

Ethernet data protocol

LD-MRS400001 LD-MRS400102 LD-MRS400001S01 LD-MRS400102S01 LD-MRS800001S01

Table of Content

1	Introductio	n	4
2	General ir	nformation	4
	2.1 Ether	net configuration	4
	2.2 Data	encoding	4
	2.2.1 L	.ittle and Big Endian	4
	2.2.2 N	NTP timestamps	4
	2.3 Mess	age header	5
	2.4 Data	types	5
3	LD-MRS s	scan data: Data type 0x2202	6
	3.1 Scan	point flags	4 5 6 8 9
4	LD-MRS of	bject data: Data type 0x2221	9
	4.1 Comr	nands for object parameterization	12
5	LD-MRS of	command interface	13
	5.1 Comr	mand header	13
	5.2 Comr	mand reply	13
	5.2.1 5	Successful completion of the command	13
	5.2.2 0	Command failure	14
	5.3 LD-M	RS commands and command replies – data types 0x2010/ 0x2020	14
	5.3.1 F	Reset	14
		Get Status	14
	5.3.3 8	SaveConfig	16
	5.3.4 S	Set Parameter	16
		Get Parameter	16
		Reset Default Parameters	17
	5.3.7 8	Start Measure	17
		Stop Measure	17
	5.3.9 5	SetNTPTimestampSec	17
		SetNTPTimestampFracSec	18
		RS parameter list	18
		Coding of datatype "CompressedRadian"	25
		ng of LD-MRS Status / Version information	25
6		errors and warnings - Data type 0x2030	26
		register 1	26
		register 2	27
		ing register 1	28
_		ing register 2	28
7			30
		le Data - Data type 0x2805	30
_	•	Motion data: Data type 0x2850	30
8		SensorInfo structure - Data type 0x7100	31
9			32
		ng a parameter	32
		ng an NTP timestamp	33
	9.3 Send	ing ego motion data	33

9.4 Scan data example	34
9.4.1 Scan scene	35
9.4.2 Scan data	35
10 SOPAS interface	37
10.1 Access to functions and data	37
10.2 Reading the basic scanner configuration	38
10.3 Reading or writing the fields	39
10.3.1 Segmented fields	40
10.3.2 Rectangular fields	41
10.3.3 Example	41
10.4 Reading or writing the EvalCases	42
10.4.1 EvalCase structure	42
10.4.2 Example	43
10.5 Reading eval case results	44
10.6 Login	46
10.6.1 Sensor answer to Login	46
10.6.2 Example	46
10.7 Logout	46
10.8 Scan data	46
10.8.1 DataChannel structure	47

1 Introduction

This document describes how data is received and transmitted from respectively to the LD-MRS via the Ethernet connection.

The addressed firmware version of the LD-MRS is 3.22.2

Addressed scanners are LD-MRS 400xxx and LD-MRS 800xxx sensors or applications using the current API/software versions. In addition, most sensor versions have a SOPAS access port for configuration with the SOPAS ET software. This SOPAS access is partially described in chapter 10 of this document.

2 General information

2.1 Ethernet configuration

The LD-MRS uses default ethernet configurations until changed by the user.

Default IP address:192.168.0.1Default subnet mask:255.255.255.0Default IP port:12002

Note: The IP port may not be changed to a value that is identical to the SOPAS IP port (default: 2111).

2.2 Data encoding

2.2.1 Little and Big Endian

On the interface, a mixture of little and big endian encoding is used. While the "Message header", the frame around the data payload, is encoded using big endian format, the payload itself is always encoded in little endian format.

Be sure to encode/decode correctly!

2.2.2 NTP timestamps

NTP64 timestamps represent the time encoded in 8 bytes. In order to decode NTP64 timestamps, the corresponding 8 bytes need to be interpreted as UINT64:

- The higher 4 bytes are the number of seconds since 1.1.1900 0:00:00.
- The lower 4 bytes represent the fractional seconds with a resolution of 2^{32} s.

2.3 Message header

Each message always starts with a message header. To resync just search for the magic word (0xAFFEC0C2).

The message header is encoded in network byte order ("big endian format").

Offset	Bytes	Data header:	datatype	Description
0	4	Magic word (0xAFFEC0C2)	UINT32	The magic word is used for searching the messages and to distinguish between different versions.
4	4	Size of previous messages	UINT32	Helps to navigate backwards through a file. Unused in live data.
8	4	Size of message data	UINT32	Size, in bytes, of the attached message data, without this header.
12	1	Reserved	UINT8	Write as 0.
13	1	DeviceID	UINT8	Unused here; write as 0. In a general datastream, may be filled with a unique ID to identify the device generating the data.
14	2	Data type	UINT16	Specifies the data type within this message.
16	8	NTP time	NTP64	Time when this message was created.
24		Message data	-	Depending on data type.

2.4 Data types

In the message header, the data type of the included message data must be specified. This is a list of the available data types:

Data type	Description			
0x2010	Command. Sends a command (e.g. new parameter) to the sensor.			
0x2020	Command reply. This is the answer of the LD-MRS to a command (Msg 0x2010).			
0x2030	Error/Warning-Message.			
0x2202	Scan data. Contains all measurements of a single scan.			
0x2221	Object data. Contains all objects tracked by the sensor. This datatype is only available in the S01-versions of the sensor.			
0x2805	Movement data (internal use only).			
0x2850	Ego motion data. Sends information about current vehicle movement to the sensor.			
0x7100	LDMRS SensorInfo structure. Contains additional internal data related to a scan.			

3 LD-MRS scan data: Data type 0x2202

Scan data available from LD-MRS. Each scan data block starts with a header followed by the scan point list.

For angle information the unit angle ticks is used. A LD-MRS uses 11520 ticks per rotation (see also Angle ticks per rotation below). Thus the angular resolution is 1/32°. This value is needed to convert angle ticks:

angle = $2\pi \frac{\text{angle ticks}}{\text{angle ticks per rotation}}$

Note: Scans without stable mirror rotation should be considered as invalid and ignored. The mirror rotation is stable when bit 3 of the Scanner status ("frequency locked") is set. This is the case when the sensor is starting up, but may also occur during normal operation due to strong sensor movement. These scans are sent on the interface only to provide the header information including the sensor status.

Angles are given in the ISO 8855 / DIN 70000 scanner coordinate system.

Offset	Bytes	Scan header:	datatype	Description
0	2	Scan number	UINT16	The number of this scan. The
				number will be increased from scan
				to scan.
2	2	Scanner status	bit field 16	Bit field. See chapter 5.5 for the
			bits	format description.
4	2	Sync phase offset	UINT16	Phase difference in angle ticks
				between sync signal and scanner
				mirror crossing the synchronization
				angle.
6	8	Scan start time	NTP64	NTP time when the first/last
	_	NTP		measurement was done.
14	8	Scan end time NTP	NTP64	
22	2	Angle ticks per	UINT16	Number of angle ticks per rotation.
		rotation		
24	2	Start angle	INT16	Start/end angle in angle ticks of
26	2	End angle	INT16	this scan.
28	2	Scan points	UINT16	Number of scan points transmitted
				in this scan.
30	2	Mounting position	INT16	Rotation of the scanner around the axes
		yaw angle		of the reference coordinate system. All angles are given in angle ticks.
32	2	Mounting position	INT16	Order of translation and rotation is
		pitch angle		essential: Yaw->Pitch->Roll->Translation.
34	2	Mounting position	INT16	Scan data is given in the scanner
		roll angle		coordinate system without any
36	2	Mounting position x	INT16	transformation.

Offset	Bytes	Scan header:	datatype	Description
38	2	Mounting position y	INT16	Mounting position of the scanner relative
40	2	Mounting position z	INT16	to the reference coordinate system (ISO 8855 / DIN 70000 coordinate system). The origin is located on flat ground under the center of the rear axle. X-axis faces to the vehicle front resp. straight driving direction. Y-axis faces left. The mounting position is needed for ego motion compensation (only available if scanner x-y-plane is almost parallel to the ground). All coordinates are given in centimeters. Order of translation and rotation is essential (Rotation -> Translation). The mounting position is used for ego motion compensation, not to transform scan data but is available for further processing steps.
42	2	Processing flags	UINT16	Internal processing flags of the sensor: Bit 0: Ground detection performed (0 = false, 1 = true) Bit 1: Dirt detection performed Bit 2: Rain detection performed Bit 5: Transparency detection performed Bit 6: Horizontal angle offset added Bit 10: Mirror side: 0=front (for 8-Layer, tilted downward), 1=rear (for 8-layer, tilted upward) All other flags are reserved for internal use and should not be evaluated.
44		Scan Point List	Scan Point	Array of scan points. See number of scan points above and point information below.

Offset	Bytes	Scan point:	datatype	Description
0	1	Layer	UINT4	Scan layer of this point (zero-based). Encoded in bits 03 of this byte. Valid values are 0-3. Note that the corresponding mirror side (required for 8-layer sensors) is coded in the processing flags (see above).
		Echo	UINT4	Echo number of this point. 0 is the first measurement of this shot, 1 the second (if available), and so on. Encoded in bits 47 of this byte.
1	1	Flags	Bit field (8 bits)	See chapter 3.1
2	2	Horizontal angle	INT16	Angle of this point in angle ticks in the scanner coordinate system
4	2	Radial distance	UINT16	Distance of this point in the scanner coordinate system, in cm
6	2	Echo pulse width	UINT16	Detected width of this echo pulse, in cm
8	2	Reserved	UINT16	-

3.1 Scan point flags

The scan point flags, a bit field of 8 bits for each scanpoint, contain details about the measurement:

Bit	Mask	Name	Description		
0	0x01	Transparent	When set, there is at least one more echo (measurement) behind this scan point (B or C echo).Note that multiple measurements in one beam occur underundertwoconditions:1) when measuring through something transparent, such as glass or dust, or2) when enough energy was reflected off a surface to trigger another measurement		
1	0x02	Atmospheric noise (Clutter)	When set, the scan point is classified as atmospheric noise such as rain, dust, or similar.		
2	0x04	Ground	When set, the scan point is classified as ground. Note: This flag is set by the sensor application firmware and is only available if the corresponding processing is active.		
3	0x08	Dirt	When set, the scan point is classified as dirt. The main cause is a dirty front screen of the sensor housing.		
4	0x10	Threshold switching	This is an internal flag needed for atmospheric noise detection. When set, the scan point was measured in a shot with		

Bit	Mask	Name	Description
			threshold switching.
5	0x20	Invalid	This is an internal flag needed for atmospheric noise detection. When set, the scan point is considered invalid. Invalid points may occur due to double echos caused by switching thresholds. Note that invalid points will not be sent via Ethernet, so
			this flag should never appear outside of the sensor.
6	0x40	Near range	This is an internal flag needed for atmospheric noise detection. When set, the scan point was measured with the near range threshold.
7	0x80	Unused	Unused, ignore.

