEF = no description

Table of signs on page 83


## LOG.I

Selection of storing data into instrument memory
by selection in this item you allow to register values into instrument memory
another setting in item "OUTPUT. > MEMORY" [not in standard experiment]


## 6. SETTING PROFI


6.2.4 SELECTION OF EVALUATION OF MIN/MAX VALUE



## 6. SETTING PROFI


6.3 SETTING „PROF" - OUTPUTS

In this menu it is possible to set parame ters of the instrument output signals

| -MEMORY | Setting data logging into memory |
| :---: | :---: |
| LIM TS | Setting type and parameters of limits |
| DATA | Setting type and parameters of data output |
| ¢AN.OUT. | Setting type and parameters of analog output |
| DI SP. | Setting display projection and brightness |

## REWRIT.

Selection of the mode of data logging
selection of the mode in the event of full instrument memory


### 6.3.1b SETTING DATA LOGGING INTO INSTRUMENT MEMORY - RTC



## RTC

The lowest recording rate possible is once a day, the highest is every second. Under exceptional circumstances it is possible to set the rate to 8 times per second by entering the recording period as 00:00:00. However, this mode is not recommended due to the memory overload. Recordings are realised in a timeframe of one day and are repeated periodically every following day. Recordings can take place either inside or outside of selected time intervals. The duration of re-writing can be determined by the number of channels recorded as well as by the recording rate.

## START Start of data logging into instrument memory

time format HH.MM.SS


- time format HH.MM.SS
determines the period in which values will be logged in an interval delimited by the time set under items START and STOP
time format HH.MM.SS
records are made on a daily basis in selected interval and period
item not displayed if "SAVE" is selected in menu [INPUT > EXT. IN.]


### 6.3.1c SETTING DATA LOGGING INTO INSTRUMENT MEMORY - FAST



## FAST

The memory operates on the basis of memory oscilloscope. Select an area of 0...100\% of the memory capacity $[100 \%$ represents 8192 individual recordings for a single channel measurement]. This area is filled cyclically up to the point when the recording starts [activated by the front panel button or by an external input). When the remaining memory capacity fills up the recording stops. A new recording is possible after the deletion of the latest recording. It is possible to abort a recording before its completion by reading out the data.

## TRI GER

Setting logging data into inst. memory
logging data into inst. memory is governed by the folowing selection, which determines how many percent of the memory is reserved for data logging prior to initiation of trigger imputse initialization is on ext. input or button setting in range $1 . . .100 \%$
when setting $100 \%$, datalogging works in the mode ROLL > data keep getting rewritten in cycles

## 1. Memory initialization

clear memory [ext.input, button]
LED " $M$ " flashes, after reading TRIGGER [\%] memory is permanently shining. In ROLL flashes constantly.

## 2. Triggering

external input, button
after the memory LED is full " $M$ " turns off in the ROLL mode the trigger ends datalogging and LED turns off

## 3. Termination

ext. input, button or reading data via RS


III



| \| NP.L1 | Selection evaluation of limits |
| :---: | :---: |
| - selection of value from which the limit will be evaluated |  |
| NO | Limit evaluation is off |
| CHAN.A | Limit evaluation from "Channel A" |
| FIL.A | Limit evaluation from "Channel A" after digital |
| filters processing |  |
| MAT.FN. | Limit evaluation from "Mathematic functions" |
| MI N | Limit evaluation from "Min. value" |
| MAX | Limit evaluation from "Max. value" |
| I NTEG. | Limit evaluation from "Integrated value" |
| I |  |
| Setting is identical for LIM 1, LIM 2, LIM 3 and LIM 4 |  |



## MOD.L1

Selection the type of limit

## HYSTER Limit is in mode "Limit, hysteresis, delay"

for this mode the parameters of "LIM. L.1" are set, at which the limit will shall react, "HYS. L.1" the hysteresis range around the limit [ $\mathrm{LIM} \pm 1 / 2 \mathrm{HYS}$ ] and time "TIM. L.1" determining the delay of relay switch-on

for this mode the parameters are set for interval "ON. L.1" the relay switch-on and "OFF L.1" the relay switch-off

