UM12

Ultrasonic sensor

SICK

Sensor Intelligence.

Described product

UM12

Manufacturer

SICK AG
Erwin-Sick-Str. 1
79183 Waldkirch
Germany

Legal information

This work is protected by copyright. Any rights derived from the copyright shall be reserved for SICK AG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Any modification, abridgment or translation of this document is prohibited without the express written permission of SICK AG.

The trademarks stated in this document are the property of their respective owner.
© SICK AG. All rights reserved.

Original document

This document is an original document of SICK AG.

Contents

1 About this document. 5
1.1 Information on the operating instructions. 5
1.2 Explanation of symbols 5
1.3 Further information 6
2 Safety information. 7
2.1 Intended use. 7
2.2 Improper use 7
2.3 Cybersecurity 7
2.4 Limitation of liability 7
2.5 Modifications and conversions. 8
2.6 Requirements for skilled persons and operating personnel 8
2.7 Operational safety and specific hazards. 8
2.8 UL conformity 9
3 Product description 10
3.1 Scope of delivery 10
3.2 Product ID 10
3.3 Type code 11
3.4 Product overview 11
4 Transport and storage 12
4.1 Transport 12
4.2 Unpacking 12
4.3 Transport inspection. 12
4.4 Storage 12
5 Mounting 13
5.1 Mounting instructions. 13
5.2 Mounting distances 13
5.3 Aligning the device 13
5.4 Aligning device with alignment aid 13
6 Electrical installation 15
6.1 Wiring instructions 15
6.2 Prerequisites for safe operation of the device 15
6.3 Pin assignment 17
7 Operation 20
7.1 Status indicators 20
7.2 Digital output teach-in. 20
7.2.1 Factory settings of the digital output 20
7.2.2 Teaching in switching point (Single Point Mode) 20
7.2.3 Teaching in switching window (Window Mode) 21
7.2.4 Teaching in background (Window Mode $\pm 8 \%$). 21
7.2.5 Adjusting the N/C contact and N/O contact 22
7.3 Analog output teach-in 22
7.3.1 Factory settings of the analog output. 22
7.3.2 Scaling the analog output 22
7.3.3 Adjusting the rising or falling output characteristic 23
7.4 Resetting the product to factory settings 23
7.5 Activating and deactivating teach-in and synchronization 23
7.6 IO-Link 24
7.7 Establishing a connection to SOPAS ET 24
8 Maintenance 25
8.1 Maintenance plan 25
8.2 Cleaning. 25
9 Troubleshooting. 26
9.1 Repairs 26
9.2 Returns 26
9.3 Disposal 26
10 Technical data 27
10.1 Mechanics/Electronics 27
10.2 Dimensional drawing 28
10.3 Performance 28
10.4 Interfaces. 29
10.5 Ambient data 29
10.6 Temperature compensation 29
10.7 Detection ranges 30
11 Accessories 32
12 Annex 33
12.1 Declarations of conformity and certificates 33
12.2 Licenses. 33

1 About this document

1.1 Information on the operating instructions

These operating instructions provide important information on how to use devices from SICK AG.

Prerequisites for safe work are:

- Compliance with all safety notes and handling instructions supplied.
- Compliance with local work safety regulations and general safety regulations for device applications

The operating instructions are intended to be used by qualified personnel and electrical specialists.

NOTE
Read these operating instructions carefully to familiarize yourself with the device and its functions before commencing any work.

The operating instructions are an integral part of the product. Store the instructions in the immediate vicinity of the device so they remain accessible to staff at all times. Should the device be passed on to a third party, these operating instructions should be handed over with it.

These operating instructions do not provide information on the handling and safe operation of the machine or system in which the device is integrated. Information on this can be found in the operating instructions for the machine or system.

1.2 Explanation of symbols

Warnings and important information in this document are labeled with symbols. Signal words introduce the instructions and indicate the extent of the hazard. To avoid accidents, damage, and personal injury, always comply with the instructions and act carefully.

DANGER

... indicates a situation of imminent danger, which will lead to a fatality or serious injuries if not prevented.

WARNING

... indicates a potentially dangerous situation, which may lead to a fatality or serious injuries if not prevented.

CAUTION

.. indicates a potentially dangerous situation, which may lead to minor/slight injuries if not prevented.

NOTICE

... indicates a potentially harmful situation, which may lead to material damage if not prevented.

NOTE

... highlights useful tips and recommendations as well as information for efficient and trouble-free operation.

1.3 Further information

More information can be found on the product page.
The page can be accessed via the SICK Product ID: pid.sick.com/\{P/N\}/\{S/N\}
$\{P / N\}$ corresponds to the part number of the product, see type label.
$\{\mathrm{S} / \mathrm{N}\}$ corresponds to the serial number of the product, see type label (if indicated).
The following information is available depending on the product:

- Data sheets
- This document in all available language versions
- CAD files and dimensional drawings
- Certificates (e.g., declaration of conformity)
- Other publications
- Software
- Accessories

2 Safety information

2.1 Intended use

The UM12 ultrasonic sensor is used for non-contact detection and distance measurement. Distance measurement is not possible below the operating range of the device.

SICK AG assumes no liability for losses or damage arising from the use of the product, either directly or indirectly. This applies in particular to use of the product that does not conform to its intended purpose and is not described in this documentation.