Note that most of the scan point information is needed for internal processing and is subject to change without notice. External applications should only use Transparent, Atmospheric noise, Ground and Dirt.

4 LD-MRS object data: Data type 0x2221

Object data available from LD-MRS4xxxxx.S01

Each data block starts with a header followed by the object list. Each object has a list of contour points. The total size of this data type varies with the number of objects and its contour points.

Offset	Bytes	Object header:	datatype	Description
0	8	Scan start	NTP64	Time stamp of the first
		timestamp		measurement of the scan
				these objects are updated with.
8	2	Number of objects	UINT16	The number of objects
				transmitted in this message.
10	(variabl	List of objects	Object	Array of objects.
	e)	-	-	

Object header (10 bytes, plus object data):

For each object:

Offset	Bytes	Object: content	datatype	Description
0	2	Object ID	UINT16	ID of this object from tracking.
2	2	Object age	UINT16	Number of scans this object
				has been tracked for.
4	2	Object prediction age	UINT16	Number of scans this object has currently been predicted for without measurement update. Set to 0 as soon as a measurement update is available.

Offset	Bytes	Object: content	datatype	Description
6	2	Relative timestamp	UINT16	Timestamp of this object relative to the scan start time in ms. The time is based on the object reference point.
8	4	Reference point	Point2D	Depending on tracking this is the tracked object reference point (e.g. center of gravity) in cm. See below for Point2D.
12	4	Reference point sigma	Point2D	Standard deviation of the estimated reference point position in cm.
16	4	Closest point	Point2D	Unfiltered position of the closest object point in cm.
20	4	Bounding box center	Point2D	Center and size in cm of a rectangle in the reference
24	4	Bounding box size	Size2D	coordinate system containing all object points. See below for Size2D.
28	4	Object box center	Point2D	Box center in the reference
32	4	Object box size	Size2D	coordinate system in cm.
36	2	Object box orientation	INT16	Box size in cm and orientation in 1/32° in the object coordinate system (box rotated in the direction of the velocity vector; in reference coordinate system).
38	4	Absolute velocity	Point2D	Velocity of this object in cm/s with ego motion taken into account. This velocity is based on the reference coordinate system which is compensated by the ego motion. Value set to 0x8000 if invalid.
42	4	Absolute velocity sigma	Size2D	Standard deviation of the estimated absolute velocity, in cm/s.
46	4	Relative velocity	Point2D	Velocity of this object in cm/s without ego motion compensation (sensor/vehicle is seen as stationary).
50	2	Reserved	UINT16	reserved
52	2	Reserved	UINT16	reserved
54	2	Reserved	UINT16	reserved

Offset	Bytes	Object: content	datatype	Description
56	2	Number of contour points	UINT16	The number of contour points of this object. 00xFFFE: Number of contour points. 0xFFFF: The object does not have current contour information as it is predicted without scan data. In this case, the list of contour points consists of 1 point, the predicted closest point of the object.
58		List of contour points	Point2D	Array of contour points (number of points see above). Units are [cm].

Point2D data structure (4 bytes total):

Offset	Bytes	Point2D:	datatype	Description
0	2	Position x	INT16	X-part/coordinate of this value/point.
2	2	Position y	INT16	Y-part/coordinate of this value/point.

Size2D data structure (4 bytes total):

Offset	Bytes	Size2D	datatype	Description
0	2	Size x	UINT16	X-value/size/width.
2	2	Size y	UINT16	Y-value/size/length.

4.1 Commands for object parameterization

Ethernet Parameter for Object parameterization. Value 0xFFFF is the default value in the memory

Data type	Bytes	Message	datatype	Content
0x101A	2	8 Layer Tracking Threshold	UINT16	Threshold UINT8 (0, 127) If values >127d then set to default =>96d $127d \Rightarrow 100\%$ $96d \Rightarrow 75\%$ $80h \Rightarrow 100\%$ $70h \Rightarrow 87,5\%$ 60h => 75% $40h \Rightarrow 50\%$
0x101B	2	8 Layer Tracking Merge strategy	UINT16	0xFFFF: harmonic mean (default) 0x1: max overlapping 0x2: mean

5 LD-MRS command interface

5.1 Command header

For sending commands to the LD-MRS the data type 0x2010 is used. The command consists of two parts, the command header and the command data. The command data depends on the individual command and is described in the following sections.

	Sommand neader (+ bytes, plus command data)				
Offset	Bytes	LD-MRS	datatype	Description	
	-	command			
0	2	Command ID	UINT16	See next sections for a detailed list of commands and according options/parameters.	
2	2	Reserved	UINT16	Reserved, send as 0.	
4	(varia ble)	Command Data	-	Depending on command. Some commands do not have any command data.	

Command header (4 bytes, plus command data)

5.2 Command reply

The LD-MRS replies to a command with a dedicated reply message with the datatype 0x2020 (Encoding: Little endian format!).

5.2.1 Successful completion of the command

If the command was successful, the Reply ID (see table below) is identical to the Command ID. Example: Command was $0x0030 \rightarrow \text{Reply ID} = 0x0030$.

Offset	Bytes	LD-MRS reply	Content type	Description
0	2	Reply ID	UINT16	If a command succeeded, the reply ID is equal to the corresponding command ID. If a command failed, the reply ID is the command ID + 0x8000. Thus, the most significant bit indicates a failed command.
2	(varia ble)	Reply data	-	Depending on the corresponding command this reply is related to. May be completely missing for some commands and if a command failed. See detailed command description below.

5.2.2 Command failure

If the command has failed for any reason, the Reply ID is a copy of the Command ID, but with its bit 15 set. Thus, the most significant bit indicates a failed command. Example: Command was 0x0030 and has failed \rightarrow Reply ID = 0x8030.

Offset	Bytes	LD-MRS reply	Content type	Description
0	2	Reply ID	UINT16	For a failed command, the reply ID is the command ID + 0x8000.
2 ff.	30	(Status message)	n/a	Contents of the GetStatus reply, starting with Byte 2 (Firmware version). See 5.3.2 for details.

5.3 LD-MRS commands and command replies – data types 0x2010/ 0x2020

5.3.1 Reset

Resets the scanner, and restarts it with the saved parameters. All unsaved changes will be lost.

The sensor should be in IDLE mode for at least 1 s when this command is sent. The correct reset sequence is therefore:

- StopMeasure
- wait for 1 s
- Reset

After the reset, it will take the scanner approximately 20 s before it will be sending scan data again.

Command ID = 0x0000Command data: none.

Reply: For this command (Reset), no reply is sent. 5.3.2 Get Status

Command ID = 0x0001Command data: none.

Reply:

Offset	Bytes	LD-MRS reply	Content type	Description	
0	2	0x0001	UINT16	ID - Status request	
2	2	Firmware version	UINT16	Version of the DSP firmware. See chapter 5.5 for the format description.	
4	2	FPGA version	UINT16	Version of the FPGA code. See chapter 5.5 for the format description.	
6	2	Scanner status	UINT16	Bit field. See chapter 5.5 for the format description.	
8	2	Reserved	UINT16	Internal parameter. DSP firmware software repository index.	
10	2	Reserved	UINT16	Internal parameter. Scanner type.	
12	2	Temperature	UINT16	Sensor-internal temperature. See chapter 5.5 for the format description.	
14	2	Serial number 0	UINT16	These are the first 4 digits of the serial number. Format is YYCW; e.g. 0x1140 = year '11, calendar week 40. In this example, the serial number of the sensor starts with 1140 This value is valid if the lower byte of serial number 2 is 0x01.	
16	2	Serial number 1	UINT16	Counter of serial number. These are the lower 16 bits of the serial number. E.g. 0x000A => the serial number of the scanner ends with 0010. Together with the example above, this scanner has the serial number 114000010. This value is valid if the lower byte of serial number 2 is 0x01.	
18	2	Serial number 2	UINT16	Upper byte: High-Byte of Counter of serial number (currently unused); Lower byte: Flag for serial number encoding (must be 0x01).	
20	6	FPGA time stamp	[3] * UINT16	Date/Time of the FPGA firmware version. See chapter 5.5 for the format description.	
26	6	DSP time stamp	[3] * UINT16	Date/Time of the DSP firmware version. See chapter 5.5 for the format description.	

5.3.3 SaveConfig

Saves all current parameters permanently.

Command ID = 0x0004

Command data: none.

Reply: The command SaveConfig will be acknowledged by the same command ID without command reply data.

5.3.4 Set Parameter

Sets a parameter to the given value. The change is valid until the next power-off. In order to store the change(s) permanently, use the SaveConfig command after the changes have been made.

Command ID = 0x0010 Command data: see table below

Offset	Bytes	LD-MRS command	datatype	Description
0	4	(header)	n/a	(Command header)
4	2	Parameter index	UINT16	Refer to LD-MRS parameter
				list (see chapter 5.4).
6	4	Parameter value	UINT32	New value of the parameter. Datatype is according to parameter list. If e.g. a 2 byte value is set, use the first 2 bytes. Fill the remaining 2 bytes with 0.

