ONLINEHELP

Speed Monitor MOC3SA

Motion Control

This work is subject to copyright. SICK AG reserves the associated rights. Duplication of this work, in whole or in part, is only permitted subject to the limits of the statuatory provisions of the Copyright Act. Modification or expurgation of this work is prohibited without the express written permission of SICK AG.

Content

1	Abou	t the Spee	d Monitor MOC3SA	4		
	1.1	Product	Features	4		
		1.1.1	Features	4		
		1.1.2	Your benefits	4		
	1.2	Applicat	tion Examples	5		
		1.2.1	Guard unlocking with standstill detection:	5		
			SSM – Safe Speed Monitor	5		
		1.2.2	Maintenance mode with reduced speed:	6		
			SLS – Safely-Limited-Speed	6		
		1.2.3	Shut down in case of a malfunction:	7		
			STO – Safe Torque Off	7		
	1.3	Operatio	on Principle	8		
	1.4	Maximu	m Safety Figures	8		
2	Confi	guration		q		
-	2.1	Selectio	on of Suitable Operating Mode			
		2.1.1	List of operating modes			
		2.1.2	Operating mode A-2			
		2.1.3	Operating mode B-1			
		2.1.4	Operating mode B-2			
		2.1.5	Operating mode C-2			
	2.2	Selectio	on of Suitable RESET Mode			
		2.2.1	Automatic RESET			
		2.2.2	Manual RESET	14		
	2.3	Configu	ration Process	15		
		2.3.1	Step 1: Disconnection of power supply	15		
		2.3.2	Step 2: Configuration of speed limit	15		
		2.3.3	Step 3: Connect A1 to 24 V and A2 to 0 V	15		
		2.3.4	Step 4: Connect signals at S1, S2 and I1 to I4	16		
		2.3.5	Step 5: Connect I5/leave I5 open	16		
		2.3.6	Step 6: Teach the system configuration	16		
3	Error	Indication	and Diagnostics			
4	0	ite fer Ann	liestion Examples	10		
4		Guard I	Inlecting with Standstill Detection	1 0۔ 10		
	4.1 4.2	Mainter	hildeking with Standstill Detection	10 10		
_						
5	Techr	nical speci Data Sh	ITICATIONS	20		
	5.1	Data Sileel				
~	J.Z					
6	Order	ing inform	nation	25		
	6.1	Ordering	g Information for the Speed Monitor MOC3SA	25		
	0.2	ACCESSO	ones for the Speed Monitor MUU3SA	25		

1 About the Speed Monitor MOC3SA

The Speed Monitor MOC3SA is a device for safe monitoring of drive speed. It allows safe access to machine and plant parts and safe maintenance mode of machines and plants by comparing the current speed at the drive with an adjustable speed limit.

1.1 Product Features

1.1.1 Features

- Standstill and speed monitoring
- 4 safe semiconductor outputs
- PL e (En ISO 13849), SIL3 (IEC 61508), SILCL3 (EN 62061)
- Maximal input frequency 2 kHz
- Adjustable monitoring limit/ monitoring frequency fom 0.5 to 99 Hz or 0.1 to 9.9 Hz
- 2 application diagnostic outputs for failure and status display
- Diagnostic LEDs

1.1.2 Your benefits

- Easy commissioning using only a screwdriver
- Tool support using the Flexi Soft Designer and Flexi Classic Configurator
- Use of standard sensors (inductive, capacitive and optical sensors, HTL encoders)
- Multiple axes can be cascaded
- Fast realization of connections and change of wiring due to removable terminals
- Can be used with safety controllers (e.g. Flexi Soft) and safety relays (e.g. UE43-2MF) from SICK

1.2 Application Examples

1.2.1 Guard unlocking with standstill detection:

SSM – Safe Speed Monitor

The operator switches the saw off.

The Speed Monitor MOC3SA allows the operator to open the safety gate when standstill is detected.

SSM releases a safe signal when the speed limit is exceeded or undercut (standstill detected).

About the Speed Monitor MOC3SA

Onlinehelp Speed Monitor MOC3SA

1.2.2 Maintenance mode with reduced speed:

SLS - Safely-Limited-Speed

Maintenance mode is switched on.

The saw can continue working with reduced speed while the operator is allowed in the hazardous area. The Speed Monitor MOC3SA monitors the speed (SLS – Safely Limited Speed)

The **SLS** function monitors the speed of the drive. If the speed exceeds the configured speed limit, the drive will be stopped by the drive monitoring device, e.g. via STO.

