

# LCD MODULE SPECIFICATION

Model: CG1212A - \_ \_ - \_ - \_ -

| Revision      | 00            |
|---------------|---------------|
| Engineering   | Longson Yeung |
| Date          | 11 Oct 2011   |
| Our Reference | 9045          |

ADDRESS: ROOM 1006, 10/F WESTIN CENTRE, 26 HUNG TO ROAD, KWUN TONG,

KOWLOON, HONG KONG.

TEL : (852) 2341 3238 (SALES OFFICE) (852) 2342 8228 (GENERAL OFFICE) FAX : (852) 2357 4237 (SALES OFFICE) (852) 2341 8785 (GENERAL OFFICE)

E-MAIL : cdl@cloverdisplay.com

URL : <a href="http://www.cloverdisplay.com">http://www.cloverdisplay.com</a>

#### **MODE OF DISPLAY**

Display mode **Display condition Viewing direction** STN: Yellow green Reflective type 6 O' clock Grey Transflective type ☐ 12 O' clock Blue (negative) Transmissive type 3 O' clock FSTN positive Others 9 O' clock FSTN negative LCD MODULE NUMBER NOTATION: <u>CG1212A- N N - S R - N 6 - T</u> \*(1)---Model number of standard LCD Modules \*(2)---Backlight type (1) (2) (3) (4) (5) (6) (7) (8) N – No backlight E – EL backlight L – Side-lited LED backlight M- Array LED backlight C - CCFL\*(3)---Backlight color N – No backlight A - AmberB - BlueO- Orange W-White Y – Yellow green M - RGB\*(4)---Display mode T - TNV – TN (Negative) S – STN Yellow green G – STN Grey B – STN Blue (Negative) F-FSTN N – FSTN (Negative) \*(5)---Rear polarizer type R – Reflective F-TransflectiveT-Transmissive\*(6)---Temperature range N - NormalW- Extended \*(7)---Viewing direction 6 – 6 O'clock 2 – 12 O'clock 3 - 3 O'clock 9 – 9 O'clock \*(8)---Special code for other requirements

SPEC. REV.00 PAGE 1 OF 15

(Can be omitted if not used)

## **GENERAL DESCRIPTION**

Display mode : 12 X 12 dots, COG LCD module

Interface : 8-bit parallel

Driving method : static

Controller IC : ST7045 or equivalent

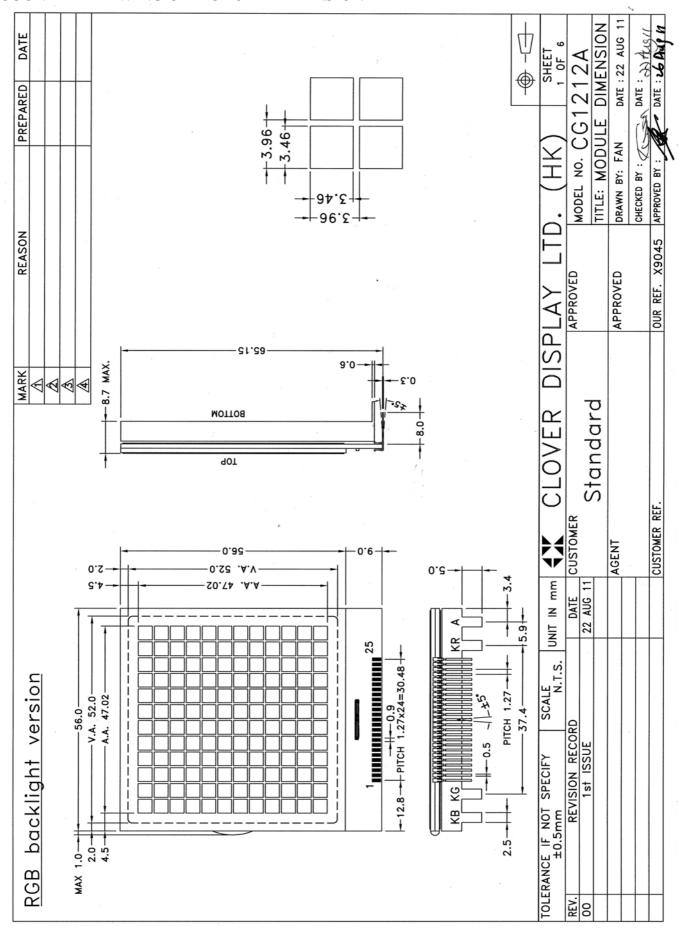
For the detailed information, please refer to the IC specifications.

