

LCD MODULE SPECIFICATION

Model: CG240160D - _ _ - _ - _ - _

Revision	00
Engineering	Jackson Fung
Date	19 June 2015
Our Reference	X9058

ADDRESS: 1st FLOOR, EFFICIENCY HOUSE, 35 TAI YAU STREET, SAN PO KONG,

KOWLOON, HONG KONG.

TEL : (852) 2341 3238 (SALES OFFICE) (852) 2342 8228 (GENERAL OFFICE)

FAX : (852) 2357 4237 (SALES OFFICE)

E-MAIL : <u>cdl@cloverdisplay.com</u>

URL : http://www.cloverdisplay.com

MODE OF DISPLAY

Display mode **Display condition** Viewing direction STN: Yellow green 6 O' clock Reflective type Grey Transflective type ☐ 12 O' clock Blue (negative) Transmissive type 3 O' clock FSTN positive Others 9 O' clock ☐ FSTN negative LCD MODULE NUMBER NOTATION: CG240160D - N N - S R - N 6 - T *(1)---Model number of standard LCD Modules *(2)---Backlight type (1) (2) (3) (4) (5) (6) (7) (8) N – No backlight E – EL backlight L – Side-lited LED backlight M- Array LED backlight C - CCFL*(3)---Backlight color N – No backlight A - AmberB – Blue O- Orange W-White Y - Yellow green *(4)---Display mode T - TNV – TN (Negative) S – STN Yellow green G – STN Grey B – STN Blue (Negative) F - FSTNN – FSTN (Negative) *(5)---Rear polarizer type R – Reflective F – Transflective T – Transmissive *(6)---Temperature range N - NormalW-Extended *(7)---Viewing direction 6-6 O'clock 2 – 12 O'clock 3 - 3 O'clock 9 – 9 O'clock *(8)---Special code for other requirements

SPEC. REV.00 PAGE 1 OF 22

(Can be omitted if not used)