About the Speed Monitor MOC3SA

Speed Monitor MOC3SA

- **1.2.3** Shut down in case of a malfunction:
 - STO Safe Torque Off

An error occurs in maintenance mode and the drive accelerates above the speed limit (SLS).

When the speed limit (SLS) is exceeded, the Speed Monitor MOC3SA turns the energy supply off by activating Safe Torque Off (STO). The operator is safe.

The **STO** function disconnects the energy supply to the drive. Therefore the drive will not be able to start in case of a malfunction. STO can be activated by the Speed Monitor, but it has to be implemented in the drive itself.

1.3 Operation Principle

Q1 and Q2 are HIGH, when the speed is below the configured limit. Q3 and Q4 are the inverse of Q1 and Q2.

1.4 Maximum Safety Figures

© SICK AG • Industrial Safety Systems • Germany • All rights reserved

2

Configuration

2.1 Selection of Suitable Operating Mode

The Speed Monitor MOC3SA has nine different operating modes. The operating mode should be selected depending on the desired safety level and the desired selection of sensors.

2.1.1 List of operating modes

Opera- ting mode	Sensor signals	11	12	13	14	51	52	Cable break detec- tion	Stuck- at-high detec- tion	Cross- circuit detec- tion	Maximum safety level the application can achieve
A-1		A	В	Ā	B	0	0	yes	yes	yes	SIL3 PL e Cat 4
A-2		A	В	Ā	B	0	0	yes	yes	yes	SIL3 PL e Cat 4
B-1		A	Ā	0	0	0	1	yes	yes.	yes	SIL1 PL c Cat 1
B-2	или <u>1997</u> А с о 3 <u>1997</u> А с о 3 <u>1997</u> В п. тр = 5 : 2	A	В	0	1	0	1	yes	yes	no	SIL2 PL d Cat 3
B-3		A	0	1	0	0	1	no	no	по	SIL1 PL c Cat 1
C-1		A	PLC	Ā	0	1	0	yes	yes + process error	yes	SIL2 PL d Cat 3
C-2		A	PLC	0	0	1	1	Process error	Process error	no	SIL2 PL d Cat 3
D-1		A	SW	Ā	1	1	0	yes	yes + process error	yes	SIL2 PL c Cat 2
D-2		A	SW	0	1	1	1	Process error	Process error	no	SIL1 PL c Cat 2

In the following, operating modes A-2, B-1, B-2 and C-2 will be explained in more detail.

2.1.2 Operating mode A-2

For operating mode A-2 two sensors are required, as you can see in the table. The sensors have to be connected at I1 to I4.

2.1.3 Operating mode B-1

For operating mode B-1 one sensor is required, as you can see in the table. The sensor has to be connected at I1 and I2.

2.1.4 Operating mode B-2

For operating mode B-2 two sensors are required, as you can see in the table. The sensors have to be connected at I1 and I2.

2.1.5 Operating mode C-2

For operating mode C-2 one sensor and one enable signal are required, as you can see in the table. The sensor gets connected at 11 and the enable signal at 12.

The operating mode group C uses two different input conditions for the safe acquisition of the input frequency. The first condition is the sensor signals on I1/I3, the second condition is a dynamic signal on I2 (2 Hz \pm 10 %) e. g. from a PLC or a drive.

2.2 Selection of Suitable RESET Mode

The Speed Monitor MOC3SA can be configured in two different RESET modes. In the following, both RESET modes will be explained in more detail.

2.2.1 Automatic RESET

An application example for the RESET mode "automatic RESET" is the Safely-Limited Speed in maintenance mode. When the speed limit gets exceeded or undercut, outputs Q1 to Q4 change their state automatically. The logic function is realized in the Flexi Soft, the Speed Monitor only provides information about the speed range.

E.g. Flexi Soft and Speed Monitor MOC3SA from SICK

For the RESET mode "automatic RESET" the input signals I5 (RESET) and I6 (enable) are linked. When there is a HIGH signal on I5 and I6 (1) and the speed is undercutting the limit (2) there will be an automatic change of state on Q1 to Q4 (3). After the state change, only I6 must remain HIGH, I5 can switch to LOW. I5 is connected to the EDM circuit.

> Application example: maintenance operation with reduced speed

2.2.2 Manual RESET

In the RESET mode "manual RESET", the logic function of the Speed Monitor is used. In combination with safety relays the unlocking of the guard can be realized easily when standstill is detected.