## MECHANICAL DIMENSIONS

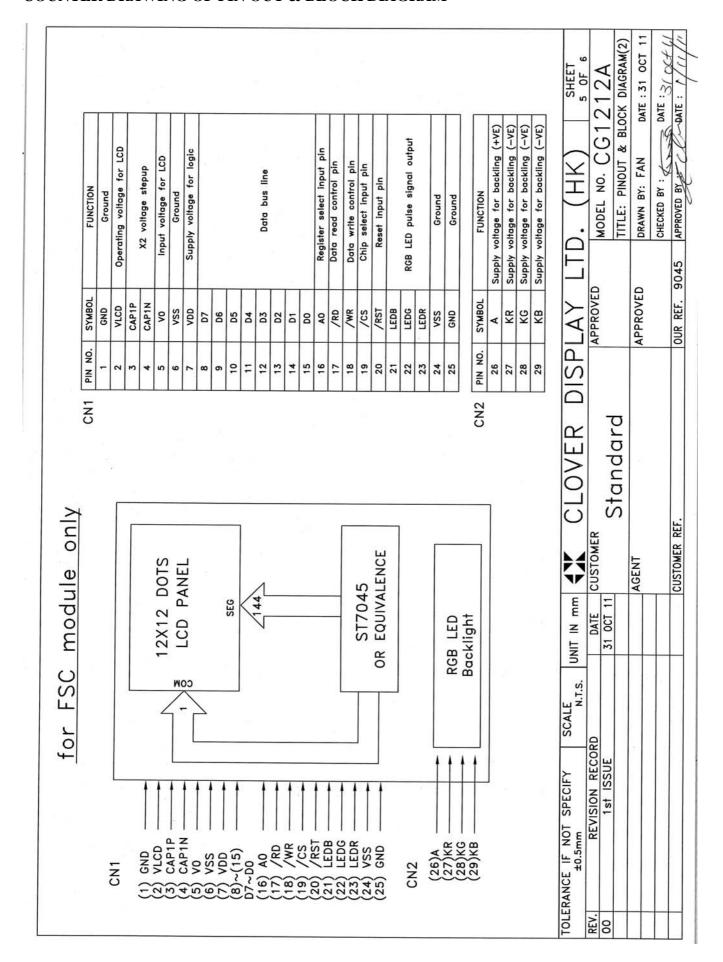
| Item              | Dimension                                 |                     | Unit | Item                 | Dimension       |        | Unit |
|-------------------|-------------------------------------------|---------------------|------|----------------------|-----------------|--------|------|
| Outline Dimension | 56.0(L)x65.2(W)x (H1/H2)                  |                     | mm   | Dot Pitch            | 3.96(L)x3.96(W) |        | mm   |
| Viewing Area      | 52.0(L)x52.0(W)                           |                     | mm   | Dot Size             | 3.46(L)x3.4     | 6(W)   | mm   |
| No Paghlight (N)  | H1                                        | -                   | mm   | Side Backlight       | H1              | 8.7MAX | mm   |
| No Backlight (N)  | H2                                        | -                   | mm   | RGB (LM)             | H2              | =      | mm   |
| EL Backlight (E)  | Poolslight (E) H1 - mm Amou Poolslight (M | Array Backlight (M) | H1   | -                    | mm              |        |      |
| EL Dacklight (E)  | H2                                        | -                   | mm   | Array Dacklight (WI) | H2              | -      | mm   |