## DOSI NG $\begin{gathered}\text { Dose limit } \\ \text { (periodic) }\end{gathered}$

for this mode the parameters are set for "PER. L.1" determining the limit value as well as its multiples at which the output is active and "TIM. L.2" indicating the time during which is the output active

## 6. SETTING PROFI



### 6.3.2c SELECTION OF TYPE OF OUTPUT



TYP.L1
Selection of type of output

## CLOSE

## OPEN

Output switches on when condition is met

Output switches off when condition is met

## !

Setting is identical for LIM 1, LIM 2, LIM 3 and LIM 4


## LI M.L1

Setting limit for switch-on
for type "HYSTER"

for type "HYSTER"
indicates the range around the limit (in both directions, LIM. $\pm 1 / 2$ HYS.]


ON.L1 Setting the outset of the
for type "FROM.."


Setting the end of the interval of limit switch-on
for type "FROM.."


Setting the period of limit switch-on
for type "DOSING"
TI M.L1
Setting the time switch-on of the limit
for type "HYSTER" and "DOSING"
setting within the range: $\pm 0 . . .99,9 \mathrm{~s}$
positive time > relay switches on after crossing the limit (LIM. L1) and the set time [TIM. L1]
negative time > relay switches off aftercrossing
the limit (LIM. L1) and the set negative time [TIM. L.1]

## !

Setting is identical for LIM 1, LIM 2, LIM 3 and LIM 4



## ADDR

Setting instrument address
setting in range D... 31
DEF = 00

## AD: MOD . <br> Setting instrument address - MODBUS

setting in range $1 . .247$
DEF = 1

ADR.PB. Setting instrument address - PROFIBUS
setting in range $1 . . .127$
DEF $=19$

## 6. SETTING PROFI


$111 \square$

### 6.3.3c SELECTION OF DATA OUTPUT PROTOCOL



## PROT

Selection of the type of analog output

option is available only for RS 485



## TYP. A. O. Selection of the type of analog output

0.20 mA Type - $0 . .20 \mathrm{~mA}$

Er 4-T | Type: $4 \ldots .20 \mathrm{~mA}$ |
| :--- |
| with indication |

with broken loop detection and indication of error statement ( $<3,6 \mathrm{~mA}$ )
4.20 T Type: $4 . .20 \mathrm{~mA}$
with broken loop detection ( $<3,6 \mathrm{~mA}$ )

$$
\text { Er 4-20 } \begin{aligned}
& \text { Type: } 4 . . .20 \mathrm{~mA} \\
& \text { with indication }
\end{aligned}
$$

with indic. of error statement $(<3,6 \mathrm{~mA})$

| 4.20 mA | Type - $4 . .20 \mathrm{~mA}$ |
| :---: | :---: |
| 0.5 mA | Type - $0 . .5 \mathrm{~mA}$ |
| 0.2 V | Type - $0 . .2 \mathrm{~V}$ |
| 0.5 V | Type - $0 . .5 \mathrm{~V}$ |
| 0.10 V | Type - $0 . . .10 \mathrm{~V}$ |
| +-10V | Type - $\pm 10 \mathrm{~V}$ |



## AN.OUT.

Setting the analog output range
analog output is isolated and its value corresponds with displayed data. It is fully programmable, i.e. it allows to assign the AO limit points to two arbitrary points of the entire measuring range
MI N A.O.
Assigning the display value
to the beginning of the

DEF = 0
MAX A.O. Assigning the display value range of the setting: -99999...999999
DEF = 100

## 6. SETTING PROFI



6.3.5b SELECTION OF DISPLAY BRIGHTNESS


## BRI GHT Selection of display brightness

by selecting display brightness we may appropriately react to light conditions in place of instrument location



## 6. SETTING PROFI

$\theta$
6.4 SETTING "PROFI" - SERVIS


The instrument service functions are set in this menu

| MENU | Selection of menu type LIGHT/PROFI |
| :---: | :---: |
| RESTOR. | Restore instrument manufacture setting and |
| calibration |  |
| $\left\ulcorner\square_{\square} \square^{\text {CALI }}\right.$ | Input range calibration for "DU" version |
| LANG. | Language version of instrument menu |
| N.PASS. | Setting new access password |
| I DENT. | Instrument identification |



## ME NU Selection of menu type LIGHT/PROFI

enables setting the menu complexity according to user needs and skills

## LI GHT Active LIGHT menu

simple programming menu, contains only items necessary for configuration and instrument setting
linear menu > items one after another

## PROFI Active PROFI menu

complete programming menu for expert users tree menu

## !

Change of setting is valid upon next access into menu


## RESTOR. Restoration of manufacture setting

in the event of error setting or calibration, manufacture setting may be restored.