GENERAL DESCRIPTION

Display mode : 240 X 160 dots graphic COG LCD module

Interface : 8-bit parallel / 4-line serial

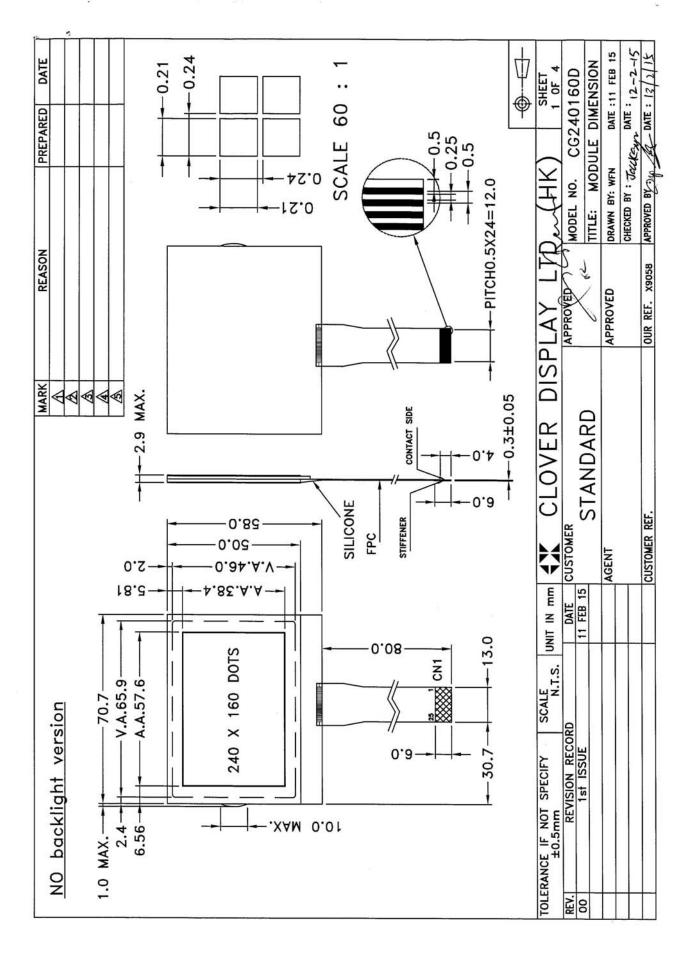
Driving method : 1/160 duty, 1/14 bias

Controller IC : Sitronix ST75256 or equivalent

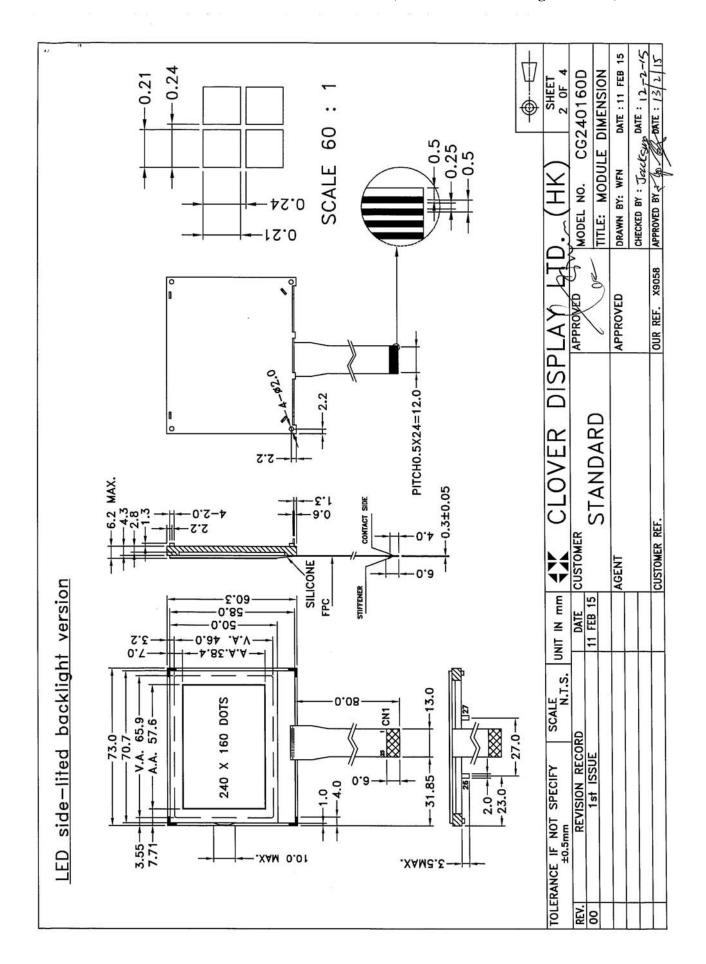
For the detailed information, please refer to the IC specifications.

MECHANICAL DIMENSIONS

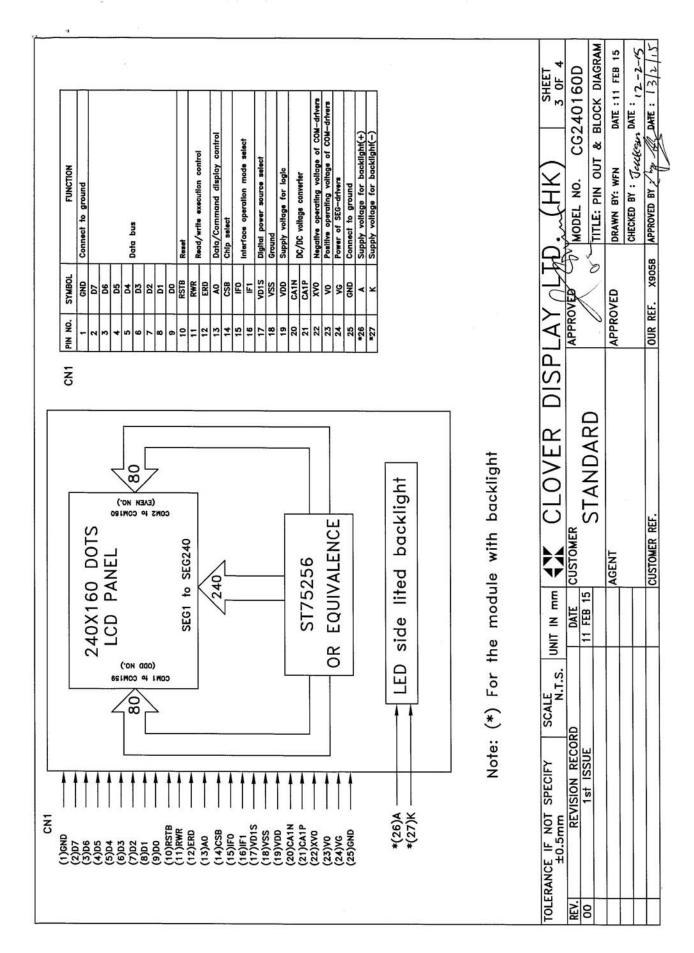
Item	Dimension	Unit	Item	Dimension	Unit
Outline Dimension		mm	Dot Pitch	0.24(L)x0.24(W)	mm
No Backlight	70.7(L)x58.0(W)x2.9MAX.(H)	mm	Dot Size	0.21(L)x0.21(W)	mm
LED side-lited backlight	73.0(L)x60.3(W)x6.2MAX.(H)	mm	Viewing Area	65.9(L)x46.0(W)	mm