## **CONNECTOR PIN ASSIGNMENT(CN1)**

| Pin No. | Symbol | Function                  | Pin No. | Symbol | Function                    |
|---------|--------|---------------------------|---------|--------|-----------------------------|
| 1       | GND    | Ground                    | 14      | D1     | Data bus line               |
| 2       | VLCD   | Operating voltage for LCD | 15      | D0     | Data bus fille              |
| 3       | CAP1P  | X2 voltage stepup         | 16      | A0     | Register select input pin   |
| 4       | CAP1N  | A2 voltage stepup         | 17      | /RD    | Data read control pin       |
| 5       | V0     | Input voltage for LCD     | 18      | /WR    | Data write control pin      |
| 6       | VSS    | Ground                    | 19      | /CS    | Chip select input pin       |
| 7       | VDD    | Supply voltage for logic  | 20      | /RST   | Reset input pin             |
| 8       | D7     |                           | 21      | LEDB   |                             |
| 9       | D6     |                           | 22      | LEDG   | RGB LED pulse signal output |
| 10      | D5     | Data bus line             | 23      | LEDR   |                             |
| 11      | D4     | Data dus fille            | 24      | VSS    | Ground                      |
| 12      | D3     |                           | 25      | GND    | Ground                      |
| 13      | D2     |                           |         |        |                             |


# CONNECTOR PIN ASSIGNMENT OF BACKLIGHT (CN2)

| Pin No. | Symbol | Function                           | Pin No. | Symbol | Function                           |
|---------|--------|------------------------------------|---------|--------|------------------------------------|
| (*)26   | A      | Supply Voltage for Backlight (+VE) | (*)28   | KG     | Supply Voltage for Backlight (-VE) |
| (*)27   | KR     | Supply Voltage for Backlight (-VE) | (*)29   | KB     | Supply Voltage for Backlight (-VE) |


Note  $(\sp{*})$  : KR , KG , KB are used for RGB backlight version only

SPEC. REV.00 PAGE 2 OF 15

#### COUNTER DRAWING OF MODULE DIMENSION

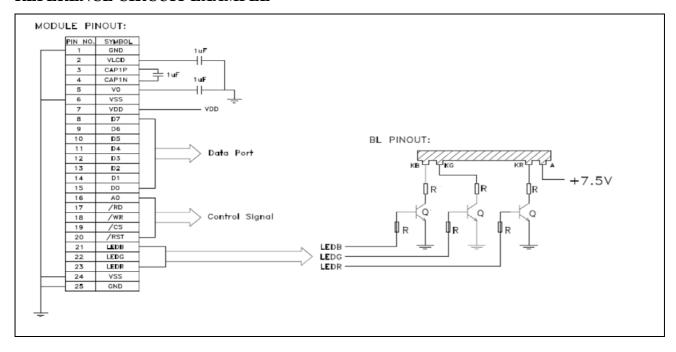


#### COUNTER DRAWING OF PIN OUT & BLOCK DIAGRAM



#### **ELECTRICAL CHARACTERISTICS**

| ELECTRICAL CHARACTERI         | Conditions: VSS=0V, Ta=25°C |        |      |        |      |
|-------------------------------|-----------------------------|--------|------|--------|------|
| Item                          | Symbol                      | MIN.   | TYP. | MAX.   | Unit |
| Supply Voltage for Logic      | VDD                         | _      | 3.0  | _      | V    |
| Supply Current for Logic      | IDD                         | _      | 0.88 | 1.32   | mA   |
| Operating Voltage for LCD (*) | VLCD                        | _      | 5.0  | _      | V    |
| 'High' Level Input Voltage    | VIH                         | 0.7VDD | _    | VDD    | V    |
| 'Low' Level Input Voltage     | VIL                         | VSS    | _    | 0.2VDD | V    |


Note (\*): There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

#### Side Backlight for RGB (LM):

Constant current driving:

| Item             | Symbol           | MIN. | TYP. | MAX. | Unit | Condition            |
|------------------|------------------|------|------|------|------|----------------------|
| Red BL Voltage   | $V_R$            | 1.8  | 2.0  | 2.2  | V    | $I_R = 80 \text{mA}$ |
| Green BL Voltage | $V_{G}$          | 2.9  | 3.15 | 3.3  | V    | $I_G = 40 \text{mA}$ |
| Blue BL Voltage  | $V_{\mathrm{B}}$ | 2.7  | 3.1  | 3.2  | V    | $I_B = 20 \text{mA}$ |