2.2 Improper use

Any use outside of the stated areas, in particular use outside of the technical specifications and the requirements for intended use, will be deemed to be incorrect use.

- The device does not constitute a safety component in accordance with the respective applicable safety standards for machines.
- The device must not be used in explosion-hazardous areas, in corrosive environments or under extreme environmental conditions.
- Any use of accessories not specifically approved by SICK AG is at your own risk.

WARNING
Danger due to improper use!
Any improper use can result in dangerous situations.
Therefore, observe the following information:

- Product should be used only in accordance with its intended use.
- All information in the documentation must be strictly observed.
- Shut down the product immediately in case of damage.

2.3 Cybersecurity

Overview

To protect against cybersecurity threats, it is necessary to continuously monitor and maintain a comprehensive cybersecurity concept. A suitable concept consists of organizational, technical, procedural, electronic, and physical levels of defense and considers suitable measures for different types of risks. The measures implemented in this product can only support protection against cybersecurity threats if the product is used as part of such a concept.

You will find further information at www.sick.com/psirt, e.g.:

- General information on cybersecurity
- Contact option for reporting vulnerabilities
- Information on known vulnerabilities (security advisories)

2.4 Limitation of liability

Relevant standards and regulations, the latest technological developments, and our many years of knowledge and experience have all been taken into account when compiling the data and information contained in these operating instructions. The manufacturer accepts no liability for damage caused by:

- Non-adherence to the product documentation (e.g., operating instructions)
- Incorrect use
- Use of untrained staff
- Unauthorized conversions or repair
- Technical modifications
- Use of unauthorized spare parts, consumables, and accessories

2.5 Modifications and conversions

NOTICE

Modifications and conversions to the device may result in unforeseeable dangers.

Interrupting or modifying the device or SICK software will invalidate any warranty claims against SICK AG. This applies in particular to opening the housing, even as part of mounting and electrical installation.

2.6 Requirements for skilled persons and operating personnel

WARNING

Risk of injury due to insufficient training.
Improper handling of the device may result in considerable personal injury and material damage.

- All work must only ever be carried out by the stipulated persons.

The following qualifications are required for various activities:
Table 1: Activities and technical requirements

Activities	Qualification
Mounting, maintenance	- Basic practical technical training - Knowledge of the current safety regulations in the workplace
Electrical installation, device replacement	- Practical electrical training - Knowledge of current electrical safety regulations - Knowledge of the operation and control of the devices in their particular application
Commissioning, configuration	- Basic knowledge of the computer operating system used - Basic knowledge of the design and setup of the described connections and interfaces - Basic knowledge of data transmission
Operation of the device for the particular application	- Knowledge of the operation and control of the devices in their particular application - Knowledge of the software and hardware environment for the particular application

2.7 Operational safety and specific hazards

Please observe the safety notes and the warnings listed here and in other sections of this product documentation to reduce the possibility of risks to health and avoid dangerous situations.

WARNING
Electrical voltage!
Electrical voltage can cause severe injury or death.

- Work on electrical systems must only be performed by qualified electricians.
- The power supply must be disconnected when attaching and detaching electrical connections.
- The product must only be connected to a voltage supply as set out in the requirements in the operating instructions.
- National and regional regulations must be complied with.
- Safety requirements relating to work on electrical systems must be complied with.

WARNING

Risk of injury and damage caused by potential equalization currents!
Improper grounding can lead to dangerous equipotential bonding currents, which may in turn lead to dangerous voltages on metallic surfaces, such as the housing. Electrical voltage can cause severe injury or death.

- Work on electrical systems must only be performed by qualified electricians.
- Follow the notes in the operating instructions.
- Install the grounding for the product and the system in accordance with national and regional regulations.

2.8 UL conformity

The UL certification is dependent on the type. Any existing UL certification can be found on the type label.

NFPA79 applications only. Adapters including field wiring cables are available.
More information can be found on the product page:
The page can be accessed via the SICK Product ID: pid.sick.com/\{P/N\}/\{S/N\}
$\{P / N\}$ corresponds to the part number of the product, see type label.
$\{\mathrm{S} / \mathrm{N}\}$ corresponds to the serial number of the product, see type label (if indicated).

3 Product description

3.1 Scope of delivery

Table 2: Scope of delivery

No. of units	Component	Note
1	Product in the type ordered	Product variants: \bullet Digital output without IO-Link \bullet Digital output with IO-Link \bullet Analog output
1	Printed safety notes, multilingual	Brief information and general safety notes

The actual scope of delivery may differ for special designs, additional orders or due to the latest technical changes.

$3.2 \quad$ Product ID

Packaging

Figure 1: Packaging (example)
(1) Data Matrix code with product data
(2) Link to the operating instructions
(3) Approval marks and test symbols
(4) Supply voltage and output current
(5) Interface
(6) Operating range and limiting range
(7) Serial number
(8) Part number
(9) Type code

Type label

Figure 2: Type label (example)
(1) Part number
(2) Type code
(3) Serial number
(4) Approval marks and test symbols
(5) Operating range and supply voltage

3.3 Type code

Type code structure
UM12 - abcdefg
Table 3: Type code

Position	Description	Characteristic
a	Generation	1: 1. generation
b	Principle of operation	1: Button operation
c	Detection range, mounting distance (UD)	7: $20 \mathrm{~mm} \ldots 150 \mathrm{~mm}$ 9: $40 \mathrm{~mm} \ldots 240 \mathrm{~mm}$
d	Connectivity	2: Male connector M12, 4-pin
e	Housing version	2: Nickel-plated brass
f	Output function	1: 1 PNP 5: 1 NPN 6: Analog, current interface 7: Analog, voltage interface B: 1 push-pull: PNP/NPN with IO-Link 1.1
		1: Straight

3.4 Product overview

Product overview

(1)

Figure 3: Device view
(1) Connection
(2) Display (2 status LEDs)

Further topics

- Dimensional drawing

4 Transport and storage

4.1 Transport

NOTICE

Damage due to improper transport!