CONNECTOR PIN ASSIGNMENT (CN1)

		•					
Pin No.	Symbol	Function	Pin No.	Symbol	Function		
1	GND	Connect to ground	15	IF0	Interfece energtion made calcut		
2	D7		16	IF1	Interface operation mode select		
3	D6		17	VD1S	Digital power source select		
4	D5		18	VSS	Ground		
5	D4	Data bus	19	VDD	Supply voltage for logic		
6	D3	Data dus	20	CA1N	DC/DC voltage converter		
7	D2		21	CA1P			
8	D1		22	XV0	Negative operating voltage of COM-drivers		
9	D0		23	V0	Positive operating voltage of COM-drivers		
10	RSTB	Reset	24	VG	Power of SEG-drivers		
11	RWR	Read/write execution control	25	GND	Connect to ground		
12	ERD	Read/write execution control	* 26	A	Supply voltage for backlight (+)		
13	A0	Data/command display control	* 27	K	Supply voltage for backlight (-)		
14	CSB	Chip select					


Note (*) : Pin 26, 27 are used for backlight version

SPEC. REV.00 PAGE 2 OF 22


COUNTER DRAWING OF MODULE DIMENSION (No backlight version)

COUNTER DRAWING OF MODULE DIMENSION (LED site-lited backlight version)

COUNTER DRAWING OF PIN OUT & BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

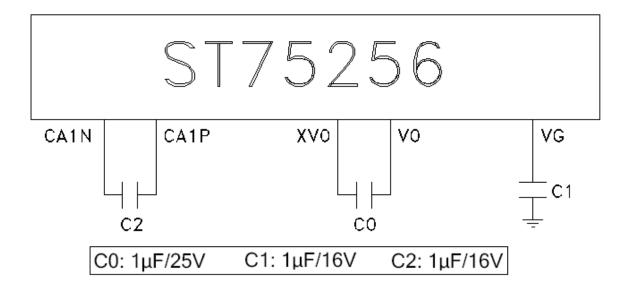
Conditions:	VSS=0V.	Ta=25°C

Item	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage for Logic	VDD	3.05	3.3	3.55	V
Supply Current for Logic	IDD	_	1.5		mA
Operating Voltage for LCD (*)	VLCD	15.7	16.5	17.3	V
'High' Level Input Voltage	VIH	0.7VDD	_		V
'Low' Level Input Voltage	VIL	_	_	0.3VDD	V

Note (*): There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

Side/Array BL:

Constant voltage driving:


Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
White backlight current	I_{BL}	_	35	45	mA	$V_{BL} = 3.3V$
Blue backlight current	I_{BL}	_	35	45	mA	$V_{BL} = 3.3V$

ABSOLUTE MAXIMUM RATINGS

Please make sure not to exceed the following maximum rating values under the worst application conditions

Item	Symbol	Rating (for normal temperature)	Rating (for wide temperature)	Unit
Supply Voltage	Vdd	-0.3 to 4	-0.3 to 4	V
Input Voltage	VT	-0.3 to VDD +0.3	-0.3 to VDD +0.3	V
Operating Temperature	Topr	0 to 50	-20 to 70	$^{\circ}\mathbb{C}$
Storage Temperature	Tstg	-10 to 60	-30 to 80	$^{\circ}\mathbb{C}$