#### REFERENCE CIRCUIT EXAMPLE



## ABSOLUTE MAXIMUM RATINGS

Please make sure not to exceed the following maximum rating values under the worst application conditions

| Item                  | Symbol | Rating (for normal temperature) | Unit          |
|-----------------------|--------|---------------------------------|---------------|
| Supply Voltage        | Vdd    | -0.3to 3.6                      | V             |
| Input Voltage         | VT     | -0.3 to VDD +0.5                | V             |
| Operating Temperature | Topr   | 0 to 50                         | ${\mathbb C}$ |
| Storage Temperature   | Tstg   | -10 to 60                       | ${\mathbb C}$ |

SPEC. REV.00 PAGE 5 OF 15

# INSTRUCTIONS TABLE

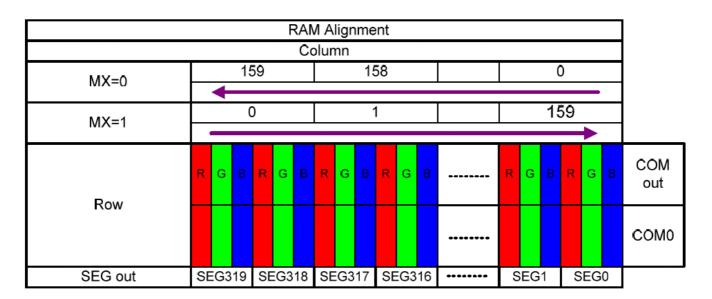
| COMMAND             |     |    |      |      | CO   | DE   |      |      |      |      | DESCRIPTION           |  |
|---------------------|-----|----|------|------|------|------|------|------|------|------|-----------------------|--|
| COMMAND             | HEX | A0 | D7   | D6   | D5   | D4   | D3   | D2   | D1   | D0   | DESCRIPTION           |  |
| NOP                 | 00  | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | No Operation          |  |
| Software reset      | 01  | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | Software reset        |  |
| Sleep in            | 10  | 0  | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | Sleep in mode         |  |
| Sleep out           | 11  | 0  | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 1    | Sleep out mode        |  |
| Inverse display off | 20  | 0  | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | Display Inversion off |  |
| Inverse display on  | 21  | 0  | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 1    | Display Inversion on  |  |
| Exit all point on   | 22  | 0  | 0    | 0    | 1    | 0    | 0    | 0    | 1    | 0    | Exit all point on     |  |
| Enter all point on  | 23  | 0  | 0    | 0    | 1    | 0    | 0    | 0    | 1    | 1    | Enter all point on    |  |
| Display off         | 28  | 0  | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | Display off           |  |
| Display on          | 29  | 0  | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 1    | Display on            |  |
|                     | 2A  | 0  | 0    | 0    | 1    | 0    | 1    | 0    | 1    | 0    | Column address set    |  |
| Column address set  | -   | 1  | CS7  | CS6  | CS5  | CS4  | CS3  | CS2  | CS1  | CS0  | Column start address  |  |
|                     | -   | 1  | CE7  | CE6  | CE5  | CE4  | CE3  | CE2  | CE1  | CE0  | Column end address    |  |
| Memory write        | 2C  | 0  | 0    | 0    | 1    | 0    | 1    | 1    | 0    | 0    | Write data to memory  |  |
| Memory read         | 2E  | 0  | 0    | 0    | 1    | 0    | 1    | 1    | 1    | 0    | Read data from memory |  |
| •                   | B1  | 0  | 1    | 0    | 1    | 1    | 0    | 0    | 0    | 1    | . =                   |  |
| LED Mode            | -   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | LEDP | 0    | LED Mode              |  |
|                     | B2  | 0  | 1    | 0    | 1    | 1    | 0    | 0    | 1    | 0    |                       |  |
| Frame Frequency     | -   | 1  | 0    | 0    | 0    | 1    | FR3  | FR2  | FR1  | FR0  | Frame Frequency       |  |
|                     | B4  | 0  | 1    | 0    | 1    | 1    | 0    | 1    | 0    | 0    |                       |  |
|                     | -   | 1  | SRR3 | SRR2 | SRR1 | SRR0 | SRF3 | SRF2 | SRF1 | SRF0 |                       |  |
| SEG waveform set    | -   | 1  | SGR3 | SGR2 | SGR1 | SGR0 | SGF3 | SGF2 | SGF1 | SGF0 | SEG waveform set      |  |
|                     | -   | 1  | SBR3 |      | SBR1 | SBR0 | SBF3 | SBF2 | SBF1 | SBF0 |                       |  |
|                     | В6  | 0  | 1    | 0    | 1    | 1    | 0    | 1    | 1    | 0    |                       |  |
|                     | -   | 1  | LRS7 | LRS6 | LRS5 | LRS4 | LRS3 | LRS2 | LRS1 | LRS0 | •                     |  |
|                     | -   | 1  | LGS7 | LGS6 | LGS5 | LGS4 | LGS3 | LGS2 | LGS1 | LGS0 |                       |  |
| LED waveform set    | -   | 1  | LBS7 | LBS6 | LBS5 | LBS4 | LBS3 | LBS2 | LBS1 | LBS0 | LED waveform set      |  |
|                     | -   | 1  | LRW7 | LRW6 | LRW5 | LRW4 | LRW3 | LRW2 | LRW1 | LRW0 |                       |  |
|                     | -   | 1  |      |      |      |      | LGW3 |      |      |      |                       |  |
|                     | -   | 1  | LBW7 | LBW6 | LBW5 | LBW4 | LBW3 | LBW2 | LBW1 | LBW0 |                       |  |
| I OD a constant     | В7  | 0  | 1    | 0    | 1    | 1    | 0    | 1    | 1    | 1    | LCD scan set          |  |
| LCD scan set        | -   | 1  | 0    | MX   | 0    | 0    | MS   | 0    | 0    | 0    | Master/Slave enable   |  |
| Enter Read modify   | B8  | 0  | 1    | 0    | 1    | 1    | 1    | 0    | 0    | 0    | Enter Read modify     |  |
| Exit Read modify    | В9  | 0  | 1    | 0    | 1    | 1    | 1    | 0    | 0    | 1    | Exit Read modify      |  |
| •                   | C0  | 0  | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | •                     |  |
| Vop set             | -   | 1  | Vop7 | Vop6 | Vop5 | Vop4 | Vop3 | Vop2 | Vop1 | Vop0 | Vop set               |  |
| •                   | -   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | Vop8 | Range 3V to 18V       |  |
| <b>D</b> 0 : :      | D2  | 0  | 1    | 1    | 0    | 1    | 0    | 0    | 1    | 0    | 5 0 1 1               |  |
| Power Control       | -   | 1  | 0    | 0    | 0    | OSC  | BST  | FOL  | VO   | VREF | Power Control         |  |
| 000150              | D4  | 0  | 1    | 1    | 0    | 1    | 0    | 1    | 0    | 0    | DOD I ED              |  |
| RGB LED control     | -   | 1  | 0    | 0    | 0    | 0    | BK   | LEDR | LEDG |      | RGB LED control       |  |