Reply: The command Set Parameter will be acknowledged by the same command ID without any command reply data.

5.3.5 Get Parameter

Read a single parameter from the LD-MRS.

Command ID = 0x0011 Command data: see table below

Offset	Bytes	LD-MRS command	datatype	Description
0	4	(header)	n/a	(Command header)
4	2	Parameter index	UINT16	Refer to LD-MRS parameter
				list (see chapter 5.4).

Reply:

Offset	Bytes	LD-MRS reply	Content type	Description
0	2	0x0011	UINT16	ID - Read a single Parameter by its index from the LD-MRS.
2	2	Parameter index	UINT16	Refer to LD-MRS parameter list (see chapter 5.4).
4	4	Parameter	UINT32	Current value of the parameter. Datatype is according to parameter list. If e.g. a 2 byte value is read, read the first 2 bytes.

5.3.6 Reset Default Parameters

Resets all parameters to their factory default values.

Command ID = 0x001A

Command data: none.

Reply: The command Reset Default Parameters will be acknowledged by the same command ID without any command reply data.

5.3.7 Start Measure

Starts scanning.

Also starts the motor if it was not already spinning. This may take approx. 10-20 seconds.

Command ID = 0x0020

Command data: none.

Reply: The command Start Measure will be acknowledged by the same command ID without any command reply data.

5.3.8 Stop Measure

Stops scanning. Also stops the motor from spinning.

Command ID = 0x0021

Command data: none.

Reply: The command Stop Measure will be acknowledged by the same command ID without any command reply data.

5.3.9 SetNTPTimestampSec

Sets the "seconds"-part of the NTP timestamp.

Command ID = 0x0030

Comm	Command data. See below					
Offset	Bytes	LD-MRS command:	datatype	Description		
0	4	(header)	n/a	(Command header)		
4	2	(reserved)	n/a	(unused, send as 0)		
6	4	Timestamp	UINT32	Seconds (NTP format). The time will be set in the sensor when the fractional seconds command is received (see 5.3.10).		

Reply: The command SetNTPTimestampSec will be acknowledged by the same command ID without any command reply data.

For an example of how to set the NTP timestamp, please refer to chapter 9.2.

5.3.10 SetNTPTimestampFracSec

Sets the "fractional seconds"-part of the NTP timestamp. *Attention:* Before this command can be executed, first command "SetNTPTimestampSec" (0x0030) must be sent (see 5.3.9)!

Command ID = 0x0031 Command data: see below

Offset	Bytes	LD-MRS command	datatype	Description
0	4	(header)	n/a	(Command header)
4	2	(reserved)	n/a	(unused, send as 0)
6	4	Timestamp	UINT32	Fractional seconds (NTP format).

Reply: The command SetNTPTimestampFracSec will be acknowledged by the same command ID without any command reply data.

For an example of how to set the NTP timestamp, please refer to chapter 9.2.

5.4 LD-MRS parameter list

This table lists all available LD-MRS parameters. Please refer to the "SetParameter" and "GetParameter" commands for details on reading and setting these parameters.

IP address, subnet mask and standard gateway encode the data as UINT32 value which is built like that: aa.bb.cc.dd = 0xaabbccdd. Due to little endian byte order this value must be sent as 0xddccbbaa.

Bytes	Parameter index	LD-MRS parameter	Datatype	Description
4	0x1000	IP address	UINT32	Valid: all
2	0x1001	TCP Port	UINT32	Valid: all
4	0x1002	Subnet Mask	UINT32	Valid: all
4	0x1003	Standard gateway	UINT32	Valid: all
4	0x1010	CAN Base ID	UINT32	Valid: value <= 0x7F0
2	0x1011	CAN Baud Rate	UINT16	in kBaud - next matching value (1000 kBaud, 500 kBaud, 250 kBaud, 125 kBaud) will be used.
2	0x1012	Data Output Flag	16 bit field	Bit true: disable output, false: enable output. 0xFFFF is invalid. bit0: ETH scan data bit1: reserved/internal bit2: ETH object data bit3: ETH vehicle data bit4: ETH errors/warnings bit5: CAN errors/warnings bit6: CAN object data bit715: reserved
2	0x1013	maxObjectsViaCAN	UINT16	<= 65 (max. number of objects) limited by tracking and CAN bus capacity.
2	0x1014	ContourPointDensit y	UINT16	Valid: < 3 0: closest point only 1: low density 2: high density
2	0x1015	ObjectPriorizationCr iterion	UINT16	Valid: < 2 Used to reduce transmitted objects via CAN. Decision which objects are discarded is based on this criterion. 0: Radial 1: Look ahead
2	0x1016	CAN object data options	16 bit field	Valid: all bit 0: 0 = absolute velocities, 1 = relative velocities bit 1: 0 = boxes are object boxes, 1 = boxes are bounding boxes bits 215: reserved

Bytes	Parameter index	LD-MRS parameter	Datatype	Description
2	0x1017	Minimum Object Age	UINT16	Valid: all Minimum tracking age (number of scans) of an object to be transmitted.
2	0x1018	Maximum Prediction Age	UINT16	Valid: all Maximum prediction age (number of scans) of an object to be transmitted.
2	0x1100	Start angle	INT16	In 1/32°, in the sensor coordinate system. Valid: 16001919. Start angle > end angle!
2	0x1101	End angle	INT16	In 1/32°, in the sensor coordinate system. Valid: 15991920. Start angle > end angle!
2	0x1102	Scan frequency	UINT16	In 1/256 Hz. Valid: 3200 (12.5 Hz) 6400 (25.0 Hz) 12800 (50.0 Hz)
2	0x1103	Sync angle offset	INT14 (!) (16 bits transferred)	In 1/32° in the sensor coordinate system. Valid: -5760+5759 (-180°+180°). Bits 14 and 15 are ignored!
2	0x1104	angular resolution type	UINT16	0: Focused* 1: Constant 2: FlexRes (user-defined sectors)* 3,4,5: reserved 6: Constant HighRes (only available at 12.5 Hz, and for FW versions 3.20 and newer) *) "Focused" and "FlexRes" resolution are only available for devices which include object tracking; they cannot be activated on devices with field evaluation.
2	0x1105	angleTicksPerRotati on	UINT16	11520 (read only), constant for LD-MRS

Bytes	Parameter index	LD-MRS parameter	Datatype	Description
2	0x1108	RangeReduction	UINT16	Available for LDMRS800001.S01 only 0: full sensitivity (default) 1: lower 4 layers reduced 2: upper 4 layers reduced 3: both reduced
2	0x1109	Upside down mode	UINT16	Available for LDMRS800001.S01 only 0: device not in upside down mode (default) 1: upside down mode active
2	0x110A	Ignore near range	UINT16	Available for LDMRS800001.S01 only 0: do not ignore points in near range (up to 15m) (default) 1: ignore points in near range if 0x1108 is 1
2	0x110B	Sensitivity control active	UITN16	0: not active (default) 1: Sensitivity will be reduced dynamically down to 60% in case of direct sun light.
2	0x1200	SensorMounting_X	INT16	In cm, related to vehicle reference point, rear axle. Order of translation and rotation is essential (Rotation - > Translation).
2	0x1201	SensorMounting_Y	INT16	In cm, related to vehicle reference point, rear axle. Order of translation and rotation is essential (Rotation - > Translation).
2	0x1202	SensorMounting_Z	INT16	In cm, related to vehicle reference point, rear axle. Order of translation and rotation is essential (Rotation - > Translation).
2	0x1203	SensorMounting_Ya w	INT16	In 1/32°, order of translation and rotation is essential (Yaw- >Pitch->Roll-> Translation).

Bytes	Parameter index	LD-MRS parameter	Datatype	Description
2	0x1204	SensorMounting_Pit ch	INT16	In 1/32°, order of translation and rotation is essential (Yaw- >Pitch->Roll-> Translation).
2	0x1205	SensorMounting_Ro II	INT16	In 1/32°, order of translation and rotation is essential (Yaw- >Pitch->Roll-> Translation).
2	0x1206	VehicleFrontToFront Axle	UINT16	valid: all; in cm
2	0x1207	FrontAxleToRearAxl e	UINT16	valid: all; in cm
2	0x1208	RearAxleToVehicle Rear	UINT16	valid: all; in cm
2	0x1209	VehicleWidth	UINT16	Width of the vehicle; valid: all; in cm.
2	0x120A	steerRatioType	UINT16	Reserved, internal.
4	0x120C	SteerRatioPoly0	Float32	Reserved, internal. Valid: all
4	0x120D	SteerRatioPoly1	Float32	Reserved, internal. Valid: all
4	0x120E	SteerRatioPoly2	Float32	Reserved, internal. Valid: all
4	0x120F	SteerRatioPoly3	Float32	Reserved, internal. Valid: all
2	0x1210	Vehicle Motion Data Flags	16 bit field	Reserved, internal. Bit 0: Vehicle Motion data expected: 1=true, 0=false Bits 1 to 15: reserved
2	0x2208	EnableSensorInfo	UINT16	Enable flag for "SensorInfo"- data. Default is 0 (disabled). When set to 1, the sensor sends SensorInfo data with each scan. Please refer to chapter 8 for details. This setting is non-persistent and has to be re-activated after each reboot.
2	0x3302	BeamTilt	Compress edRadian	Beam tilt angle. For standard devices, this angle is 0. For 8- layer devices, this is the tilt of the scan center in 0° (forward) direction - typically either 1.2° or 1.6°. For a description of the data format, see chapter 5.4.1.