E. g. safety relay UE43-2MF and Speed Monitor MOC3SA from SICK

When configured as manual RESET, the operator enables the stop function by pushing a button. When the speed undercuts the limit (1), a LOW-HIGH-LOW signal on I5 (2) will change the state of Q1 to Q4 (3).

Application example: guard unlocking with standstill detection – operator enables guard unlocking manually

The operator enables start by pushing a button. A LOW-HIGH-LOW signal on I6 (4) will change the state of Q1 to Q4 (5).

Application example: guard unlocking with standstill detection – operator enables guard locking manually

2.3 Configuration Process

2.3.1 Step 1: Disconnection of power supply

Please disconnect the power supply.

2.3.2 Step 2: Configuration of speed limit

Configure the desired speed limit with a screwdriver on the front of the Speed Monitor.

Model MOC3SA-A can be set to monitoring frequencies between 0.1 and 9.9 Hz and model MOC3SA-B between 0.5 and 99 Hz.

For example, if the desired speed limit is **31 Hz**, model MOC3SA-B should be used and X should be set to 3 and Y to 1.

2.3.3 Step 3: Connect A1 to 24 V and A2 to 0 V

You always have to connect A1 to 24 V and A2 to 0 V, no matter which operating mode you choose. At this point, the power supply still has to be switched off.

2.3.4 Step 4: Connect signals at S1, S2 and I1 to I4

In the list of operating modes (3.1.1) you can find out which inputs you have to connect to sensor(s), 24 V or an enable signal for the desired operating mode.

2.3.5 Step 5: Connect I5/leave I5 open

If the device should be configured as automatic RESET, then connect I5 to 24 V. For configuring the device as manual RESET, leave I5 open.

2.3.6 Step 6: Teach the system configuration

To teach the system configuration, follow these steps:

- > 1. Press and hold ENTER button
- > 2. Connect the power supply
- 3. As soon as LED ERR is flashing: Release ENTER button within the next three seconds
- > 4. LED ERR turns off, the Speed Monitor is configured

3

Error Indication and Diagnostics

When an error is indicated by one or more LEDs flashing, you can find out the error type in

Error behavior and diagnostics							
Error type	Pulse co	odes and in	dications	Device status			
	X1	ERR	LED*				
Not recoverable error	Switch of	f/on device.	→ Error remai	ns. → Device faulty.			
Internal system errors	HIGH	On	_	Outputs Q1, Q2, Q3, Q4 → LOW			
Serious errors	Rectify er	ror. 🗲 Switc	h off/on device	e. → OK			
Limit frequency	14x	flashing	-	Outputs Q1, Q2, Q3, Q4 → LOW			
Supply voltage	13x	flashing	-	Outputs Q1, Q2, Q3, Q4 → LOW			
Start-up configuration	12x	flashing	PWR/S2	Outputs Q1, Q2, Q3, Q4 → LOW			
Rotary switch configuration error	12x	flashing	PWR	Outputs Q1, Q2, Q3, Q4 → LOW			
Operating mode configuration error	12x	flashing	S2	Outputs Q1, Q2, Q3, Q4 → LOW			
Discrepancy error	11x	flashing	S1	Outputs Q1, Q2, Q3, Q4 → LOW			
Sensor error I1/I2/I3/I4	10x	flashing	11/12/13/14	Outputs Q1, Q2, Q3, Q4 → LOW			
Minor errors	Rectify er	ror 🗲 OK					
Operating mode C or D process error	1x	off	_	No effect			
RESET process error or EDM error	2x	off	-	No effect			
Starting bypass process error	Зx	off	-	No effect			
Vibration	4x	off	-	No effect			
It was not possible to test 90° phase position in operating mode A	5x	Off	_	No effect			
No error	OK	1	1	1			

*Additional flashing of the LEDs given.

In the following table you can fir	nd out what you can	do to resolve the error.
------------------------------------	---------------------	--------------------------