## RE.CAL. <br> Restoration of manufacture calibration of the instrument

prior executing the changes you will be asked to confirm you selection "YES"

## RE.SET. Restoration of instrument manufacture setting

## TYPE <br> Restoration of instrument manufacture setting

generating the manufacture setting for currently selected type of instrument (items marked DEF)
$\left\ulcorner\quad \overline{\text { STAND. }}, \begin{array}{l}\text { Restoration of instrument } \\ \text { manufacture setting }\end{array}\right.$
generating the manufacture setting for currently selected type of instrument [items marked DEF, only for OM 502T]
$\left\ulcorner\right.$ WEI GHT $\neg \begin{array}{l}\text { Restoration of instrument } \\ \downarrow\end{array}$ generating the manufacture setting for currently selected type of instrument (items marked DEF, only for OM 502T)

USER | Restoration of instrument |
| :--- |
| user setting |

generating the instrument user setting, i.e. setting stored under SERVIC./RESTOR./SAVE

storing the user setting allows the operator to restore it in future if needed

## !

After restoration the instrument switches off for couple seconds

## 6. SETTING PROFI


6.4.3

CALIBRATION - INPUT RANGE


## CAL|B. Input range calibration

prior performing any changes you will beasked to confirm your selection "YES"

## C.MI N <br> Calibration of the beginning of the measuring range

prior confirmation of the selection the reference signal has to be connected
C.MAX

| Calibration of the end of the |
| :--- |
| measuring range |

- priorconfirmation ofthe selection the reference
signal has to be connected


## !

| Manual calibration |  |
| :--- | :--- |
| MAX | Sensor range |
| SENSE | Sensor sensitiveness |

## Automatic calibration

[after calibartion in menu "SERVIC./CALIB."]
MIN Size of load with which minimum calibration was performed
MAX Size ofload with which maximum calibration was performed

- upon maximum calibration we recommend the reference load value in the upper third of the measuring range


## ! <br> After incorrect client calibration it is always possible to restore manufacture calibration ["SERVIC./RESTOR/CALIB."]



## EDI T Modification of internal

 calibration constantsthis option is designed solely for contingent metrological examination and protocol item is availale after aut. calibration



6.4 .7


III

## SETTING USER

For user operation
Menu items are set by the user (Profi/Light] as per request

## Access is not password protected

Optional menu structure either tree (PROFI) or linear (LIGHT)

## 7.0

 SETTING ITEMS INTO "USER" MENU- USER menu is designed for users who need to change only several items of the setting without the option to change the primary instrument setting (e.g. repeated change of limit setting]
- there are no items from manufacture permitted in USER menu
- on items indicated by inverse triangle LI M 1
- setting may be performed in LIGHT or PROFI menu, with the USER menu then overtaking the given menu structure


## Setting



NO
item will not be displayed in USER menu
item will be displayed in USER menu with editing option

## Setting sequence of items in "USER" menu

In compiling USER menu from active LIGHT menu the items (max. 10) may be assigned a sequence, in which they will be projected in the menu

## Example of ranking the order of menu items in the "USER" menu

In this example we want to have a direct access to menu items Limit 1 and Limit 2 (example show is for the Light menu, but can equaly be used in the Profi menu).