- The product must be packaged with protection against shock and damp.
- Recommendation: Use the original packaging.
- Note the symbols on the packaging.
- Do not remove packaging until immediately before you start mounting.

4.2 Unpacking

- To protect the device against condensation, allow it to equilibrate with the ambient temperature before unpacking if necessary.
- Handle the device with care and protect it from mechanical damage.

4.3 Transport inspection

Immediately upon receipt in Goods-in, check the delivery for completeness and for any damage that may have occurred in transit. In the case of transit damage that is visible externally, proceed as follows:

- Do not accept the delivery or only do so conditionally.
- Note the scope of damage on the transport documents or on the transport company's delivery note.
- File a complaint.

NOTE

Complaints regarding defects should be filed as soon as these are detected. Damage claims are only valid before the applicable complaint deadlines.

$4.4 \quad$ Storage

- Do not store outdoors.
- Store in a place protected from moisture and dust.
- Recommendation: Use the original packaging.
- Do not expose to any aggressive substances.
- Protect from sunlight.
- Avoid mechanical shocks.
- Storage temperature: see "Technical data", page 27.
- For storage periods of longer than 3 months, check the general condition of all components and packaging on a regular basis.

5 Mounting

5.1 Mounting instructions

- Observe the technical data.
- To prevent condensation, avoid exposing the device to rapid changes in temperature.
- The mounting site has to be designed for the weight of the device.
- When using multiple devices, observe the mounting distance, see "Mounting distances", page 13.

5.2 Mounting distances

Device type	Parallel	Opposite
UM12-117x	$>250 \mathrm{~mm}$	$>1300 \mathrm{~mm}$
UM12-119x	$>250 \mathrm{~mm}$	$>1400 \mathrm{~mm}$

5.3 Aligning the device

Figure 4: Aligning the device for smooth and rough surfaces
(1) Smooth surface: Angle $\leq 90^{\circ} \pm 3^{\circ}$ between the sensor axis and object surface
(2) Rough surface: Angle $\geq 90^{\circ} \pm 3^{\circ}$ between the sensor axis and object surface

5.4 Aligning device with alignment aid

Overview

The alignment aid can be used to align the device with the object during mounting. Valid for devices with IO-Link (UM12-xxxxxBx).

[^0]
Approach

1. Loosely fasten the device at the installation location so that the device remains movable.
2. To start the alignment aid, briefly apply $L+$ at Teach-in.
$\checkmark \quad$ Green LED flashes. The faster the LED flashes, the stronger the received signal.
3. Align the device at the object at different angles for up to 10 seconds so that the device can determine the maximum signal level.
$\checkmark \quad$ Green LED flashes or permanently lights up green.
4. Align the device so that the green LED permanently lights up green.
\checkmark Green LED permanently lights up green.
5. Fasten the device in this position.
6. To end the alignment aid, briefly apply L+ at Teach-in or wait 120 seconds.
\checkmark Orange LED flashes twice.
\checkmark The device switches back to normal operation.

6 Electrical installation

6.1 Wiring instructions

NOTE

Pre-assembled cables can be found on the product page.
The page can be accessed via the SICK Product ID: pid.sick.com/\{P/N\}/\{S/N\}
$\{\mathrm{P} / \mathrm{N}\}$ corresponds to the part number of the product, see type label.
$\{\mathrm{S} / \mathrm{N}\}$ corresponds to the serial number of the product, see type label (if indicated).

NOTICE

Faults during operation and defects in the device or the system Incorrect wiring may result in operational faults and defects.

- Follow the wiring notes precisely.

The enclosure rating stated in the technical data is achieved only with a screwed plug connector or protective cap.

Connect the connecting cables in a de-energized state. Do not switch on the supply voltage until installation is complete and all connecting cables are connected to the device and control.

The supply voltage must be as specified in the technical data, see "Technical data", page 27.

When commissioning, protect the device from moisture and contamination.

6.2 Prerequisites for safe operation of the device

WARNING
Risk of injury and damage caused by electrical current!
As a result of equipotential bonding currents between the device and other grounded devices in the system, faulty grounding of the device can give rise to the following dangers and faults:

- Dangerous voltages are applied to the metal housings.
- Devices will behave incorrectly or be destroyed.
- Cable shielding will be damaged by overheating and cause cable fires.

Remedial measures

- Only skilled electricians should be permitted to carry out work on the electrical system.
- If the cable insulation is damaged, disconnect the voltage supply immediately and have the damage repaired.
- Ensure that the ground potential is the same at all grounding points.
- Where local conditions do not meet the requirements for a safe earthing method, take appropriate measures. For example, ensure low-impedance and current-carrying equipotential bonding.

The device is connected to the peripheral devices (any local trigger sensors), system controller) via shielded cables. The cable shield - for the data cable, for example rests against the metal housing of the device.