SPEC. REV.00 PAGE 6 OF 15

#### RECOMMENDED INITIAL SETTINGS

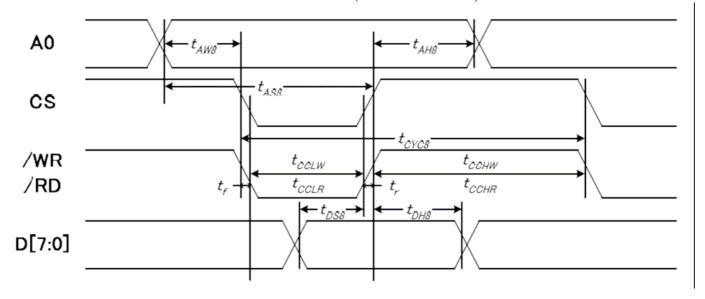
System Reset: 01H Sleep out: 11H

Power control: d2H,00H Vop Set: c0H,32H,00H LED mode: b1H,02H LCD scan set: b7H,00H


Seg waveform set: b4H,22H,22H,22H

Led waveform set: b6H,22H,22H,22H,33H,33H,33H

Display on: 29H


#### **DISPLAY DATA RAM**

It is 320 X 1 X 3 bits capacity RAM prepared for storing dot data. Refer to the following memory map for the RAM Configuration.