Bytes	Parameter index	LD-MRS parameter	Datatype	Description
4	0x3500	Timemeter	UINT32	Current timemeter value, in [minutes]. This is the overall power-on-time of the sensor since production. This parameter is read-only.
2	0x3600	Enable APD control	UINT16	LDRMS400001.S09 only Enables adaptive sensitivity control. If disabled, sensor works at maximum sensitivity. Valid values are 1 (Enabled, DEFAULT) or 0 (Disabled). This parameter is not persistent; it will not be saved in the flash memory and is set to default (=enabled) at reboot. This parameter is available only in DSP firmware version 2.2.09. See parameter 0x110B since FW V3.03
2	0x4000	NumSectors	UINT16	FlexRes feature: Number of angle sectors. This defines the number of valid sectors, set with the following parameters. The sensor checks the validity of the sectors before applying the configuration. In case of an error, read parameter 0x7000 for further information.
2	0x4001	StartAngle, Sector 1	INT16	In 1/32°, in the sensor coordinate system. Valid: 16001919. This is the start angle of the first sector. The angular resolution for this sector is set with parameter 0x4009.
2	0x4002	StartAngle, Sector 2	INT16	In 1/32°, in the sensor coordinate system. Valid: 16001919. This is the start angle of the second sector. The angular resolution for this sector is set with parameter 0x400A.
2	0x4003	StartAngle, Sector 3	INT16	see above.
2	0x4004	StartAngle, Sector 4	INT16	see above.
2	0x4005	StartAngle, Sector 5	INT16	see above.
2	0x4006	StartAngle, Sector 6	INT16	see above.
2	0x4007	StartAngle, Sector 7	INT16	see above.

Bytes	Parameter index	LD-MRS parameter	Datatype	Description
2	0x4008 0x4009	StartAngle, Sector 8 Angular resolution, Sector 1	INT16 INT16	see above. Angular resolution of first sector. Valid values are 32 (1.0°), 16 (0.5°), 8 (0.25°) and 4 (0.125°).
2	0x400A	Angular resolution, Sector 2	INT16	Angular resolution of second sector.
2	0x400B	Angular resolution, Sector 3	INT16	see above.
2	0x400C	Angular resolution, Sector 4	INT16	see above.
2	0x400D	Angular resolution, Sector 5	INT16	see above.
2	0x400E	Angular resolution, Sector 6	INT16	see above.
2	0x400F	Angular resolution, Sector 7	INT16	see above.
2	0x4010	Angular resolution, Sector 8	INT16	see above.
4	0x7000	Detailed error code for FlexRes	UINT32	 Detailed error information for FlexRes feature. When parameter setting of 0x4000 fails, reading this parameter will give the reason. 0x006C: The number of shots per scan is higher than 440. 0x006D: The sectors with a resolution of 0.125° sum up to more than 20°. 0x006E: The scan frequency is not 12.5Hz. 0x006F: The start angles of the sectors decrease not strictly monotone. 0x0070: Could not set FlexRes parameter because the sensor is not idle and in flex res mode. 0x0071: The resolution of one sector is not 4,8,16 or 32 (0.125°, 0.25°, 0.5°, 1°) 0x0072: The number of sectors is larger than 8

5.4.1 Coding of datatype "CompressedRadian"

This datatype is sometimes used to transport angle information. To convert an angle to CompressedRadian, do this:

- Normalize the angle to the interval [-pi, +pi).
 - Multiply the normalized value by 10000
 - Round the result, and convert the result to INT16

The resulting INT16 value is the angle with a resolution of "tenth of mrad" and its range extends from -31416 to +31416 (which is the rounded and quantized form of Pi, 3.14159).

Do decode the value, use the algorithm above backwards.

5.5 Coding of LD-MRS Status / Version information

Name	Datatype	Bytes	Description
Firmware	UINT16	2	Examples:
version			0x1230 = version 1.23.0;
			0x3011 = version 3.01.1
FPGA version	(see DSP firmware version)	(see DSP firmware version)	(see DSP firmware version)
Scanner status	UINT16	2	Bit field, with the following meaning for every bit: Bit 156: reserved / internal Bit 5: phase locked (Motor control) Bit 4: external sync signal available Bit 3: frequency locked (Mirror rotation is stable) Bit 2: reserved / internal Bit 1: laser on Bit 0: motor on
Temperature	UINT16	2	If value is <= 0x7FFF: T[°C] = - (value - 579.2364) / 3.63 else T[°C] = invalid. Example: Sensor value reads 0x017D = 381. T[°C] = - (381 - 579.2364) / 3.63 = 54.6
FPGA time stamp	3*UINT16	6	Format is YYYY MMDD hhmm. Example: 0x2010 0x1104 0x0921 = Nov. 04, 2010, 9:21 h
DSP time stamp	(see FPGA time stamp)	(see FPGA time stamp)	(see FPGA time stamp)

6 LD-MRS errors and warnings - Data type 0x2030

As soon as the LD-MRS detects an error or wants to emit a warning, this message is sent. Errors and warning bits are reset after sending this message. This message will be sent periodically as long as errors of warnings persist. The data is encoded in little endian format!

Offset	Bytes	LD-MRS error/warning registers:	Datatype	Description
0	2	Error register 1	bit field 16 bits	See below
2	2	Error register 2	bit field 16 bits	
4	2	Warning register 1	bit field 16 bits	
6	2	Warning register 2	bit field 16 bits	
8	2	reserved	bit field 16 bits	
10	2	reserved	bit field 16 bits	
12	2	reserved	bit field 16 bits	
14	2	reserved	bit field 16 bits	

6.1 Error register 1

This 16-bit register contains error flags from the FPGA of the scanner.

Bit	Comment
0	contact support
1	contact support
2	scan buffer transmitted incompletely, decrease scan
	resolution/frequency/range; contact support
3	Scan buffer overflow , decrease scan resolution/frequency/range; contact
	support
4	contact support
5 - 7	Reserved
8 - 9	Bit 8: APD Under Temperature, provide heating. This bit is set when the
	internal temperature drops below -40°C.
	Bit 9: APD Over Temperature, provide cooling. This bit is set when the
	internal temperature rises above +125°C.
	Bit 8 and 9: APD Temperature Sensor defect, contact support
10	contact support
11	contact support
12	contact support
13	contact support
14 -15	Reserved

6.2 Error register 2

This 16-bit register contains error flags from the processor of the scanner.

Bit	Comment
0	Internal communication error. The DSP did not receive any scan data from
	the FPGA. This error typically occurs if the sensor cannot measure correctly.
	If the error persists, contact support.
1	Internal communication error. The DSP could not communicate correctly with
	the FPGA via the control interface. If the error persists, contact support.
2	Internal communication error. The DSP did not receive valid scan data from
	the FPGA for more than 500 ms. This error may be caused by the current
	operating state (e.g. failure of the motor control due to heavy vibration), or by
	an internal defect. If the error persists, contact support.
3	contact support
4	Incorrect configuration data, load correct configuration values.
5	Configuration contains incorrect parameters, load correct configuration values
6	Data processing timeout, decrease scan resolution or scan frequency
7	contact support
8	Incoming CAN message lost. This is an overflow of the input buffer, and at
	least one incoming CAN message was lost. This error may indicate that the
	sensor is flooded with incoming messages. Reduce the number of messages.
9	reserved
10	Severe deviation (> 10%) from expected scan frequency. This may indicate
	motor trouble. If error persists, contact support.
	This bit is available in firmware v2.2.09 and 3.02 or newer.
11	Motor blocked. No rotation of the internal mirror was detected, and automatic
	restart has failed. This may indicate motor trouble. If error persists, contact
	support.
40.45	This bit is available in firmware v2.2.09 and 3.02 or newer.
12 - 15	reserved

6.3 Warning register 1

This 16-bit register contains warning flags from the FPGA of the scanner.

Bit	Comment
0 - 2	reserved
3	Warning of insufficient temperature ("Low temperature"). This bit is set when the internal temperature drops below -30°C.
4	Warning of exceeding temperature ("High temperature"). This bit is set when the internal temperature rises above +115°C.
5 - 6	reserved
7	 Check syncronisation- and scan frequency. This bit is set if the scanner detects an external sync-signal, but is unable to synchronize the motor to this signal. Possible causes are: 1) The sync signal is in the wrong frequency range (e.g. sensor is set to 12.5 Hz, but sync signal is 25 Hz) 2) The sync signal is unstable, e.g. has a high jitter
8 - 11	reserved
12	Startpulse of first Laser was not detected. This is an internal warning from the measurement system. If this warning persists, contact support.
13	Startpulse of second Laser was not detected. This is an internal warning from the measurement system. If this warning persists, contact support.
14-15	reserved

6.4 Warning register 2

This 16-bit register contains warning flags from the processor of the scanner.

Bit	Comment
0	CAN interface blocked. This is a general failure warning of the CAN interface.
	This warning occurs when data cannot be sent or received via CAN (e.g. because it is not connected), but is configured to be sent or received. A typical cause would be that vehicle motion data is requested (see parameter 0x1210, bit 0), but CAN is not connected.
1	Ethernet interface blocked, check Ethernet connection
2	reserved
3	contact support
4	Check Ethernet data
5	Incorrect or forbidden command received, check command
6	Memory access failure, restart LD-MRS, contact support
7 - 14	Internal warning states:

Bit	Comment
	Bit 7: Segement overflow
	Bit 8: EgoMotion
	Bit 9: MountingPosition
	Bit 10: calculated frequency
	Bit 11: no ntp time
	Bit 12: no time sync pps
	Bit 13: no time sync command
	Bit 14: no time sync
15	Slight deviation from expected scan frequency (510%). This may occur
	during operation due to vibration or sensor movement, but may also indicate
	motor trouble.
	This bit is available in Firmware v2.2.09 and 3.02 or newer.

7 Movement data

7.1 Vehicle Data - Data type 0x2805

When "ETH vehicle data" is requested in the Data Output Flags, the sensor will periodically send the output of its vehicle model in the Movement data message. As the message format is internal only, this message should be ignored by the users.

7.2 Ego Motion data: Data type 0x2850

This data can be sent to the sensor to inform it about the movement of the sensor (resp. the vehicle it is mounted onto). Supplying this information may enhance the quality of object tracking. Data update rate must be at least the scan frequency of the LD-MRS. Better is twice or more the sensors frequency. If the data is older than 240 ms it is treated as invalid and all values will be set to 0. The warning 0x0100 will be sent in the warning register 2.