Error type	Description of the possible cause	Error rectification
Internal system error	Internal device error	 Switch off and on again supply, replace device if necessary.
Limit frequency	The upper limit frequency for the device has been exceeded.	 Adjust speed of the drive. Select signal source (HTL incremental encoders, spur gear, etc.) with a different resolution.
Supply voltage	The supply voltage limits are not met.	Check connections A1 and A2.Measure the voltage applied.
Start-up configuration	A configuration element has been changed in the switched off state.	 Re-establish the original configuration. Check signals at I2 to I5 as well as S1 and S2. Check the setting of rotary switches X and Y.
Rotary switch configuration error	The standstill speed configured on the two rotary switches has been changed.	 Check the setting of rotary switches X and Y.
Operating mode configuration error	The operating mode configured on S1, S2 or I2, I3, I4, I5 has been changed.	 Check signals at I2 to I5 as well as S1 and S2.
Discrepancy error	The input frequency on I1/I3 was different to that on I2/I4 for more than 30 s.	 Check signals at 11 to 14. Check mounting of the signal source (HTL incremental encoder, spur gear, etc.).
Sensor error I1/I2/I3/I4	The sensor signal on the inputs I1 to I4 is missing or incorrect.	- Check signals at 11 to 14.
Operating mode C or D process error	A signal has failed in the operating mode group C or D (e.g. PLC).	Check signal at I2.Check the process.
RESET process error	The signal for the manual RESET on 15 was too long or too short.	 Comply with signal sequence specified (100 ms 5 s).
Starting bypass process error	The signal for the starting bypass on I6 was too long or too short.	 Comply with signal sequence specified (100 ms 5 s).
Vibration	There are changing signals on the sensor inputs I1 to I4, triggered by e.g. vibration on the machine.	 Optimize application, reduce vibration present.

4 Circuits for Application Examples

4.1 Guard Unlocking with Standstill Detection

Circuit description

- For this application, the Speed Monitor MOC3SA must be configured in teh RESET mode "manual RESET".
- i10P und i10 Lock are mounted on the same door for monitoring, i10 Lock is connected to the Speed Monitor via Q1.

- The guard can be unlocked using pushbutton S2 as soon as the drive is stationary/ zero speed (LOW-HIGH-LOW signal on I5).
- When the guard is closed, the drive can be enabled by using pushbutton S1 (LOW-HIGH-LOW signal on I6).

4.2 Maintenance Operation with Reduced Speed

Circuit description

- For this application, the Speed Monitor MOC3SA must be configured in the operating mode "automatic RESET".
- Maintenance and set-up operation is switched on via the key-operated switch.

> The safety door switches i10P are bypassed via the relays K1 and K2.

5 Technical specifications

5.1 Data Sheet

	Minimum	Typical	Maximum
Supply circuit (A1, A2)			
Supply voltage 24 V DC	19.2 V DC	24 V DC	30 V DC
Type of supply voltage	PELV or SELV		
	The current from	om the power sup	ply that supplies
	the main unit	must be limited ex	ternally to max.
	4 A — either b	y the power supply	/ itself or by a
Pesidual ripple II	Tuse.		3.1/
	-	-	2 W/
	-	-	3 VV
Power-up delay after application of UB	-	-	6 s + 1.8/fLimit
Short-circuit protection	4 A gG, trippin	ig characteristic B	or C
Input circuit (I5, I6, S1, S2)			
Number of inputs			4
Input voltage U _e (HIGH)	13 V DC		30 V DC
Input voltage U _e (LOW)	-5 V DC		+5 V DC
Input current I _e (HIGH)	2.4 mA		3.8 mA
Input current I _e (LOW)	-2.5 mA		+2.1 mA
Input capacitance C _{IN}	9 nF	10 nF	11 nF
Input resistance R _{IN}		7.2 kΩ	
Minimum power-up delay (I5, I6)	100 ms		
Duration of actuation of the RESET	100 ms		5 s
button			
(I5, only for "manual RESET")			
Power-up delay/switch off time (I5, I6)			70 ms
Maximum break time of the input			4 ms
signal without switching of the outputs			
(Q1-Q4)	102 mg		
break time	192 ms		
Teach-in time of ENTER button	3 s		
(during power-up)			

	Minimum	Typical	Maximum
Input circuit (I1, I2, I3, I4)			1
Number of inputs			4
Input voltage U _e (HIGH)	13 V DC		30 V DC
Input voltage U _e (LOW)	-5 V DC		+5 V DC
Input current I _e (HIGH)	2.4 mA	3 mA	3.8 mA
Input current I _e (LOW)	-2.5 mA		+2.1 mA
Input capacitance C _{IN}	9 nF	10 nF	11 nF
Input resistance R _{IN}		7.2 kΩ	
Limit frequency (mark-space ratio 3:2)			2 kHz
Frequency change			21 kHz/s
Measuring accuracy for the frequency	1%	6 %	12 %
measurement	(< 1 Hz)	(< 50 Hz)	(≤ 99 Hz)
Error detection time (I1, I2, I3, I4)			
Sensors with inverted outputs short- circuit to GND	52 ms		116 ms
Sensors in operating mode B2, short- circuit to GND	52 ms	3/f	30 s
Short-circuit to U _B			576 ms
Error in supply voltage			576 ms
Control outputs (X1, X2)		1	
Number of outputs			2
Type of output	PNP semicon	ductors, short-cir	cuit protected
Output voltage	18.4 V DC		30 V DC
Output current			120 mA
Readiness time after application of U_B	4 s		
Load capacity			1,000 nF
Cable resistance			100 Ω
Cable length			100 m