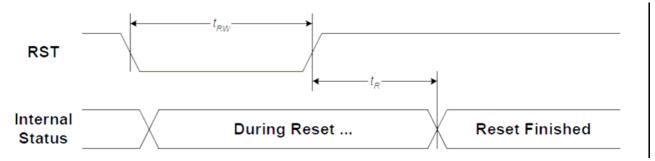
SPEC. REV.00 PAGE 7 OF 15

# PARALLEL INTERFACE TIMING DIAGRAM (For 8080-series)



## PARALLEL INTERFACE TIMING CHARACTERISTICS((For 8080-series)

(VSS=0V, VDDI=2.4~3.3V, VDDA=3.0V, Ta = 25℃)


| Item                      | Signal | Symbol | Condition | Min.  | Max. | Unit |
|---------------------------|--------|--------|-----------|-------|------|------|
| Address setup time        |        | tAW8   |           | T.B.D | _    |      |
| Address setup time        | A0     | tAS8   |           | T.B.D | _    |      |
| Address hold time         |        | tAH8   |           | T.B.D | _    |      |
| System cycle time         |        | tCYC8  |           | T.B.D | _    |      |
| /WR L pulse width (WRITE) | WR     | tCCLW  |           | T.B.D | _    |      |
| /WR H pulse width (WRITE) |        | tCCHW  |           | T.B.D | _    | ns   |
| /RD L pulse width (READ)  | DD.    | tCCLR  |           | T.B.D | _    |      |
| /RD H pulse width (READ)  | RD     | tCCHR  |           | T.B.D | _    |      |
| WRITE Data setup time     | D(7:01 | tDS8   |           | T.B.D | _    |      |
| WRITE Data hold time      | D[7:0] | tDH8   |           | T.B.D | _    |      |

<sup>\*1</sup> The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

SPEC. REV.00 PAGE 8 OF 15

<sup>\*2</sup> All timing is specified using 20% and 80% of VDDI as the standard.

## **RESET TIMING DIAGRAM**



## **RESET TIMING**

(VSS=0V, VDDI=2.4~3.3V, VDDA=3.0V, Ta = 25℃)

| Item                  | Symbol | Condition | Min.  | Max.  | Unit |
|-----------------------|--------|-----------|-------|-------|------|
| Reset time            | tR     |           | _     | T.B.D |      |
| Reset "L" pulse width | tRW    |           | T.B.D | _     | us   |

<sup>\*1</sup> The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

SPEC. REV.00 PAGE 9 OF 15

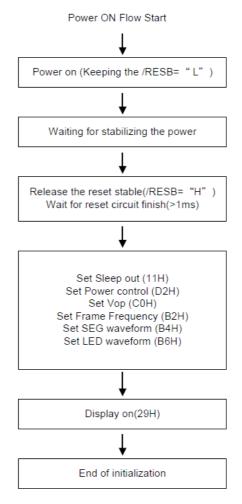
<sup>\*2</sup> All timing is specified using 20% and 80% of VDDI as the standard.

#### THE RESET CIRCUIT

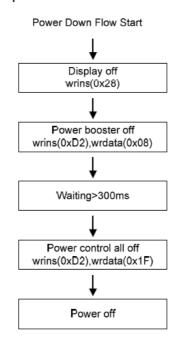
Setting /RST to"L" or Reset instruction can initialize internal function.

When /RST becomes "L", following procedure is occurred.