The device can be grounded through the cable shield or through a blind tapped hole in the housing, for example.

If the peripheral devices have metal housings and the cable shields are also in contact with their housings, it is assumed that all devices involved in the installation have the same ground potential.

This is achieved by complying with the following conditions:

- Mounting the devices on conductive metal surfaces
- Correctly grounding the devices and metal surfaces in the system
- If necessary: low-impedance and current-carrying equipotential bonding between areas with different ground potentials
(1) (2)

Figure 5: Example: Occurrence of equipotential bonding currents in the system configuration
(1) System controller
(2) Device
(3) Voltage supply
(4) Grounding point 2
(5) Closed current loop with equalizing currents via cable shield
(6) Ground potential difference
(7) Grounding point 1
(8) Metal housing
(9) Shielded electrical cable

If these conditions are not fulfilled, equipotential bonding currents can flow along the cable shielding between the devices due to differing ground potentials and cause the hazards specified. This is, for example, possible in cases where there are devices within a widely distributed system covering several buildings.

Remedial measures

The most common solution to prevent equipotential bonding currents on cable shields is to ensure low-impedance and current-carrying equipotential bonding. If this equipotential bonding is not possible, the following solution approaches serve as a suggestion.

NOTICE

We expressly advise against opening up the cable shields. This would mean that the EMC limit values can no longer be complied with and that the safe operation of the device data interfaces can no longer be guaranteed.

Measures for widely distributed system installations

On widely distributed system installations with correspondingly large potential differences, the setting up of local islands and connecting them using commercially available electro-optical signal isolators is recommended. This measure achieves a high degree of resistance to electromagnetic interference.

Figure 6: Example: Prevention of equipotential bonding currents in the system configuration by the use of electro-optical signal isolators
(1) System controller
(2) Electro-optical signal isolator
(3) Device
(4) Voltage supply
(5) Grounding point 2
(6) Grounding point 1
(7) Metal housing
(8) Shielded electrical cable
(9) Optical fiber

The use of electro-optical signal isolators between the islands isolates the ground loop. Within the islands, a stable equipotential bonding prevents equalizing currents on the cable shields.

Measures for small system installations
For smaller installations with only slight potential differences, insulated mounting of the device and peripheral devices may be an adequate solution.

Even in the event of large differences in the ground potential, ground loops are effectively prevented. As a result, equalizing currents can no longer flow via the cable shields and metal housing.

NOTICE

The voltage supply for the device and the connected peripheral devices must also guarantee the required level of insulation.
Under certain circumstances, a tangible potential can develop between the insulated metal housings and the local ground potential.

6.3 Pin assignment

UM12-xxxxx1x, UM12-xxxxx5x

brn	1	L+
blk	4	Q/Q
blu	3	M
$-$	2	Teach-in

Figure 7: Male connector, M12, 4-pin

Table 4: Pin assignment for UM12-xxxxx1x, UM12-xxxxx5x

Contact	Signs	Wire color	Description
1	L+	Brown	Supply voltage, see "Mechanics/Electron- ics", page 27
2	Teach-in	White	Device teach-in
3	M	Blue	Supply voltage: 0 V
4	Q/Q	Black	Digital output / inverted digital output

UM12-xxxxxBx

Figure 8: Male connector, M12, 4-pin

Table 5: Pin assignment for UM12-xxxxxBx

Contact	Signs	Wire color	Description
1	L+	Brown	Supply voltage, see "Mechanics/Electron- ics", page 27
2	Teach-in/Synch	White	Device teach-in/synchronization operation
3	M	Blue	Supply voltage: 0 V
4	Q/प̄/C	Black	Digital input / inverted digital output / IO- Link

UM12-xxxxx6x, UM12-xxxxx7x

- brn! 1 L+
\rightarrow blk: 4 QA
blui 3 M
$\underset{-}{4} \frac{\text { wht! }}{2}$ Teach-in
Figure 9: Male connector, M12, 4-pin

Table 6: Pin assignment for UM12-xxxxx6x, UM12-xxxxx7x

Contact	Signs	Wire color	Description
1	L+	Brown	Supply voltage, see "Mechanics/Electron- ics", page 27
2	Teach-in	White	Device teach-in
3	M	Blue	Supply voltage: 0 V
4	Q $_{\mathrm{A}}$	Black	Analog output

7 Operation

7.1 Status indicators

Overview

The display consists of two status LEDs behind an opening in the housing.

(1) Display (2 status LEDs)

Status LEDs

LED	Status (color)	Status	
Status LED: Supply voltage active	(Green)	Device ready	
	IO-Link operation: (green)		
Status LED: digital output or analog output	(Orange)	Digital output: digital output active Analog output: object in scaling range	
	(Orange) Flashes quickly for 3 seconds.	Teach-in: - No object detected - Object outside the detection range - First switching point within and second switching point outside the detection range ${ }^{1)}$ - Scaling $<1 \mathrm{~mm}$ taught-in ${ }^{2)}$ The existing switching points are retained.	
$=$ Lights up; =- Flashes; O = Does not light up. 1) Valid for the switching point modes Window Mode and Window Mode $\pm 8 \%$. 2) Applies when teaching in the analog output.			

7.2 Digital output teach-in

7.2.1 Factory settings of the digital output

- N/O contact
- Switching point at maximum operating range

7.2.2 Teaching in switching point (Single Point Mode)

Overview

When the object is located below the taught-in switching point, the digital output is active.