REFERENCE CIRCUIT EXAMPLE

SPEC. REV.00 PAGE 6 OF 22

INSTRUCTIONS TABLE

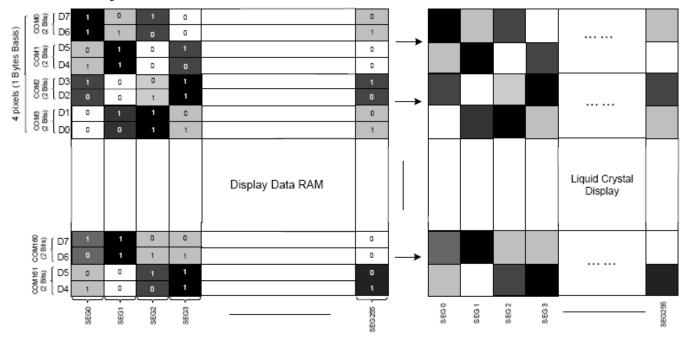
INSTRUCTION	Α0	R/W			C	OMMAI	ND BY	TE			DESCRIPTION
INSTRUCTION	AU	FC/ VV	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
1.Extension Command	0	0	0	0	1	1	EXT1	0	0	EXT0	Set extension instruction
Ext[1:0]=0,0 (Extensio	n Cor	nman	d 1)								
2.Display ON/OFF	0	0	1	0	1	0	1	1	1	DSP	Set LCD display DSP=0: Display off DSP=1: Display on
3.Inverse Display	0	0	1	0	1	0	0	1	1	INV	Set inverse display INV=0: Normal display INV=1: Inverse display
4.All Pixel ON/OFF	0	0	0	0	1	0	0	0	1	AP	Set all pixel on mode AP=0: All pixel off mode AP=1: All pixel on mode
	0	0	1	1	0	0	1	0	1	0	Set display control CLD :Set CL dividing ratio
5.Display Control	1	0	0	0	0	0	0	CLD	0	0	LF[4:0] : Set N-line inversion counter
	1	0	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	DT[7:0] : Set the number of duty FI : Set the inversion type of
	1	0	0	0	LF4	FI	LF3	LF2	LF1	LF0	frame at the end of common scan cycle
6.Power Save	0	0	1	0	0	1	0	1	0	SLP	Set power save mode SLP=0: Sleep out mode SLP=1: Sleep in mode
	0	0	0	1	1	1	0	1	0	1	Set Page Address Starting Page address:
7.Set Page Address	1	0	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	00h≦YS≦28h Ending Page address:
	1	0	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0	YS≦YE≦28h
	0	0	0	0	0	1	0	1	0	1	Set Column Address Starting Column address:
8.Set Column Address	1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	00h≦XS≦FFh Ending Column address:
	1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	XS≦XE≦FFh
9.Data Scan Direction	0	0	1	0	1	1	1	1	0	0	Set normal/ inverse display of address and address scan
	1	0	0	0	0	0	0	C/L	MX	MY	direction
10.Write Data	0	0	0	1	0	1	1	1	0	0	Write data to DDRAM
	1	0	D7	D6	D5	D4	D3	D2	D1	D0	
11.Read Data	0	0	0	1	0	1	1	1	0	1	Read data from DDRAM
	1	1	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	1	0	1	0	1	0	0	0	Set partial area Starting partial display address:
12.Partial In	1	0	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0	00h≦PTS≦A1h Ending partial display address:
	1	0	PTE7	PTE6	PTE5	PTE4	PTE3	PTE2	PTE1	PTE0	00h≦PTE≦A1h

SPEC. REV.00 PAGE 7 OF 22

					C	OMMAI	ND BY	ΓΕ			
INSTRUCTION	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
13.Partial Out	0	0	1	0	1	0	1	0	0	1	Exit the partial mode
14.Read/Modify/Write In	0	0	1	1	1	0	0	0	0	0	Enable read modify write
15.Read/Modify/Write Out	0	0	1	1	1	0	1	1	1	0	Disable read modify write
	0	0	1	0	1	0	1	0	1	0	
	1	0	TL7	TL6	TL5	TL4	TL3	TL2	TL1	TL0	
16.Scroll Area	1	0	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0	Set scroll area
	1	0	NSL7	NSL6	NSL5	NSL4	NSL3	NSL2	NSL1	NSL0	
	1	0	0	0	0	0	0	0	SCM1	SCM0	
17.Set Start Line	0	0	1	0	1	0	1	0	1	1	Set scroll start address
17.Set Start Line	1	0	SL7	SL6	SL5	SL4	SL3	SL2	SL1	SL0	00h≦SL≦A1h
18.OSC ON	0	0	1	1	0	1	0	0	0	1	Turn on the internal oscillator
19.OSC OFF	0	0	1	1	0	1	0	0	1	0	Turn off the internal oscillator
20.Power Control	0	0	0	0	1	0	0	0	0	0	Power circuit operation VB=0: OFF, VB=1: ON VF=0: OFF, VF=1: ON VR=0: OFF, VR=1: ON
20.Fower Control	1	0	0	0	0	0	VB	0	VF	VR	
	0	0	1	0	0	0	0	0	0	1	
21.Set Vop	1	0	0	0	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	Set Vop
	1	0	0	0	0	0	0	Vop8	Vop7	Vop6	
22.Vop Control	0	0	1	1	0	1	0	1	1	VOL	Control Vop VOL=0: Vop increase one step VOL=1: Vop decrease one step
23.Read Register Mode	0	0	0	1	1	1	1	1	0	REG	Set read register mode REG=0: read the register value of VPR[5:0] REG=1: read the register value of VPR[8:6]
24.Nop	0	0	0	0	1	0	0	1	0	1	No operation
25.Read Status	0	1	D7	D6	D5	D4	D3	D2	D1	D0	Read status byte
26.Data Format Select	0	0	0	0	0	0	1	DO	0	0	DO=0; LSB on bottom (Default) DO=1; LSB on top
27 Dienlay Mode	0	0	1	1	1	1	0	0	0	0	Set display mode
27. Display Mode	1	0	0	0	0	1	0	0	0	DM	DM=0 :Mono(Default) DM=1 :4Gray Scale Mode
28.ICON Control	0	0	0	1	1	1	0	1	1	ICON	Enable/Disable ICON ICON=1 ; Enable ICON=0 ; Disable