- -- Oscillator circuit is stopped
- -- The LCD power supply circuit is stopped
- -- Display OFF
- -- Display all point OFF
- -- Segment/Common output go to the VSS level


Display normal Row address: 0 Column address: 0

Power control [OSC BST FOL V0 VREF] = All OFF


SPEC. REV.00 PAGE 10 OF 15

#### INITIALIZING WITHOUT THE BUILT-IN POWER SUPPLY CIRCUITS

Referential instruction setup flow for power on:



Referential instruction setup flow for power down:



SPEC. REV.00 PAGE 11 OF 15

## **ELECTRO-OPTICAL CHARACTERISTICS**

MEASURING CONDITION: POWER SUPPLY = VOP / 64 HzTEMPERATURE =  $23 \pm 5$  °C

RELATIVE HUMIDITY =  $60 \pm 20 \%$ 

| ITEM           | SYMBOL | UNIT | TYP. TN |
|----------------|--------|------|---------|
| RESPONSE TIME  | Ton    | ms   | 60      |
|                | Toff   | ms   | 80      |
| CONTRAST RATIO | Cr     | -    | 30      |
|                | V3:00  | 0    | 70      |
| VIEWING ANGLE  | V6:00  | 0    | 65      |
| (Cr ≥ 2)       | V9:00  | 0    | 70      |
|                | V12:00 | 0    | 25      |

THE ELECTRO-OPTICAL CHARACTERISTICS ARE MEASURED VALUE BUT NOT GUARANTEED ONES.

## RELIABILITY OF LCD MODULE

|                              | TEST CONDITION                |           |
|------------------------------|-------------------------------|-----------|
| ITEM                         | FOR NORMAL TEMPERATURE        | TIME      |
| High temperature operating   | 50°C                          | 240 hours |
| Low temperature operating    | 0°C                           | 240 hours |
| High temperature storage     | 60°C                          | 240 hours |
| Low temperature storage      | -10°C                         | 240 hours |
| Temperature-humidity storage | 40°C 90% R.H.                 | 96 hours  |
| Temperature cycling          | -10°C to 60°C                 | 5 avala   |
|                              | 30 Min Dwell                  | 5 cycle   |
| Vibration Test at LCM Level  | Freq 10-55 Hz                 |           |
|                              | Sweep rate: 10-55-10 at 1 min |           |
|                              | Sweep mode Linear             | _         |
|                              | Displacement: 2 mm p-p        |           |
|                              | 1 Hour each for X, Y, Z       |           |

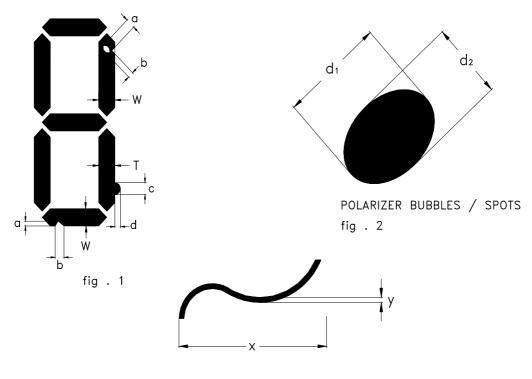
SPEC. REV.00 PAGE 12 OF 15

# **SAMPLING METHOD**

SAMPLING PLAN: MIL-STD 105E

CLASS OF AQL: LEVEL II/ SINGLE SAMPLING

 $MAJOR-0.65\% \qquad MINOR-1.5\%$ 


# **QUALITY STANDARD**

| DEFECT                 | CRITERIA                                                    |        | ТҮРЕ  | FIGURE |
|------------------------|-------------------------------------------------------------|--------|-------|--------|
| SHORT CIRCUIT          | -                                                           |        | MAJOR | -      |
| MISSING SEGMENT        | -                                                           |        | MAJOR | -      |
| UNEVEN / POOR CONTRAST | -                                                           |        | MAJOR | -      |
| CROSS TALK             | -                                                           |        | MAJOR | -      |
| PIN HOLE               | $MAX(a,b) \le 1/4 W$                                        |        | MINOR | 1      |
| EXCESS SEGMENT         | $MAX(c,d) \leq 1/4T$                                        |        | MINOR | 1      |
| BUBBLES                | d* ≥ 0.2                                                    | QTY=0  | MINOR | 2      |
| BLACKS SPOTS           | d ≤ 0.3                                                     | N.A.** | MINOR | 2      |
|                        | 0.3 <d≤0.4< td=""><td>QTY≤1</td><td></td><td></td></d≤0.4<> | QTY≤1  |       |        |
|                        | 0.4 <d< td=""><td>QTY=0</td><td></td><td></td></d<>         | QTY=0  |       |        |
| LINE SCRATCHES         | x≥0.7 y≥0.05                                                | QTY=0  | MINOR | 3      |
| BLACK LINE             | x≥0.7 y≥0.05                                                | QTY=0  | MINOR | 3      |