Offset	Bytes	Name	datatype	Description
0	2	Version	UINT16	This protocol description refers to version 1.
2	2	Velocity	INT16	Velocity, in 0.01 m/s. Two's complement. Forward: positive values. If unknown, set to 0.
4	2	unused	n/a	unused, set to 0x0000.
6	2	Steering wheel angle	INT16	Steering wheel angle in 0.001 rad. Two's complement. To the left: positive values. If unknown, set to 0.
8	2	Yaw rate	INT16	Yaw rate in 0.0001 rad/s. Two's complement. To the left: positive values. If unknown, set to 0.

For an example of how to send this data, please refer to chapter 9.3.

8 LD-MRS SensorInfo structure - Data type 0x7100

This message contains additional information about the scanner and is related to a scan. If available, it will be automatically sent before the scan. Synchronisation with the scan can be done by comparing the scan numbers.

This LDMRS SensorInfo message is currently available in firmware version 2.2.09 and 3.02 (and newer) only.

Encoded in little endian format.

Version 1 has the following structure:

Offset	Bytes	Scan header:	Datatype	Description
0	2	Version	UINT16	Version of this sensor info structure (here: 1)
2	2	Related scan number	UINT16	The scan number of the scan that this info is referring to. This is the same scan number as in the scan data structure.
4	2	Error Register FPGA	UINT16	Error register 1
6	2	Error Register FPGA	UINT16	Error register 2
8	2	Warning Register FPGA	UINT16	Warning register 1
10	2	Warning Register DSP	UINT16	Warning register 2
12	2	Temperature in Celsius	INT16	Temperature at the APD. 0x7FFF is invalid.
14	2	APD-Voltage U _{apd}	UINT16	Total receiver voltage of the current scan, in [Volts]. $U_{apd} = U_{apd,temp} - U_{apd,reduction}$. If this value is 0xFFFF it is invalid.
16	2	APD-Voltage reduction	UINT16	Receiver voltage reduction, in [Volts]. "U _{apd, reduction} ". Was subtracted from original value Uapd,temp. 0xFFFF is invalid.
18	4	Rotation duration in microseconds	UINT32	Time from the last scan to the current scan, in [µs]. If this value is 0xFFFFFFF it is invalid.
22	4	Operating hours	UINT32	Total operating hours of this device. Unit is [hours]. If this value is 0xFFFFFFF it is invalid.
26	2	Info bitfield	UINT16	Bit0: Result of blindness detection (1=Scanner blind) Bit1: Noise reduction active (adaptive sensitivity reduction, see parameter 0x3600 for details)

Offset	Bytes	Scan header:	Datatype	Description
				Bit215: unused
28	2	Range estimation	UINT16	Estimated view range, in [percent] (0100). 0%: equal to blind 100%: full range of view. If the value is > 100, it is invalid.

9 Examples

9.1 Setting a parameter

This example shows how to set the IP address via Ethernet to 10.152.36.200.

Offset	Bytes	Message header Big endian byte order!	datatype	Content
0	4	Magic word	UINT32	0xAFFEC0C2
4	4	Size of previous	UINT32	Not mandatory. Set e.g. to 0:
		message		0x0000000
8	4	Size of this message	UINT32	0x000000XX
12	1	Reserved	UINT8	0x00
13	1	Device ID	UINT8	Not used. Set e.g. to 7: 0x07
14	2	Data type: LD-MRS command	UINT16	0x2010
16	8	NTP timestamp	UINT64	Not mandatory. Set e.g. to 0: 0x0000000000000000
Offset	Bytes	Message data Little endian byte order!	datatype	Content
24	2	Command ID: Set	UINT16	0x0010
		parameter		(send encoded as 0x1000)
26	2	Reserved	UINT16	0x0000
28	2	Parameter index: IP	UINT16	0x1000
		address		(send encoded as 0x0010)
30	4	Parameter data (here:	UINT32	0x0A9824C8
		10.152.36.200)		(send encoded as
34				0xC824980A)
1 .) /				

The data sent to the scanner is (all hex, total 34 bytes):

 AF
 FE
 CO
 C2
 00
 00
 00
 00
 00
 00
 00
 00
 20
 10
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00<

The sensor reply is (total 26 bytes):

 AF
 FE
 CO
 C2
 OO
 OO<

9.2 Setting an NTP timestamp

To set an NTP timestamp, two commands must be set. This is described in chapter 5.3.9 and 5.3.10.

In this example, we want to set the date to (approximately) January 1st, 2000, 0:00h. In seconds, this is the value 3155670000 (seconds since 1.1.1900, in HEX format: BC17B3F0).

First, the seconds are sent to the sensor (34 bytes in total):

The sensor reply is (total 26 Bytes):

AF FE CO C2 00 00 00 00 00 00 00 02 00 00 20 20 D6 CO 27 8F 19 56 AC 98 30 00

Next, the fractional seconds are sent to the sensor (34 bytes in total):

The sensor reply is (total 26 Bytes):

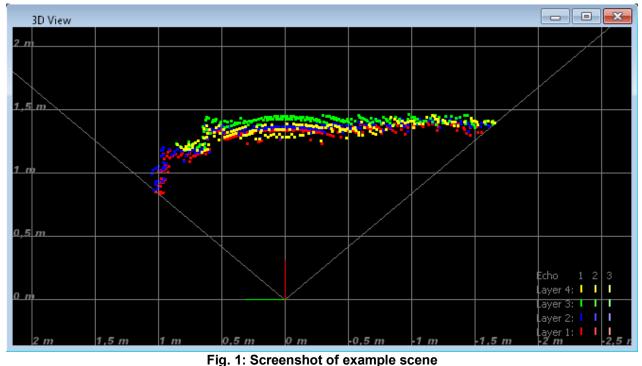
AF FE CO C2 00 00 00 00 00 00 00 02 00 00 20 20 BC 17 B3 F0 00 00 AB CC 31 00

9.3 Sending ego motion data

This example shows how to send ego motion data (0x2850) to the sensor via Ethernet.

Offset	Bytes	Message header Big endian byte order!	datatype	Content
0	4	Magic word	UINT32	0xAFFEC0C2
4	4	Size of previous message	UINT32	Not mandatory. Set e.g. to 0: 0x00000000
8	4	Size of this message	UINT32	0x000000XX
12	1	Reserved	UINT8	0x00
13	1	Device ID	UINT8	Not used. Set e.g. to 7: 0x07
14	2	Data type: LD-MRS ego motion	UINT16	0x2850
16	8	NTP timestamp	UINT64	Not mandatory. Set e.g. to 0: 0x0000000000000000

Offset	Bytes	Message data Little endian byte order!	Datatype	Content
24	2	Version	UINT16	0x0001 (send encoded as 0x0100)
26	2	Velocity (here: 10 m/s = 1000 [1/100 m/s])	INT16	0x03E8 (send encoded as 0xE803)
28	2	0x0000	n/a	0x0000
30	2	Steering wheel angle (here: 0)	INT16	0x0000
32	2	Yaw rate (here: -10 deg/s = -1745 [1/10000 rad/s])	INT16	0xF92F (send encoded as 0x2FF9)
34				


The data sent to the scanner is (all hex, total 34 bytes):

9.4 Scan data example

Scan data is encoded as described in chapter 3. The following shows an example of real scan data, provided as an example to test decoding of the data. Note that C++ example code is available for decoding the incoming data of the LD-MRS, including scan data.

9.4.1 Scan scene

The example scene from which the data below was extracted should decode to the image above (screenshot taken from LaserView window).

9.4.2 Scan data

The following data was extracted from a Wireshark trace. It is a Scan data message (0x2202) from the LD-MRS to the LaserView. The first 24 bytes are the message header, printed in **bold** letters.

Byte no.	Da	ita														
0000	af	fe	c 0	c2	00	00	00	00	00	00	1d	14	00	00	22	02
0010	00	00	00	a0	1e	b1	05	d0	a8	03	0b	03	00	00	38	сЗ
0020	се	17	a0	00	00	00	0c	ff	7c	1d	a0	00	00	00	00	2d
0030	40	06	сO	f9	e4	02	00	00	00	00	00	00	00	00	00	00
0040	00	00	02	00	00	50	40	06	7d	00	90	00	00	00	01	50
0050	40	06	7d	00	a8	00	00	00	00	44	30	06	7e	00	ac	00
0060	00	00	01	44	30	06	81	00	сO	00	00	00	00	50	20	06
0070	78	00	98	00	00	00	01	54	20	06	83	00	b8	00	00	00
0080	00	44	10	06	82	00	b8	00	00	00	01	44	10	06	85	00
0090	d0	00	00	00	00	54	00	06	83	00	b0	00	00	00	01	54
00a0	00	06	85	00	с0	00	00	00	00	40	fO	05	84	00	с0	00
00b0	00	00	01	44	fO	05	85	00	d0	00	00	00	00	54	e0	05
00c0	85	00	b8	00	00	00	01	54	e0	05	86	00	с8	00	00	00
00d0	00	40	d0	05	86	00	с8	00	00	00	01	44	d0	05	87	00