Approach

Teaching in the switching point (distance to object as switching point)
(1)

1. Position the object at (1).
2. Apply L+ at Teach-in for 3 seconds until both LEDs are flashing simultaneously.
\checkmark Both LEDs flash alternately.
3. Apply L+ at Teach-in for 1 second.
\checkmark The switching point is taught in. The device automatically switches to normal operation mode.

Teaching in the switching point $+8 \%$ (distance $+8 \%$ as switching point)

1. Position the object at (1).
2. Apply L+ at Teach-in for 3 seconds until both LEDs are flashing simultaneously.
\checkmark Both LEDs flash alternately.
3. Apply $L+$ at Teach-in for 3 seconds until both LEDs are again flashing alternately.
\checkmark The switching point is taught in. The device automatically switches to normal operation mode.

7.2.3 Teaching in switching window (Window Mode)

Overview

When the object is located within the taught-in switching window, the digital output is active.

Approach

Figure 10: UM12-xxxxxBx
(1)
(2)

Figure 11: UM12-xxxxx1x, UM12-xxxxx5x

1. Position the object at (1).
2. Apply L+ at Teach-in for 3 seconds until both LEDs are flashing simultaneously.
\checkmark Both LEDs flash alternately.
3. Position the object at (2).
\checkmark Both LEDs flash alternately.
4. Apply L+ at Teach-in for 1 second.
$\checkmark \quad$ The switching points are taught-in. The device automatically switches to normal operation mode.

7.2.4 Teaching in background (Window Mode \pm 8\%)

Overview

When the object is located either below the taught-in background - 8% or above the taught-in background $+8 \%$, the digital output is active.

Approach

Figure 12: UM12-xxxxxBx, UM12-xxxxx1x, UM12-xxxxx5x

1. Position the background at (1).
2. Apply L+ at Teach-in for 3 seconds until both LEDs are flashing simultaneously.
\checkmark Both LEDs flash alternately.
3. Apply L+ at Teach-in for 10 seconds until both LEDs stop flashing.
\checkmark The background is taught-in. The device automatically switches to normal operation mode.

7.2.5 Adjusting the N/C contact and N/O contact

Approach

1. Apply L+ at Teach-in for 13 seconds until both LEDs flash alternately.
\checkmark Green LED flashes.
\checkmark N/O: Orange LED lights up.
$\checkmark \quad$ N/C: Orange LED does not light up.
2. To change the setting, apply L+ at Teach-in for 1 second.
\checkmark Orange LED changes its status.
3. Wait 10 seconds.
\checkmark Green LED no longer flashes.
$\checkmark \quad$ N/C and N/O are adjusted. The device automatically switches to normal operation mode.

7.3 Analog output teach-in

7.3.1 Factory settings of the analog output

- Rising output characteristic from minimum to maximum operating range

7.3.2 Scaling the analog output

Overview

To scale the analog output, teach in a close sensor and distant sensor scaling limit. If the distant sensor scaling limit is taught in first and then the close sensor scaling limit, the limits are reversed internally.

Approach

> (1) (2)

1. Position the object at (1).
2. Apply $L+$ at MF for 3 seconds until both LEDs are flashing simultaneously.
\checkmark Both LEDs flash alternately.
3. Position the object at (2).
4. Apply L+ at MF for 1 second.
\checkmark The scaling is taught-in. The device automatically switches to normal operation mode.

7.3.3 Adjusting the rising or falling output characteristic

Approach

1. Apply L+ at MF for 13 seconds until both LEDs flash alternately.
\checkmark Green LED flashes.
\checkmark Rising: Orange LED lights up.
\checkmark Falling: Orange LED does not light up.
2. To change the setting, apply L+ at MF for 1 second.
\checkmark Orange LED changes its status.
3. Wait 10 seconds.
\checkmark Green LED no longer flashes.
\checkmark The rising and falling output characteristic are adjusted. The product automatically switches to normal operation mode.

7.4 Resetting the product to factory settings

Approach

UM12-xxxxxBx

1. Switch off the supply voltage.
2. Apply M at Teach-in.
3. Switch on the supply voltage.
4. Wait 13 seconds until both LEDs are off.
5. To apply the factory settings, separate \mathbf{M} from Teach-in within 5 seconds before switching off the supply voltage.
\checkmark The product is reset to the factory settings. Product automatically switches to normal operation mode.

UM12-xxxxx1x, UM12-xxxxx5x

1. Switch off the supply voltage.
2. Apply L+ at Teach-in.
3. Switch on the supply voltage.
4. Wait 13 seconds until both LEDs are flashing simultaneously.
5. To apply the factory settings, separate L+ from Teach-in within 5 seconds before switching off the supply voltage.
\checkmark The product is reset to the factory settings. Product automatically switches to normal operation mode.

7.5 Activating and deactivating teach-in and synchronization

Overview

Valid for devices with IO-Link (UM12-xxxxxBx).

Approach

1. Switch off the supply voltage.
2. Apply M at Teach-in/Synch.
3. Switch on the supply voltage.
4. Wait 3 seconds until both LEDs are flashing simultaneously.
\checkmark Green LED flashes.
\checkmark Teach-in and synchronization are activated: Orange LED lights up.
\checkmark Teach-in and synchronization are deactivated: Orange LED does not light up.
5. To change the setting, apply M at Teach-in/Synch for 1 second.
\checkmark Orange LED changes its status.
6. Wait 10 seconds.
\checkmark Green LED no longer flashes.
\checkmark Teach-in and synchronization are activated or deactivated. The product automatically switches to normal operation mode.