The result of this setting is that when the (C) button is pressed, the display will read „LIM L.1". By pressing $\mathcal{F}$ button you confirm your selection and then you can set the desired limit value, or by pressing the $\Theta$ button you can go to setting of "LIM. L.2" where you can proceed identically as with Limit one.
You can exit the setting by pressing the button by which you store the latest setting and pressing the (c) button will take you back to the measuring mode


The instruments communicate via serial line RS232 or RS485. For communication they use the ASCll protocol. Communication runs in the following format:

ASCII: $\quad 8$ bit, no parity, one stop bit
DIN MessBus: 7 bit, even parity, one stop bit

The transfer rate is adjustable in the instrument menu. The instrument address is set in the instrument menu in the range of $0 \div 31$. The manufacture setting always presets the ASCII protocol, rate of 9600 Baud, address 00 . The type of line used - RS232 / RS485 - is determined by an output board automatically identified by the instrument.
The commands are described in specifications you can find at www.orbit.merret.cz or SW OM Link.

## DETAILED DESCRIPTION OF COMMUNICATION VIA SERIAL LINE



## LEGEND

| SING | RANGE |  | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| \# | 35 | $23_{\mathrm{H}}$ | Command beginning |
| A A | 0... 31 |  | Two characters of instrument address [sent in ASCII - tens and units, e.g. "01", "99" universal |
| <CR> | 13 | $0 \mathrm{D}_{\mathrm{H}}$ | Carriage return |
| <SP> | 32 | $2 \mathrm{O}_{\mathrm{H}}$ | Space |
| N, P |  |  | Number and command - command code |
| - |  |  | Data-usually characters "0"..."9", "-", "."; (D)-dp. and (-) may prolong data |
| R | $30_{H} \ldots$ |  | Relay and tare status |
| ! | 33 | $21_{\mathrm{H}}$ | Positive confirmation of command [ok] |
| ? | 63 | $3 \mathrm{~F}_{\mathrm{H}}$ | Negative confirmation of command (point] |
| $>$ | 62 | $3 \mathrm{E}_{\mathrm{H}}$ | Beginning of transmitted data |
| <STX> | 2 | $02_{\mathrm{H}}$ | Beginning of text |
| <ETX> | 3 | $03_{H}$ | End of text |
| <SADR> | adresa |  | Prompt to send from address |
| <EADR> | adresa |  | Prompt to accept command at address |
| <ENO> | 5 | $05_{\mathrm{H}}$ | Terminate address |
| $<$ LLE>1 | 1649 | $10_{H} 31_{H}$ | Confirm correct statement |
| <NAK> | 21 | $15_{H}$ | Confirm error statement |
| <BCC> |  |  | Check sum -XOR |

RELAY, TARE

| SIGN | RELAY 1 | RELAY 2 | TARE | CHANGE <br> RELAY 3/4 |
| :---: | :---: | :---: | :---: | :---: |
| P | 0 | 0 | 0 | 0 |
| $\square$ | 1 | 0 | 0 | 0 |
| R | 0 | 1 | 0 | 0 |
| 5 | 1 | 1 | 0 | 0 |
| T | 0 | 0 | 1 | 0 |
| U | 1 | 0 | 1 | 0 |
| V | 0 | 1 | 1 | 0 |
| W | 1 | 1 | 1 | 0 |
| p | 0 | 0 | 0 | 1 |
| q | 1 | 0 | 0 | 1 |
| 「 | 0 | 1 | 0 | 1 |
| s | 1 | 1 | 0 | 1 |
| $\dagger$ | 0 | 0 | 1 | 1 |
| U | 1 | 0 | 1 | 1 |
| v | 0 | 1 | 1 | 1 |
| w | 1 | 1 | 1 | 1 |

Relay status is generated by command \#AAEX <CR>. The instrument immediately returns the value in the format >HH <CR>, where HH is value in HEX format and range $00_{H} \ldots . \mathrm{FF}_{\mathrm{H}}$. The lowest bit stands for „Relay 1", the highest for "Relay 8"


| ERROR | CAUSE | ELIMINATION |
| :---: | :---: | :---: |
| E.DI S: | Number is too small (large negative) to be displayed | change DP setting, channel constant setting |
| E.DI S: | Number is too large to be displayed | change DP setting, channel constant setting |
| E.TAB: | Number is outside the table range | increase table values, change input setting [channel constant setting] |
| E.TAB: | Number is outside the table range | increase table values, change input setting [channel constant setting) |
| E.INP._ | Input quantity is smaller than permitted input quantity range | change input signal value or input (range) setting |
| E.INP: | -Input quantity is larger than permitted input quantity range | change input signal value or input (range) setting |
| E.Hw. | A part of the instrument does not work properly | send the instrument for repair |
| E.EE. | Data in EEPROM corrupted | perform restoration of manufacture setting, upon repeated error statement send instrument for repair |
| E.SET. | Data in EEPROM outside the range | perform restoration of manufacture setting, upon repeated error statement send instrument for repair |
| E.CLR | Memory was empty [presetting carried out] | upon repeated error statement send instrument for repair, possible failure in calibration |
| E.OUT. | Analogue output current loop disconnected | check wire connection |