00e0	d8	00	00	00	00	54	с0	05	85	00	bc	00	00	00	01	54
0000 00f0	c0	05	88	00	d0	00	00	00	00	44	b0	05	82	00	C8	00
0100	00	00	01	44	b0	05	83	00	d8	00	00	00	00	54	a0	05
0110	87	00	c0	00	00	00	01	54	a0	05	8e	00	c8	00	00	00
0120	00	44	90	05	8e	00	c8	00	00	00	01	44	90	05	8f	00
0130	d8	00	00	00	00	54	80	05	87	00	c0	00	00	00	01	50
0140	80	05	8e	00	c8	00	00	00	00	40	70	05	8e	00	c8	00
0150	00	00	01	44	70	05	8f	00	d8	00	00	00	00	54	60	05
0160	8f	00	c0	00	00	00	01	54	60	05	92	00	c8	00	00	00
0170	00	44	50	05	8e	00	c8	00	00	00	01	44	50	05	8f	00
0180	d8	00	00	00	00	54	40	05	8d	00	b8	00	00	00	01	54
0190	40	05	8e	00	с8	00	00	00	00	44	30	05	8c	00	c4	00
01a0	00	00	01	44	30	05	8f	00	d8	00	00	00	00	54	20	05
01b0	87	00	с0	00	00	00	01	54	20	05	8e	00	с8	00	00	00
01c0	00	44	10	05	8c	00	c0	00	00	00	01	44	10	05	8d	00
01d0	d4	00	00	00	00	54	00	05	8d	00	b8	00	00	00	01	54
01e0	00	05	8e	00	с8	00	00	00	00	44	fO	04	8c	00	c4	00
01f0	00	00	01	44	fO	04	8f	00	d8	00	00	00	00	54	e0	04
0200	93	00	b0	00	00	00	01	50	e0	04	95	00	c4	00	00	00
0210	00	44	d0	04	96	00	с8	00	00	00	01	44	d0	04	95	00
0220	d0	00	00	00	00	54	с0	04	97	00	с0	00	00	00	01	54
0230	с0	04	96	00	с8	00	00	00	00	44	b0	04	98	00	d0	00
0240	00	00	01	44	b0	04	97	00	dc	00	00	00	00	54	a0	04
0250	97	00	сО	00	00	00	01	54	a0	04	96	00	СС	00	00	00
0260	00	44	90	04	94	00	d0	00	00	00	01	44	90	04	97	00
0270	dc	00	00	00	00	54	80	04	97	00	с0	00	00	00	01	54
0280	80	04	96	00	с8	00	00	00	00	44	70	04	90	00	d0	00
0290	00	00	01	44	70	04	91	00	e0	00	00	00	00	54	60	04
02a0	91	00	bc	00	00	00	01	54	60	04	96	00	с8	00	00	00
02b0	02	54	58	04	98	00	50	00	00	00	03	54	58	04	93	00
02c0	7c	00	00	00	00	44	50	04	90	00	d0	00	00	00	01	44
02d0	50	04	8f	00	dc	00	00	00	02	44	48	04	96	00	80	00
02e0	00	00	03	44	48	04	91	00	94	00	00	00	00	54	40	04
02f0	8f	00	c0	00	00	00	01	54	40	04	92	00	c8	00	00	00
0300	02	50	38	04	93	00	70	00	00	00	03	54	38	04	92	00
0310	84	00	00	00	00	44	30	04	90	00	d0	00	00	00	01	44
0320 0330	30 00	04	8f 03	00 40	d8 28	00	00	00	02 a0	40 00	28 00	04	92 00	00 50	8c 20	00
0330	00 8f	00 00	03 C0	40	20 00	04 00	97 01	00 50	а0 20	00	92	00 00		00	20	04 00
0340	02	50	18	00	93	00	01 7c	00	20	04	92	50	сс 18	00	91	00
0350	02 98	00	00	04	93	44	10	00	90	00	d0	00	00	04	91 01	44
0300	10	04	00 8f	00	d8	00	00	00	02	40	08	00	00 8f	00	9c	00
0380	00	00	03	44	08	00	90	00	ac	00	00	00	00	54	00	04
0390	87	00	c4	00	00	00	01	54	00	04	8e	00	CC	00	00	00
0330 03a0	02	54	f8	03	93	00	7c	00	00	00	03	54	f8	03	91	00
03b0	98	00	00	00	00	40	f0	03	8a	00	CC	00	00	00	01	44
03c0	f0	03	8b	00	dc	00	00	00	02	44	e8	03	94	00	a0	00
03d0	00	00	03	44	e8	03	93	00	b0	00	00	00	00	54	e0	03
03e0	87	00	с0	00	00	00	01	54	e0	03	8c	00	d0	00	00	00
03£0	02	54	d8	03	92	00	80	00	00	00	03	54	d8	03	8e	00
0400	a0	00	00	00	00	44	d0	03	88	00	d0	00	00	00	01	44

0410 0420 0430 0440 0450 0460 0470 0480 0490 0440 04c0 04c0 04c0 04c0 04c0 04c0 0510 0520 0510 0520 0530 0540 0550 0560 0570 0580	$\begin{array}{c} d0\\ 00\\ 87\\ 02\\ a0\\ 00\\ 87\\ 02\\ a0\\ 00\\ 87\\ 02\\ a0\\ 00\\ 87\\ 00\\ 87\\ 00\\ 87\\ 00\\ 87\\ 00\\ 87\\ 00\\ 85\\ 02\\ 00\\ 85\\ 02\\ 02\\ 00\\ 85\\ 02\\ 02\\ 02\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00$	03 00 54 00 54 00 54 00 03 00 54 00 03 00 54 00 03 00 54	87 03 c0 b8 00 87 03 c0 98 00 83 03 c0 78 00 87 03 c0 58 00 87 03 b8 38	00 44 00 03 00 44 00 03 00 44 00 03 00 44 00 03 00 44 00 03 00 00 44 00 03	dc c8 00 8f 00 dc 8f 00 dc 88 00 dc 88 00 dc 88 00 dc 80 80 dc 80 80 dc 80 80 80 80 80 80 80 80 80 80	00 03 00 44 00 03 00 44 00 03 00 03 00 04 40 00 03 00 00 44 00 03 00 00 00	00 8f 01 88 00 8f 01 88 00 8f 01 90 8f 00 8f 00 8f 00 8f 00 8f 00 8f 00 8f 00 8f 00 8f 00 8f 00 87 00 86 00 87 00 80 00 80 00 80 000 80 000 80 000 80 000 80 000 80 000 80 000 80 000000	00 00 54 00 03 00 54 00 03 00 03 00 03 00 03 00 54 00 03 00 54 00 03 00 54 00 00 54 00 00 54 00 00 54 00 00 00 54 00 00 00 00 00 00 00 00 00 0	02 b0 00 88 02 b4 a0 00 82 02 b0 80 00 88 02 b0 60 00 86 02 b4 40 00	44 00 03 00 44 00 03 00 44 00 00 44 00 00 44 00 00 44 00 00	 c8 00 8c 03 d0 88 03 cc 88 00 88 03 d0 68 03 cc 48 00 88 03 	$\begin{array}{c} 0.3\\ 0.0\\ 5.4\\ 0.0\\ 0.3\\ 0.0\\ 5.4\\ 0.0\\ 0.3\\ 0.0\\ 0.3\\ 0.0\\ 0.3\\ 0.0\\ 0.3\\ 0.0\\ 0.3\\ 0.0\\ 0.3\\ 0.0\\ 0.3\\ 0.0\\ 5.4\\ 0.0\\ 0.3\\ 0.0\\ 5.4\\ 0.0\\ 0.3\\ 0.0\\ 5.4\\ 0.0\\ 0.3\\ 0.0\\ 5.4\\ 0.0\\ 0.0\\ 5.4\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	8f 00 d0 94 00 98 00 90 00 00 00 00 00 00 00 8c 00 00 58 00 8c 00 38	00 54 00 03 00 54 00 03 00 54 00 03 00 54 00 03 00 50 00 00 50 00	9c 00 8e 01 a0 8e 01 a0 8e 01 a4 60 8a 01 a4 60 08a 01 a4 60 8a 01 8b	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
0570	85	00	b8	00	00	00	01	54	40	03	88	00	d0	00	00	00	
0580 0590 05a0 05b0	02 a8 30 00	54 00 03 00	38 00 8b 03	03 00 00 44	8b 00 d8	00 44 00	90 30 00	00 03 00	00 8c 02	00 00 44	03 c4 28	54 00 03	38 00 8c	03 00 00	8b 01 a4	00 40 00	

10 SOPAS interface

The LD-MRS running field evaluation have a SOPAS interface. This interface is similar to the SOPAS interface of other SICK laserscanners, but supports only a subset of the instructions.

IP port: 2111

Protocol: CoLa-B (binary format, fixed)

For a general description of the CoLa-B interface, its data frame format and the coding of the datatypes, please refer to the appropriate CoLa documentation. Please note that all SOPAS communication takes place with "big endian" byte order.

An example project (C++) that covers both the Port 12002 and the SOPAS interface of the LD-MRS is available.

10.1 Access to functions and data

Generally, possible actions fall into the categories of functions (called "methods" in SOPAS) and data (called "variables" in SOPAS). Examples of methods are Login/Logout, StartMeasure, Reset etc. Examples for variables are scanner setup (frequency, angles, ...), field configuration, eval cases and so on.

In order to call a method, an "invoke method" command, with appropriate parameters, is sent to the sensor.

In order to either read or write data, a "read variable" or "write variable" command, with appropriate parameters, is sent to the sensor.

SOPAS supports access control to avoid accidental writing of settings. In order to write variables, the access level must be raised to an appropriate level. In case of the variables described here, this is the "Authorised client" level. In the following, this is referred to as "Login". After the writing, the access level should be set back to normal ("Logout").

10.2 Reading the basic scanner configuration

The basic parameters of the scanner can be obtained by reading the SOPAS variable LMPscanconfig.

Offset Bytes Name Datatype Description 1 ScanFrequency UINT8 Scan frequency: 0 0 = 12.5 Hz, 1 = 25 Hz, 2 = 50 Hz 1 2 Length UINT16 Length of the following data. Following bytes are valid only if length > 0. 2 AngleResolution INT16 3 Coded in 1/32 degrees. 5 2 StartAngle INT16 Coded in 1/32 degrees. EndAngle 7 2 INT16 Coded in 1/32 degrees.