	Minimum	Typical	Maximum		
Output circuit (Q1, Q2, Q3, Q4)					
Number of outputs			4		
Type of output	PNP semicond cross-circuit m	PNP semiconductors, short-circuit protected, cross-circuit monitored			
Switching voltage	18.4 V DC		30 V DC		
Switching current					
$I_{Qn}, T_U \le 45 $ °C			2.0 A		
$I_{Qn}, T_U \le 55 \ ^\circ C$			1.6 A		
Total current I _{sum}					
$\Sigma I_{Qn}, T_U \le 45 $ °C			4 A		
$\Sigma I_{Qn}, T_U \le 55 \ ^{\circ}C$			3.2 A		
	2 IQn [A] A Total 3,5 3,5 -20	current against terr	T _{U max}		
Test pulse width		400 µs	650 µs		
Test pulse frequency	22.7 Hz		32 Hz		
Inductive breaking energy E = $0.5 \times L \times I^2$			370 mJ		
Load capacity			500 nF		
Cable length (single, Ø 1.5 mm²)			100 m		
Response time			12 ms + 1.8/fLimit		
General system data			,		
Weight (without packaging)		0.18 kg			
Electrical safety	Class III				
Electromagnetic compatibility	EN 61 000-6-2	2, EN 55 011 Clas	ss A		
Operating data					
Ambient operating temperature	-25 °C		+55 °C		
Storage temperature	-25 °C		+70 °C		
Air humidity	10% to 95%,	non-condensing	<u> </u>		
Climatic conditions	EN 61131-2				

	Minimum	Typical	Maximum
Mechanical strength			
Vibration	EN 61131-2		
Vibration resistance	5 500 Hz/5 g	rms (EN 60068-2	2-64)
Terminal and connection data			
Single or fine-stranded wire	1 × 0.14 mm ² to 2 × 0.14 mm ² to	o 2.5 mm² or o 0.75 mm²	
Single wire with terminal crimps to EN 46 228	1 × 0.25 mm ² to 2 × 0.25 mm ² to	o 2.5 mm² or o 0.5 mm²	
Insulation stripping length			8 mm
Maximum break-away torque			0.6 Nm

Safety specific characteristics

All these data are based on an ambient temperature of +40 °C.

Safety integrity level	SIL3 (IEC 61508)
SIL claim limit	SILCL3 (EN 62061)
Performance Level	PL e (EN ISO 13849-1)
PFDd	2.2 × 10 ^{.5}
PFHd	5 × 10 ⁻⁹ h ⁻¹
SFF	98%
DC	96%
T _M (mission time)	20 years (EN ISO 13849-1)

5.2 Dimensional Drawings

6 Ordering information

6.1 Ordering Information for the Speed Monitor MOC3SA

Model name	Frequency range	Description	Part no.
MOC3SA- AAB43D31	0.1 9.9 Hz	Removable terminal	6034245
MOC3SA- AAB44D31	0.1 9.9 Hz	Spring terminal	6034246
MOC3SA- BAB43D31	0.5 99 Hz	Removable terminal	6034247
MOC3SA- BAB44D31	0.5 99 Hz	Spring terminal	6034248

6.2 Accessories for the Speed Monitor MOC3SA

Model name	Description	Part no.
IM12-02BPO-ZW1	Inductive proximity sensor, DC-3 conductor (standard series, flush)	6011965
IM12-04NPS-ZW1	Inductive proximity sensor, DC-3 conductor (standard series, non-flush)	6011975
WT9-2P130	Photoelectric proximity sensor with background suppression	1018293
WL9L-330	Laser photoelectric proximity sensor with background suppression	1023977
IQ10-03BPS-KW1	Inductive proximity sensor, DC-3 conductor	7900203
DFS60A- BDEK31400	HTL incremental encoder, rotary incremental (electrical interface: 10 V 32 V, HTL/push pull)	1036707
DRS60-E1R00030	HTL incremental encoder, rotary incremental (electrical interface: 10 V 32 V, HTL/push pull)	1030874
DFS60	HTL incremental encoders	For ordering
DRS60	HTL incremental encoders	information, please refer to the product catalogue