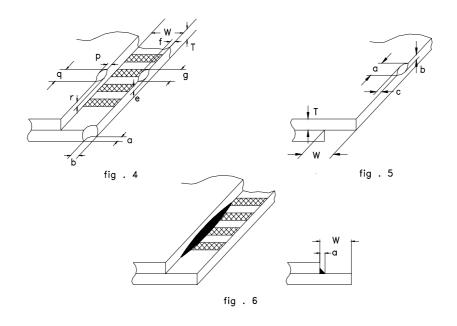
\* $d = MAX(d_1,d_2)$ 

\*\* N. A . = NOT APPLICABLE

DEFECT TABLE : B



LINE SCRATCHES / BLACK LINE fig . 3


SPEC. REV.00

# $\ \, \textbf{QUALITY STANDARD} \, ( \, \, \textbf{CONT.})$

| DEFECT           |              | CRITERIA              | ТҮРЕ  | FIGURE |
|------------------|--------------|-----------------------|-------|--------|
|                  | CONTACT EDGE | e≤1/2T f≤1/3W g≤3.5   |       | 4      |
| CHIPS            | BOTTOM GLASS | p≤1.0 q≤3.5 r≤1/2T    | MINOR | 4      |
|                  | CORNER       | a≤1.5 b≤W             |       | 4      |
|                  | TOP GLASS    | a≤3.0 b≤1/3T c≤1/2W   |       | 5      |
| GLASS PROTRUSION |              | $a \le 1/4 \text{ W}$ | MINOR | 6      |
| RAINBOW          | •            | -                     | MINOR | -      |

UNLESS STATE OTHERWISE , ALL UNIT ARE IN MILLIMETER .

DEFECT TABLE : B



SPEC. REV.00 PAGE 14 OF 15

#### HANDLING PRECAUTIONS

#### (1) CAUTION OF LCD HANDLING & CLEANING

Use soft cloth with solvent (recommended below) to clean the display surface and wipe lightly.

- Isopropyl alcohol, ethyl alcohol, trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent;

-water, ketone, aromatics

#### (2) CAUTION AGAINST STATIC CHARGE

The LCD modules use CMOS LSI drivers, so customers are recommend that any unused input terminal would be connected to  $V_{DD}$  or  $V_{SS}$ , do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

Remove the protective film slowly and, if possible, under ESD control device like ion blower and humidity of working room should be kept over 50%RH to reduce risk of static charge.

#### (3) PACKAGING

Avoid intense shock and falls from a height and do not operate or store them exposed direct to sunshine or high temperature/humidity.

#### (4) CAUTION FOR OPERATION

It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage than the limit causes the shorter LCD life. The use of direct current drive should be avoided because an electrochemical reaction due to direct current causes LCD's undesirable deterioration.

Response time will be extremely delayed at low temperature, and LCD's show dark color at high temperature. However those phenomena do not mean malfunction or out of order with LCD's.

Some font will be abnormally displayed when the display area is pushed hard during operation. But it resumes normal condition after turning off once.

#### (5) SOLDERING (for Pin type)

It is recommended to complete dip soldering at 270 °C or hand soldering at 280 °C within 3 seconds. The soldering position is at least 3mm apart from the pin head. Wave or reflow soldering are not recommended. Metal pins should not be soldered for more than 3 times and each soldering should be done after cool down of metal pins

#### (6) SAFETY

For crash damaged or unnecessary LCD's, it is recommended to wash off liquid crystal by either of solvents such as acetone and ethanol and should be burned up later.

When any liquid leaked out of a damaged glass cell comes in contact with your hands, wash it off with soap and water.

#### WARRANTY

CLOVER will replace or repair any of her LCD module in accordance with her LCD specification for a period of one year from date of shipment. The warranty liability of Clover is limited to repair and/or replacement. Clover will not be responsible for any subsequent or consequential event.

SPEC. REV.00 PAGE 15 OF 15