$7.6 \quad$ IO-Link

Depending on the product type, the product can exchange process data and parameters via IO-Link. To do this, connect the product to a suitable IO-Link Master. A sensorspecific device description file (IODD) is required in the IO-Link Master. The IODD and a supplementary information document are available on the product page.

The page can be accessed via the SICK Product ID: pid.sick.com/\{P/N\}/\{S/N\}
$\{P / N\}$ corresponds to the part number of the product, see type label.
$\{S / N\}$ corresponds to the serial number of the product, see type label (if indicated).

7.7 Establishing a connection to SOPAS ET

Overview

The SOPAS Engineering Tool (SOPAS ET) software is suitable for parameterization as well as for service and diagnostics purposes.

Prerequisites

- Product type with IO-Link
- A computer with the SOPAS ET software installed on it, and a free USB 2.0 compatible port

NOTE

The most up-to-date version of the SOPAS ET software can be downloaded from www.sick.com/SOPAS_ET. The respective system requirements for installing SOPAS ET are also specified there.

- SICK SiLink2 Master (available as accessory)
- Connection cable with M12 male and female connectors, 4-pin (available as accessory)
- Device description file (SDD)

NOTE

The SDD can be installed in SOPAS ET or via the SICK website. Follow the instructions in SOPAS ET.

Approach

1. Connect the product to the SiLink2 Master via the male connector or an additional connection cable.
2. Connect the SiLink2 Master to the computer using the supplied USB cable.
3. Switch on and start the computer.
4. To ensure an adequate voltage supply to the product, also connect the enclosed wall plug to the SiLink2 Master.
\checkmark The status LEDs light up green after successful initialization. The product is ready for operation.
5. Install the device description file.
6. Select the product from the device catalog and add it to a project.
\checkmark A connection to the product is established via the communication interface. The connection must be activated for data transmission (online).

8 Maintenance

8.1 Maintenance plan

During operation, the device works maintenance-free.
Table 7: Maintenance plan

Maintenance work	Interval	To be carried out by
Check device and connecting cables for damage at regular intervals.	Depends on ambient conditions and climate.	Specialist
Check the screw connections and plug connectors.	Depends on the place of use, ambi- ent conditions or operating require- ments. Recommended: At least every 6 months.	Specialist

8.2 Cleaning

NOTICE

Equipment damage due to improper cleaning.
Improper cleaning may result in equipment damage.

- Only use recommended cleaning agents and tools.
- Never use sharp objects for cleaning.
- Carefully clean the adjoining faces with water at regular intervals.

$9 \quad$ Troubleshooting

9.1 Repairs

Repair work on the device may only be performed by qualified and authorized personnel from SICK AG. Interruptions or modifications to the device by the customer will invalidate any warranty claims against SICK AG.

9.2 Returns

- Only send in devices after consulting with SICK Service.
- The device must be sent in the original packaging or an equivalent padded packaging.

NOTE

To enable efficient processing and allow us to determine the cause quickly, please include the following when making a return:

- Details of the contact person
- Description of the application
- Description of the fault that occurred

9.3 Disposal

If a device can no longer be used, dispose of it in an environmentally friendly manner in accordance with the applicable country-specific waste disposal regulations. Do not dispose of the product along with household waste.

NOTICE

Danger to the environment due to improper disposal of the device.
Disposing of devices improperly may cause damage to the environment.
Therefore, observe the following information:

- Always observe the national regulations on environmental protection.
- Separate the recyclable materials by type and place them in recycling containers.

10 Technical data

NOTE

The relevant online product page for your product, including technical data, dimensional drawing, and connection diagrams, can be downloaded, saved, and printed from the Internet.

The page can be accessed via the SICK Product ID: pid.sick.com/\{P/N\}/\{S/N\}
$\{\mathrm{P} / \mathrm{N}\}$ corresponds to the part number of the product, see type label.
$\{\mathrm{S} / \mathrm{N}\}$ corresponds to the serial number of the product, see type label (if indicated). Please note: This documentation may contain further technical data.

10.1 Mechanics/Electronics

Supply voltage $\mathrm{V}_{\text {S }}$	Digital output: DC $10 \mathrm{~V} . . .30 \mathrm{~V}$ 1) Analog voltage output: DC $15 \mathrm{~V} . . .30 \mathrm{~V}^{1)}$ Analog current output: DC $10 \mathrm{~V} . .30 \mathrm{~V}$ at $\mathrm{RL} \leq 100 \Omega$, DC $15 \mathrm{~V} . . .30 \mathrm{~V}$ at $R L>100 \Omega^{1)}$
Power consumption	Products with digital output: - UM12-11722x1: $\leq 0.75 \mathrm{~W}^{2)}$ - UM12-119 22x1: $\leq 1.05 \mathrm{~W}^{2)}$ Products with analog output: - UM12-11722x1: $\leq 0.9 \mathrm{~W}^{2)}$ - UM12-11922×1: $\leq 1.2 \mathrm{~W}^{2)}$
Power-up time	< 300 ms
Design	Cylindrical
Housing material	Metal (nickel plated brass, PBT) Ultrasonic converter: Polyurethane foam, epoxy resin with glass content
Threaded size	M12 $\times 1$
Connection type	Male connector, M12, 4-pin
Display	$2 \times$ LED
Weight	15 g
Sending axis	Straight
Dimensions (W x H x D)	Digital output: $12 \mathrm{~mm} \times 12 \mathrm{~mm} \times 55.1 \mathrm{~mm}$ Analog output: $12 \mathrm{~mm} \times 12 \mathrm{~mm} \times 60.1 \mathrm{~mm}$
Enclosure rating	IP65 / IP67 (EN 60529)
Protection class	III
Maximum tightening torque for fixing nuts	1 Nm

1) Limit values, reverse-polarity protected Operation in short-circuit protected network: max. 8 A, class 2.
2) Without load.