The instrument allows to add two descriptive characters to the classic numeric formats (at the expense of the number of displayed places]. The setting is performed by means of a shifted ASCII code. Upon modification the first two places display the entered characters and the last two places the code of the relevant symbol from 0 to 95 . Numeric value of given character equals the sum of the numbers on both axes of the table.
Description is cancelled by entering characters with code 00

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 7 | 1. | 4 | G | i | $\overline{c^{\prime}}$ | , | 0 |  | ! | " | \# | \$ | \% | \& | ' |
| 8 | ; | ; | * | + | , | - |  | ! | 8 | 1 | 1 | * | + | , | - |  | / |
| 16 | 0 | 1 | 2 | 3 | 4 | 5 | $\sigma$ | 7 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 24 | 8 | 9 | 14 | it | i | ; | - | $?$ | 24 | 8 | 9 | VA | V | $<$ | = | > | ? |
| 32 | 2 | 8 | B | L | J | $\varepsilon$ | $F$ | 5 | 32 | @ | A | B | C | D | E | F | G |
| 40 | H | $\underline{T}$ | ' | " | L | A | iv | $\bigcirc$ | 40 | H | 1 | J | K | L | M | N | $\bigcirc$ |
| 48 | $\rho$ | $\bigcirc$ | $P$ | 5 | 7 | - | $\because$ | i, | 48 | P | Q | R | S | T | U | V | W |
| 56 | $\because$ | :' | L | L | i | $\cdots$ | $\square$ | - | 56 | X | Y | Z | [ | $\backslash$ | ] | $\wedge$ | - |
| 64 | , | 0 | $b$ | $c$ | 0 | $\bullet$ | $F$ | 6 | 64 | , | a | b | c | d | e | $f$ | g |
| 72 | $h$ | 2 | ' | \% | ; | $m$ | $n$ | 0 | 72 | h | i | i | k | 1 | m | n | $\bigcirc$ |
| 80 | $\rho$ | 0 | r | $\pm$ | $t$ | $\checkmark$ | * | " | 80 | $p$ | 9 | r | s | $\dagger$ | u | v | w |
| 88 | $\because$ | $\because$ | 2 | $\because$ | 9 | i- | 0 |  | 88 | x | y | z | \{ | 1 | \} | $\sim$ |  |

## 11. TECHNICAL DATA

 Input $\cup$ Input $U$ Input $U$ Input $\cup$Input I
Input | Input Input Input

## PM

Input I Input Input Input $\cup$ Input U Input U Input U

Input | Input I Input Input $U$ Input U Input $\cup$ Input $\cup$

Voltage of lin. pot.
$2,5 \mathrm{VDC} / 6 \mathrm{~mA}$ min. potentiometer resistance is $500 \Omega$

Sensitiveness
1... 4 / 2... 8 / $4 . . .16 \mathrm{mV} / \mathrm{N}$ T

Connection:
4/6-wire
10 VDC, max. load $65 \Omega$

PROJECTION

Display:

Projection: Decimal point:
Brightness:

999999, intensive red or green $14-\mathrm{ti}$ segment LED, digit height 14 mm $\pm 99999$ (-99999...999999)
adjustable - in menu adjustbale - in menu

## INSTRUMENT ACCURACY

## TC:

Accuracy:

Rate:
Overload capacity:

Linearisation:

Digital filters:

Functions:

Watch-dog:
Calibration:

## COMPARATOR

Type:
Mode:
Limita:
Hysteresis:
Delay:
Outputs:

50 ppm $/{ }^{\circ} \mathrm{C}$
$\pm 0,02 \%$ of range +1 digit
$\pm 0,05 \%$ of range +1 digit
DU, T
Above accuracies apply for projection 99999
0,1... 100 measurements/s
$10 x(t<100 \mathrm{~ms})$ not for 300 V and 5 A , 2x (long-term)
by linear interpolation in 50 points
-solely via OM Link
Averaging, Floating average, Exponential filter, Rounding
Tare - display resetting
Hold - stop measuring [at contact]
Lock - control key locking
MM - min/max value
Mathematic functions
company communication interface for setting, operation and update of instrument SW
reset after 400 ms
at $25^{\circ} \mathrm{C}$ and $40 \%$ of r.h.
digital, adjustable in menu
Hysteresis, From, Dosing
-99999...999999
0... 999999
0...99,9 s
$2 x$ relays with switch-on contact (Form A)
( 230 VAC/30 VDC, 3 A)*
$2 \times$ relays with switch-off contact (Form C)
[230 VAC/50 VDC, 3 A)*
$2 \times$ SSR ( $250 \mathrm{VAC} / 1 \mathrm{~A}$ )*
$2 x / 4 x$ open NPN collector (30 VDC/100 mA) $2 x$ bistabil relays ( $250 \mathrm{VAC} / 250 \mathrm{VDC}, 3$ A/0,3 A)* 1/8 HP 277 VAC, 1/10 HP 125 V, Pilot Duty D300

## DATA OUTPUTS

Protocols:
Data format:

Rate:

RS 232:
RS 485:

PROFIBUS

ASCII, DIN MessBus, MODBUS, PROBUS 8 bit + no parity + 1 stop bit [ASCII] 7 bit + even parity + 1 stop bit (MessBus)
600... 230400 Baud 9600 Baud... 12 Mbaud [PROFIBUS]

## ANALOG OUTPUTS

Type:

Non-linearity:
TC:
Rate:
Voltage:
Curernt:
isolated, programmable with 16 bits D/A convertor, analogoutput corresponds with displayed data, type and range are adjustable 0,1\% of range $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ response to change of value $<1 \mathrm{~ms}$ $0 . . .2 \mathrm{~V} / 5 \mathrm{~V} / 10 \mathrm{~V} / \pm 10 \mathrm{~V}$ 0...5/20 mA/4... 20 mA - compensation of conduct to $500 \Omega / 12 \mathrm{~V}$ or $1000 \Omega / 24 \mathrm{~V}$

## MEASURED DATA RECORD

Type RTC:

Type FAST:

Transmission:

EXCITATION
Adjustbale:
Fixed:
time-controlled logging of measured data into instrument memory, allows to log up to 250000 values fast data logging into instrument memory, allows to $\log$ up to 8000 values at a rate of 40 records/s via data output RS 232/485 or via OM Link
5... $24 \mathrm{VDC} / \mathrm{max} .1,2 \mathrm{~W}$, isolated 10 VDC, maximal load is $65 \Omega$

## POWER SUPPLY

Options:
$10 . . .30 \vee \mathrm{AC} / \mathrm{DC}, 13,5 \vee \mathrm{VA}, \mathrm{PF} \geq 0,4$, $\mathrm{I}_{\mathrm{STP}}<40 \mathrm{~A} / 1 \mathrm{~ms}$, isolated

- fuse inside (T 4000 mA ]
$80 . .250 \mathrm{~V} \mathrm{AC/DC} 13,,5 \mathrm{VA}, \mathrm{PF} \geq 0,4$, $\mathrm{I}_{\mathrm{STP}}<40 \mathrm{~A} / 1 \mathrm{~ms}$, isolated
- fuse inside [T 630 mA ]


## MECHANIC PROPERTIES

Material:
Dimensions:
Panel cut-out:

Noryl GFN2 SE1, incombustible UL 94 V-I
$96 \times 48 \times 120 \mathrm{~mm}$
$90,5 \times 45 \mathrm{~mm}$