The returned ScanConfig structure for this variable is:

Example:

Read Command:

02020202 0000000 73524e 20 4c4d507363616e636667 63 s R N L M P s c a n c f g Answer: 02020202 00000018 735241 20 4c4d507363616e636667 20 00 0001 0008

f880 0640 7b

SRA LMPScancfg

0 => 12.5 Hz 1 => length -1920 => start angle = -60°

1600 => end angle = 50°

10.3 Reading or writing the fields

Each of the 16 possible fields can be read or written with its own SOPAS variable field000 to index_var_field015. The length and sequence of this data structure is not fixed, but depends on the internal variables.

In order to find out how many fields are configured, all 16 fields have to be read and evaluated. It is not possible to read the number of valid fields from the sensor directly.

In order to clear a field in the sensor, set both the FieldSegmented and FieldRectangular parameters to 0 and write the field.

Offset	Bytes	Name	Datatype	Description
0	4	DistScaleFactor	float	Scale factor, in [mm per step].
4	4	DistScaleOffset	float	Common offset for all distances, in [mm].
8	4	AngleScaleFactor	UINT32	[1/32 deg].
12	4	AngleScaleOffset	UINT32	[1/32 deg].
16	1	FieldTypeIntern	UINT8	Type of this field. 0 = Radial (not supported), 1 = Rectangle, 2 = Segmented, 3 = Dynamic (not supported)
17	1	FieldNumber	UINT8	Number of this field (1x).
18	2	FieldSegmented	UINT16	If this marker is 1, a "Segmented Field" structure follows now.
<< A Se	gmente	d Field structure f	ollows here, if t	the above parameter is "1" >>
x	2	FieldRectangular	UINT16	If this marker is 1, a "Rectangular Field" structure follows now.
<< A Re	ectangula		follows here, if	the above parameter is "1" >>
x	2	FieldRadial	UINT16	Must be 0 as the MRS does not support radial fields.
x+2	2	FieldDynamic	UINT16	Must be 0 as the MRS does not support dynamic fields.
x+4	2	VersionNumber	UINT16	Version number of this field.
x+6	2	FieldNameLength	UINT16	Length of the following string, in [bytes].
x+8	FieldN ameLe ngth	FieldName	String	Name of this field. Maximum length is 32 chars.
У	2	CommentLength	UINT16	Length of the following string, in [bytes].
y+2	Comm entLen gth	Comment	String	Comment to this field, as a string. Maximum length is 128 chars.
Z	1	EnableLayerFilter	Bool	Flag if layer filter is enabled. Only internal use.

Offset	Bytes	Name	Datatype	Description
z+1	2	LayerBitField	UINT16	Included layers in this field. Bit 0 = layer 1, bit 1 = layer 2, bit 2 = layer 3 and bit 3 = layer 4. Only for internal use.

10.3.1 Segmented fields

Segmented fields are essentially polygons in which the evaluation takes place. Each of the points of a segmented field structure define an angle (scan beam angle) and a start and end distance (start and end of the evaluation, in between is the field). Either of the start and end angles can also be invalid, so that only a start- or end-distance is defined.

10.3.1.1 Data structures

Segmented Field structure:

Offset	Bytes	Name	Datatype	Description
S	2	arrayLength	UINT16	Number of following points
				(Segmented field point structures).

Segmented field point structure:

		Nomo	Detetype	Description
Offset	Bytes	Name	Datatype	Description
р	2	AngleIndex_u	UINT16	Angle of the point, in [1/32°]
p+2	2	StartDist_u	UINT16	StartDist, in [mm].
				0xFFFF is invalid.
				For decoding see below.
p+4	2	EndDist_u	UINT16	EndDist, in [mm].
				0xFFFF is invalid.
				For decoding see below.

10.3.1.2 Decoding the data

To decode the received field points into a polygon, use the following algorithm:

• For each point:

- o If StartDist_u is valid: StartDist_m = (StartDist_u / 1000.0) * DistScaleFactor + DistScaleOffset / 1000.0
- o If EndDist_u is valid: EndDist_m = (EndDist_u / 1000.0) * DistScaleFactor + DistScaleOffset / 1000.0

StartDist_m and EndDist_m are now available in [m], but only if they are valid. The angle is available in [°].

To convert points from polar coordinates (dist / angle) to cartesian coordinates (x / y), use the standard transform x = dist * cos(angle), y = dist * sin(angle). Now build a polygon by adding the points clockwise, starting with the first valid endpoint and adding all other valid endpoints. If there are no valid endpoints, add at least a point in the origin (0.0, 0.0). Then, add the valid starting points the other way round, starting with the last point, and add all other valid starting points up to the first startpoint. All field points have the coordinate unit [m].

10.3.2 Rectangular fields

Rectangular fields are rectangular areas in which the evaluation takes place. Rectangular fields are defined by a reference point, a width, a length and a rotation angle (around the reference point).

Offset	Bytes	Name	Datatype	Description
r	4	RefPointAngle	INT32	Angle of the reference point, in [1/32°]. Valid values are -1600 1920.
r+4	2	RefPointDist	UINT16	Distance of reference point to the origin.
r+6	4	RotAngle	INT32	Rotation angle of the rectangle, in [1/32°]. Valid values are -5759 5760.
r+10	4	Length	UINT32	Length of the rectangle (x-direction), in [mm]
r+14	4	Width	UINT32	Width of the rectangle (y-direction), in [mm]

10.3.2.1 Data structures

10.3.2.2 Decoding the data

```
To convert the RefPointAngle to degrees, divide by 32:

RefPointAngle_deg = RefPointAngle / 32.0

To convert the RefPointDist to meters:

RefPointDist_m = (RefPointDist * DistScaleFactor +

DistScaleOffset) / 1000.0

To convert the RotAngle to degrees, divide by 32:

RotAngle_deg = RotAngle / 32.0

To convert the Length and Width to m, divide by 1000:

Length_m = Length / 1000.0

Width_m = Width / 1000.0
```

Then, build a clockwise polygon of the edge points.

10.3.3 Example

To read the field #0, send the command (total length 21 bytes):

02020202 0000000c 73524e 20 6669656c64303030 1d s R N field000

The MRS reply depends on the field configuration. Here is a valid example (length= 112 bytes):

02020202 0000067 735241 20 6669656c64303030 20 41200000000000000000008ffff88002010001000800a1005600a100b90056f fff00c5ffff00aa0106ffff00ab0158ffff00ca0183ffff00e9018b006bffff01 940056007f0000000000000000000064649454c443100000000 82

10.4 Reading or writing the EvalCases

All configured eval cases can be obtained by reading the SOPAS variable LFEpec. This variable contains a list of the up to 16 eval cases.

Offset	Bytes	Name	Datatype	Description
0	2	Number of Eval Cases	UINT16	Number of following eval cases (016).
2	х	EvalCase(s)		

10.4.1 EvalCase structure

Each of the eval cases consists of this structure.

Offset	Bytes	Name	Datatype	Description
0	2	Version Number	UINT16	Version of this structure. In case of the MRS, it is 1.
2	1	Case Number	UINT8	Number of this EvalCase (116). Must not be 0.
3	1	Evaluation strategy	UINT8	Evaluation strategy: 0 = BLANKING, 1 = PIXEL, 2 = CONTOUR, 3 = IO_MAPPING, 4 = FOCALPOSITION
4	1	Result negation	Bool	Negation of the eval result (0=off, 1=on)
5	4	Response Time	UINT32	Response time to an event, in [ms]
9	4	Response Time Extended	UINT32	Response time in case of a detected "Manipulation prevention" incident, in [ms].
13	1	Output number	UINT8	The assigned digital output (via external CAN module).
14	1	Logical inputs	UINT8	The assigned logical inputs. Bits 0 and 1 are for input 1, Bits 2 and 3 for input 2: 0 = Inactive, 1 = Low-active,

Offset	Bytes	Name	Datatype	Description
				2 = High-active, 3 = invalid
15	1	Hardware inputs	UINT8	The assigned hardware inputs. As the MRS does not have hardware inputs, this value is 0.
16	1	Dist Dependent	Bool	If "true", field evaluation works distance dependent.
17	2	Max Radial Corridor	UINT16	Max radial corridor, in [mm]. Only active if distance dependency is active
19	1	Manipulation prevention	Bool	If true, "Manipulation prevention" is enabled.
20	2	Blanking Size	UINT16	This is the minimum object size, in [mm], if strategies "Blanking" or "Contour" are selected.
22	2	Min Field Exp	UINT16	Minimum radial distance between field start and end point, in [mm]. Only used when strategy "Contour" is selected.
24	1	Field number	UINT8	Number of the assigned field.
25	1	Filter type	UINT8	Associated filter. For the MRS, this value is always 0.
26	2	EvalCase Name Length	UINT16	Length of the following string, in [bytes].
28	EvalC aseNa meLen gth	EvalCase Name	String	Name of this field. Maximum length is 32 chars.
x	2	CommentLength	UINT16	Length of the following string, in [bytes].
x+2	Comm entLen gth	Comment	String	Comment to this EvalCase. Maximum length is 128 chars.

10.4.2 Example

To write the EvalCases, log in and then write the variable. Here is a valid example in which 1 eval case is written (totel length 90 bytes):

02020202 00000051 73574e 20 4c4645706563 20 0002000101000000001f4000001f4010000007d000006400000100000445564 331000000010200000001f4000001f4020000007d00000c80000020000445 5643320000 fd

sWN LFEpec

The response from the MRS (success) is (length 20 bytes):

sWA LFEpec

In case of an error, the MRS would respond with a "FA" message.

10.5 Reading eval case results

The status of the field evaluation cases (short: eval cases) can be obtained by reading the SOPAS variable LFErec.

In addition, it is possible to receive this variable whenever status of an eval case changes. To do this, the application must subscribe to the variable by registering to the event with the variable index.

If the application no longer requires the events, it can unsubscribe from the variable.