10.2 Dimensional drawing

UM12-xxxxx1x, UM12-xxxxx5x, UM12-xxxxxBx

Figure 13: structure and device dimensions, unit: $m m$ (inch), decimal separator: period
(1) Fixing nuts, width 17 mm

UM12-xxxxx6x, UM12-xxxxx7x

Figure 14: structure and device dimensions, unit: $m m$ (inch), decimal separator: period
(1) Fixing nuts, width 17 mm

10.3 Performance

Operating range	UM12-11722x1: $20 \mathrm{~mm} . . .150 \mathrm{~mm}$ UM12-11922x1: $40 \mathrm{~mm} . . .240 \mathrm{~mm}$
Limiting range	UM12-11722x1: 250 mm UM12-11922x1: 350 mm
Measuring object	Natural objects
Resolution	$\geq 0.069 \mathrm{~mm}$
Repeatability	$\pm 0.15 \%^{1)}$
Accuracy	$\pm 1 \%{ }^{2)}$
Temperature compensation	Internal temperature compensation
Response time	UM12-11722×1: $24 \mathrm{~ms}^{3}$ UM12-11922x1: $30 \mathrm{~ms}^{3)}$
Switching frequency ${ }^{4)}$	UM12-11722x1: 30 Hz UM12-11922x1: 25 Hz
Output time	UM12-11722x1: 8 ms UM12-11922x1: 10 ms
Ultrasonic frequency (typical)	UM12-11722x1: 380 kHz UM12-11922x1: 500 kHz

Additional func- tion ${ }^{5}$)	-Configurable switching point modes: Single Point Mode, Window Mode (switching window), Window Mode $\pm 8 \%$ (teach-in background) - - Invertible digital output - Reset to factory settings

1) Relative to the current measured value, minimum value \geq resolution.
2) Relative to the current measured value.
3) Products with analog output: Subsequent smoothing of the analog output may increase the response time by up to 200% in some applications.
4) Valid for products with digital output.
5) Functions may vary depending on the sensor variant.

10.4 Interfaces

Products with digital output

10-Link	UM12-11x22B1: IO-Link V1.1 Function: Process data, configuration, diagnostics, data storage
digital output	UM12-11×2211: 1 PNP ${ }^{1)}$, maximum output current $\mathrm{I}_{\mathrm{A}} \leq 200 \mathrm{~mA}$ UM12-11x2251: 1 NPN ${ }^{2)}$, maximum output current $\mathrm{I}_{\mathrm{A}} \leq 200 \mathrm{~mA}$ UM12-11x22B1: 1 push-pull: PNP/NPN ${ }^{3)}$, maximum output current $\mathrm{I}_{\mathrm{A}} \leq 100 \mathrm{~mA}$
Hysteresis	UM12-11722x1: 2 mm UM12-11722x1: 3 mm

1) PNP: $\mathrm{HIGH}=\mathrm{U}_{\mathrm{V}}-(<2 \mathrm{~V}) / \mathrm{LOW}=0 \mathrm{~V}$.
2) $\mathrm{NPN}: \mathrm{HIGH} \leq 2 \mathrm{~V} / \mathrm{LOW}=\mathrm{U}_{\mathrm{V}}$.
3) Push-pull: PNP/NPN: HIGH $=\mathrm{U}_{\mathrm{V}}-(<3 \mathrm{~V}) / \mathrm{LOW}=<3 \mathrm{~V}$.

Products with analog output

Analog output	$4 \mathrm{~mA} \ldots 20 \mathrm{~mA}: \mathrm{RL} \leq 500 \Omega^{1)}$ $0 \mathrm{~V} \ldots 10 \mathrm{~V}: \mathrm{RL} \geq 100 \mathrm{k} \Omega$
Resolution	12 bit

1) At $4 \mathrm{~mA} \ldots 20 \mathrm{~mA}$ and $\mathrm{U}_{\mathrm{V}} \leq 20 \mathrm{~V}$ max. load $\leq 100 \Omega$.

10.5 Ambient data

Ambient operat- ing temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Storage tempera- ture	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$

10.6 Temperature compensation

The internal temperature compensation reaches the optimum operating point after 1 minute of operation. Temperature compensation is adjusted at the factory to standard mounting conditions with an aluminum mounting bracket and mounting nuts.

Temperature compensation is automatically adjusted to the individual installation situation under the following conditions.
Conditions of automatic adjustment of temperature compensation

- The product is in a cold state.
- Digital output: The digital output is deactivated for approx. 30 minutes.
- Analog output: The analog output delivers a constant value of $11 \mathrm{~mA} \ldots 13 \mathrm{~mA}$ or 4.4 V ... 5.6 V for approx. 30 minutes.