## OPERATING CONDITIONS

Connection:
connector terminal board, conductor cross-section $<1,5 \mathrm{~mm}^{2} /<2,5 \mathrm{~mm}^{2}$
Stabilisation period: within 15 minutes after switch-on
Working temp.: $\quad 0^{\circ} . . .60^{\circ} \mathrm{C}$
Storage temp.: $\quad-10^{\circ} \ldots 85^{\circ} \mathrm{C}$
Cover:
Construction:
IP64 (front panel only)

Dielectric strength: 4 kVAC after 1 min between supply and input 4 kVAC after 1 min between supply and data/ analog output
4 kVAC after 1 min between supply and relay output
$2,5 \mathrm{kVAC}$ after 1 min between supply and data/ analog output
Overvoltage cat.: EN 61010-1, A2
Insulation resist.: for pollution degree II, measurement cat. III instrum.power supply > 670 V [PI), 300 V (DI) Input/output > 300 V (PI), 150 (DI)
EMC: EN 61326-1


## Side view



Panel thickness: 0,5 ... 20 mm

## INSTRUMENT INSTALLATION

1. insert the instrument into the panel cut-out
2. fit both travellers on the box
3. press the travellers close to the panel


## INSTRUMENT DISASSEMBLY

1. slide a screw driver under the traveller wing
2. turn the screw driver and remove the traveller
3. take the instrument out of the panel

Product
OM 502
DC PM I LX DU T
Type
Manufacturing No.
Date of sale

A guarantee period of 60 months from the date of sale to the user applies to this instrument.
Defects occuring during this period due to manufacture error or due to material faults shall be eliminated free of charge.
For quality, function and construction of the instrument the guarantee shall apply provided that the instrument was connected and used in compliance with the instructions for use.

The guarantee shall not apply to defects caused by:

```
- mechanic damage
- transportation
- intervention of unqualified person incl. the user
- unavoidable event
- other unprofessional interventions
```

The manufacturer performs guarantee and post.guarantee repairs unless provided for otherwise.

## Stamp, signature

## Company:

## Manufactured:

ORBIT MERRET, spol. s r.o.
Klánova 81/141, 14200 Prague 4, Czech Republic, IDNo.: 00551309

ORBIT MERRET, spol. s r.o.
Vodňanská 675/30, 19800 Prague 9, Czech Republic
declares at its explicit responsibility that the product presented hereunder meets all technical requirements, is safe for use when utilised under the terms and conditions determined by ORBIT MERRET, spol.s r.o. and that our company has taken all measures to ensure conformity of all products of the types referred-to hereunder, which are being brought out to the market, with technical documentation and requirements of the appurtenant Czech statutory orders.

## Product: Programmable panel instrument

## Type:

OM 502

## Version: $\quad$ DC, PM, I, LX, DU, T

## Thas been designed and manufactured in line with requirements of:

Statutory order no. 17/2003 Coll., on low-voltage electrical equipment [directive no. 73/23/EHS]
Statutory order no. 616/2006 Coll., on electromagnetic compatibility [directive no. 2004/108/EHS]

## The product qualities are in conformity with harmonized standard:

| el. bezpečnost: | EN 61010-1 |
| :---: | :---: |
| EMC: | EN 61326-1 |
|  | Electronic measuring, control and laboratory devices - Requirements for EMC "Industrial use" EN 50131-1, chap. 14 and chap. 15, EN 50130-4, chap. 7, EN 50130-4, chap. 8 (EN 61000-4-11, ed. 2], EN 50130-4, chap. 9 (EN 61000-4-2), EN 50130-4, chap. 10 (EN 61000-4-3, ed. 2), EN 50130-4, chap. 11 (EN 61000-4-6), EN 50130-4, chap. 12 [EN 61000-4-4, ed. 2], EN 50130-4, chap. 13 (EN 61000-4-5), EN 61000-4-8, EN 61000-4-9, EN 61000-6-1, EN 61000-6-2, EN 55022, kap. 5 a kap. 6 |

The product is furnished with CE label issued in 2007.

As documentation serve the protocoles of authorized and accredited organizations:
MO CR, Testing institute of technical devices, protocol no. 80/6-330/2006 of 15/01/2007
MO CR, Testing institute of technical devices, protocol no. EMI.80/6-333/2006 of 15/01/2007

Place and date of issue:
Prague, 19. Juli 2009
Miroslav Hackl
Company representative