The returned evalCaseResult structure for the variable is:

Offset	Bytes	Name	Datatype	Description
0	2	NumCases	UINT16	Number of following eval cases
2		EvalCaseResult 1x		The eval cases

Offset	Bytes	Name	Datatype	Description
0	2	versionNo	UINT16	Version number
2	1	Number	UINT8	Number of this eval case
3	4	SysCount	UINT32	(ignore)
7	4	DistScaleFactor	float	(ignore)
11	4	DistScaleOffset	float	(ignore)
15	4	AngleScaleFact or	UINT32	(ignore)
19	4	AngleScaleOffs et	INT32	(ignore)
23	1	CaseResult	UINT8	The current status of the eval case: 1 = Don't care, 2, 3 = Low (not triggered) 4 = Detecting (not yet triggered) 5 = invalid, 6, 7 = High (triggered) all else: invalid.
24	2	FieldInfringeme ntLength	UINT16	Length of the following string (0x chars)
26x	FieldIn fringe mentL ength	FieldInfringeme ntString	string	Text
x	2	CaseNameLeng th	UINT16	Length of the following string (0x chars)
X	CaseN ameLe ngth	CaseName	string	Name of the EvalCase. Can be 032 chars.

Eval Case Result:

Х	2	CommentString Length	UINT16	Length of the following string (0x chars)
x	Comm entStri ngLen gth	CommentString	string	Text
х	2	NumTimeBlocks	UINT16	Number of following time blocks (see below)
x	11* NumT imeBl ocks	TimeBlock 1n	TimeBlock (see below)	

Time Block:

Offset	Bytes	Name	Datatype	Description
0	2	Year	UINT16	Year
2	1	Month	UINT8	Month, 112
3	1	Day	UINT8	Day, 131
4	1	Hour	UINT8	Hour, 023
5	1	Minute	UINT8	Minute, 059
6	1	Second	UINT8	Second, 059
7	4	Microsecond	UINT32	Microsecond, 0999999

Example:

Read command:

02020202 0000000a 73524e 20 4c4645726563 74 s R N L F E r e c

Answer:

s R A L F E r e c

•••

Get notified by event:

02020202 000000c 73454e 20 4c4645726563 20 01 42 s E N L F E r e c 1

Answer to event registration:

02020202 0000000c 734541 20 4c4645726563 20 01 4d s E A L F E r e c 1

Event telegram (will be sent on each scan):

s S N L F E r e c

10.6 Login

...

To allow variable writes, a login must be performed. Typically, the level needs to be at least "Authorized client". For the login, the method <code>SetAccessMode</code> (index 0x0000) has to be invoked.

Parameters for method SetAccessMode:

Offset	Bytes	Name	Datatype	Description
0	1	Level	UINT8	Desired access level. For "Authorized client", this is 3.
1	4	Password hash	UINT32	Password hash value. For AuthorizedClient, this is 0xF4724744

10.6.1 Sensor answer to Login

The sensor answers with an "AI", the index (0x0000) and a boolean flag (1 byte). If this flag is 0 = false, the method was not successful, otherwise it was successful.

10.6.2 Example

Login command, sent to MRS (all in hex format, total length 19 bytes): 02 02 02 02 00 00 00 0A 73 4D 49 00 00 03 F4 72 47 44 F1

Response of the MRS (length 15 bytes): 02 02 02 02 00 00 00 06 73 41 49 00 00 01 7A

10.7 Logout

Logout leaves the access level. The command sequence is identical to the Login procedure, but the access level is 1, and any password hash value can be used.

10.8 Scan data

The SOPAS interface also offers access to the scan data of the sensor. This is intended to display a scan data reference while configuring fields.

For applications that are only using the scan data, it is recommended to use the native MRS interface described in chapter 3.

Scan data can be requested by registering to the event ScanDataMonitor (index 0x0011). The sensor then sends an event answer with new scans whenever they are available.

Offset	Bytes	Name	Datatype	Description
0	2	Version Number	UINT16	This description covers the version
				number 1.
2	2	Logical Number	UINT16	Unused. The MRS does not provide this
				data.
4	4	Serial Number	UINT32	Unused. The MRS does not provide this
				data.
8	2	Status Bits	UINT16	Unused. The MRS does not provide this
				data.
10	2	TelegramCount	UINT16	Rolling counter for data telegrams.
12	2	Scan Count	UINT16	Rolling counter for the scan number. Is
				increased by 1 with every scan taken by
				the sensor.
14	4	SystemTimeScan	UINT32	Time of the scan capture, in [us], since
				power-on of the sensor.
18	4	SystemTimeTrans	UINT32	Time of the scan transmission, in [us],
		mit		since power-on of the sensor.
22	2	InputState	UINT16	Unused. The MRS does not provide this
				data.
24	2	OutputState	UINT16	Unused. The MRS does not provide this
				data.
26	2	(reserved)	UINT16	Unused.
28	4	ScanFrequency	UINT32	Scan frequency, in [1/256 Hz].
32	4	MeasurementFre	UINT32	Unused. The MRS does not provide this
		quency		data.
36	2	NumOfEncoders	UINT16	Always 0. The MRS has no encoder
				inputs.
38	2	NumOf16BitData	UINT16	Number of 16-bit data arrays. Always 12
		Channels		(4 layers x 3 echos).

The rest of the message can be ignored as the MRS does not provide any more information.

10.8.1 DataChannel structure

The MRS has 4 scan layers, and in each layer, each measurement can provide up to 3 range results ("echos"). Therefore, the scan data is transmitted in 12 DataChannel structures, each covering 1 echo in 1 layer.

Offset	Bytes	Name	Datatype	Description
0	6	ContentType	string	A string which describes the following contents:

Offset	Bytes	Name	Datatype	Description
				DISTA1 = Layer 1, Echo 1
				DISTB1 = Layer 2, Echo 1
				DISTC1 = Layer 3, Echo 1
				DISTD1 = Layer 4, Echo 1
				 DISTD3 = Layer 4, Echo 3.
6	4	ScaleFactor	float	Factor by which the following range
				values can be brought to [mm] scale.
				Here: 10.
10	4	ScaleOffset	float	Offset for all range values. Here: 0.
14	4	StartAngle	INT32	Start angle of the following range data, in
				[1/10000 deg].
18	2	AngularResolutio	UINT16	Angular resolution between the range
		n		values, in [1/10000 deg].
20	2	NumOfRangeDat	UINT16	Number of following range values.
		а		-
		RangeValue	UINT16	

At the end of this structure there are 0..x range values (as defined by NumOfRangeData). Each value is a UINT16 value. For each value, the distance [m] is:

```
dist = (RangeValue * scaleFactor) / 1000.0
```

and the horizontal angle (in [deg] is:

```
hAngle = ((startAngle + d * angularResolution) / 10000.0)
```

with d = number of this range value (0 .. (NumOfRangeData-1)).

Australia Phone +61 (3) 9457 0600 1800 33 48 02 - tollfree E-Mail sales@sick.com.au

Austria Phone +43 (0) 2236 62288-0

E-Mail office@sick.at Belgium/Luxembourg

Phone +32 (0) 2 466 55 66 E-Mail info@sick.be Brazil

Phone +55 11 3215-4900 E-Mail comercial@sick.com.br

Canada Phone +1 905.771.1444 E-Mail cs.canada@sick.com

Czech Republic Phone +420 234 719 500 E-Mail sick@sick.cz

Chile Phone +56 (2) 2274 7430 E-Mail chile@sick.com

China Phone +86 20 2882 3600 E-Mail info.china@sick.net.cn

Denmark Phone +45 45 82 64 00 E-Mail sick@sick.dk

Finland Phone +358-9-25 15 800 E-Mail sick@sick.fi

France Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Germany Phone +49 (0) 2 11 53 010 E-Mail info@sick.de

Greece Phone +30 210 6825100 E-Mail office@sick.com.gr

Hong Kong Phone +852 2153 6300 E-Mail ghk@sick.com.hk

Detailed addresses and further locations at www.sick.com

Hungary Phone +36 1 371 2680 E-Mail ertekesites@sick.hu India Phone +91-22-6119 8900 E-Mail info@sick-india.com

Israel Phone +972 97110 11 E-Mail info@sick-sensors.com Italv

Phone +39 02 27 43 41 E-Mail info@sick.it

Japan Phone +81 3 5309 2112 E-Mail support@sick.jp

Malaysia Phone +603-8080 7425 E-Mail enquiry.my@sick.com

Mexico Phone +52 (472) 748 9451 E-Mail mexico@sick.com

Netherlands Phone +31 (0) 30 229 25 44 E-Mail info@sick.nl

New Zealand Phone +64 9 415 0459 0800 222 278 - tollfree E-Mail sales@sick.co.nz

Norway Phone +47 67 81 50 00 E-Mail sick@sick.no

Poland Phone +48 22 539 41 00 E-Mail info@sick.pl

Romania Phone +40 356-17 11 20 E-Mail office@sick.ro

Russia Phone +7 495 283 09 90 E-Mail info@sick.ru

Singapore Phone +65 6744 3732 E-Mail sales.gsg@sick.com Slovakia Phone +421 482 901 201 E-Mail mail@sick-sk.sk

Slovenia Phone +386 591 78849 E-Mail office@sick.si

South Africa Phone +27 10 060 0550 E-Mail info@sickautomation.co.za

South Korea Phone +82 2 786 6321/4 E-Mail infokorea@sick.com

Spain Phone +34 93 480 31 00 E-Mail info@sick.es

Sweden Phone +46 10 110 10 00 E-Mail info@sick.se

Switzerland Phone +41 41 619 29 39 E-Mail contact@sick.ch

Taiwan Phone +886-2-2375-6288 E-Mail sales@sick.com.tw

Thailand Phone +66 2 645 0009 E-Mail marcom.th@sick.com

Turkey Phone +90 (216) 528 50 00 E-Mail info@sick.com.tr

United Arab Emirates Phone +971 (0) 4 88 65 878 E-Mail contact@sick.ae

United Kingdom Phone +44 (0)17278 31121 E-Mail info@sick.co.uk

USA Phone +1 800.325.7425 E-Mail info@sick.com

Vietnam Phone +65 6744 3732 E-Mail sales.gsg@sick.com

SICK Sensor Intelligence.