If the measured value changes in the 30 minutes, the adjustment is canceled. The default parameters or the last adjusted parameters are retained. Automatic adjustment is suitable for installation situations that deviate greatly from standard installation conditions or where high measurement accuracy is required. One example is thermally insulated mounting.

10.7 Detection ranges

UM12-117x

UM12-119x

Detection area in mm (inch) (1)

(1) Detection range in mm (inch)
(2) Detection range dependent on reflection properties, size, and alignment of the object
(3) Limiting range
(4) Operating range
(5) Example object: aligned plate $500 \mathrm{~mm} \times 500 \mathrm{~mm}$
(6) Example object: Cylindrical bar with diameter of 10 mm

11 Accessories

NOTE
On the product page you will find accessories and, if applicable, related installation information for your product.
The page can be accessed via the SICK Product ID: pid.sick.com/\{P/N\}/\{S/N\}
$\{P / N\}$ corresponds to the part number of the product, see type label.
$\{S / N\}$ corresponds to the serial number of the product, see type label (if indicated).

12 Annex

12.1 Declarations of conformity and certificates

You can download declarations of conformity and certificates via the product page.
The page can be accessed via the SICK Product ID: pid.sick.com/\{P/N\}/\{S/N\}
$\{P / N\}$ corresponds to the part number of the product, see type label.
$\{S / N\}$ corresponds to the serial number of the product, see type label (if indicated).

12.2 Licenses

SICK uses open source software which is published by the rights holders under a free license. Among others, the following license types are used: GNU General Public License (GPL version 2, GPL version 3), GNU Lesser General Public License (LGPL), MIT license, zlib license and licenses derived from the BSD license.

This program is provided for general use without warranty of any kind. This warranty disclaimer also extends to the implicit assurance of marketability or suitability of the program for a particular purpose.

More details can be found in the GNU General Public License.
For license texts see www.sick.com/licensetexts.
Printed copies of the license texts are also available on request.

Australia

Phone +61 (3) 94570600 1800334802 - tollfree
E-Mail sales@sick.com.au

Austria

Phone +43 (0) 2236 62288-0
E-Mail office@sick.at
Belgium/Luxembourg
Phone +32 (0) 24665566
E-Mail info@sick.be
Brazil
Phone +55 11 3215-4900
E-Mail comercial@sick.com.br

Canada

Phone +1 905.771.1444
E-Mail cs.canada@sick.com
Czech Republic
Phone +420 234719500
E-Mail sick@sick.cz
Chile
Phone +56 (2) 22747430
E-Mail chile@sick.com
China
Phone +86 2028823600
E-Mail info.china@sick.net.cn
Denmark
Phone +45 45826400
E-Mail sick@sick.dk

Finland

Phone +358-9-25 15800
E-Mail sick@sick.fi
France
Phone +33 164623500
E-Mail info@sick.fr

Germany

Phone +49 (0) 21153010
E-Mail info@sick.de
Greece
Phone +30 2106825100
E-Mail office@sick.com.gr

Hong Kong

Phone +852 21536300
E-Mail ghk@sick.com.hk

Hungary
Phone +36 13712680
E-Mail ertekesites@sick.hu
India
Phone +91-22-6119 8900
E-Mail info@sick-india.com
Israel
Phone +972 9711011
E-Mail info@sick-sensors.com
Italy
Phone +39 02274341
E-Mail info@sick.it
Japan
Phone +81 353092112
E-Mail support@sick.jp
Malaysia
Phone +603-8080 7425
E-Mail enquiry.my@sick.com
Mexico
Phone +52 (472) 7489451
E-Mail mexico@sick.com
Netherlands
Phone +31 (0) 302044000
E-Mail info@sick.nl
New Zealand
Phone +64 94150459 0800222278 - tollfree
E-Mail sales@sick.co.nz

Norway

Phone +4767815000
E-Mail sick@sick.no

Poland

Phone +48 225394100
E-Mail info@sick.pl

Romania

Phone +40 356-17 1120
E-Mail office@sick.ro
Singapore
Phone +65 67443732
E-Mail sales.gsg@sick.com
Slovakia
Phone +421 482901201
E-Mail mail@sick-sk.sk

Slovenia

Phone +386 59178849
E-Mail office@sick.si
South Africa
Phone +27 100600550
E-Mail info@sickautomation.co.za

South Korea

Phone +82 2786 6321/4
E-Mail infokorea@sick.com

Spain

Phone +34 934803100
E-Mail info@sick.es

Sweden

Phone +46 101101000
E-Mail info@sick.se

Switzerland

Phone +41416192939
E-Mail contact@sick.ch

Taiwan

Phone +886-2-2375-6288
E-Mail sales@sick.com.tw

Thailand

Phone +66 26450009
E-Mail marcom.th@sick.com

Turkey

Phone +90 (216) 5285000
E-Mail info@sick.com.tr
United Arab Emirates
Phone +971 (0) 48865878
E-Mail contact@sick.ae
United Kingdom
Phone +44 (0)17278 31121
E-Mail info@sick.co.uk

USA

Phone +1 800.325.7425
E-Mail info@sick.com

Vietnam

Phone +65 67443732
E-Mail sales.gsg@sick.com

[^0]: $=$ lit up; $=$ flashing.