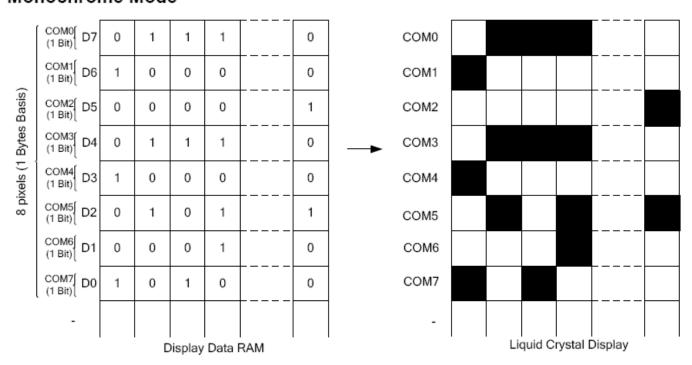
SPEC. REV.00 PAGE 8 OF 22

	COMMAND BYTE										
INSTRUCTION	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
Ext[1:0]=0,1 (Extension	n Cor										
	0	0	0	0	1	1	0	0	1	0	
29.Analog Circuit Set	1	0	0	0	0	0	0	0	0	0	Set analog set BE[1:0]: Booster efficiency set
	1	0	0	0	0	0	0	0	BE1	BE0	BS[2:0]: Set bias ratio
	1	0	0	0	0	0	0	BS2	BS1	BS0	
30.Booster Level	0	0	0	1	0	1	0	0	0	1	Set booster level
00.000001 20701	1	0	1	1	1	1	1	0	1	BST	Cot Booter forei
31. Driving Select	0	0	0	1	0	0	0	0	0	DS	Power type DS=0: Internal (Default) DS=1 :External
32.High Power Mode	0	0	0	1	0	0	1	0	0	HPM	Set high power mode HPM=0 ; Normal Mode HPM =1 ; High Power Mode
	0	0	1	1	0	1	0	1	1	1	Set auto-read instruction
33.Auto Read Control	1	0	1	0	0	XARD	1	1	1	1	-XARD=0: Enable auto read XARD=1: Disable auto read
34.OTP WR/RD	0	0	1	1	1	0	0	0	0	0	OTP WR/RD control WR/RD=0: Enable OTP read WR/RD=1: Enable OTP write
Control	1	0	0	0	WR/ RD	0	0	0	0	0	
35.OTP Control Out	0	0	1	1	1	0	0	0	0	1	OTP control out
36.OTP Write	0	0	1	1	1	0	0	0	1	0	OTP write
37.OTP Read	0	0	1	1	1	0	0	0	1	1	OTP read
38.OTP Selection	0	0	1	1	1	0	0	1	0	0	OTP selection control
Control	1	0	1	Ctrl	0	1	1	0	0	1	Ctrl=1: Disable OTP Ctrl=0: Enable OTP
39.OTP Programming	0	0	1	1	1	0	0	1	0	1	OTD
Setting	1	0	0	0	0	0	1	1	1	1	OTP programming setting
	0	0	1	1	1	1	0	0	0	0	
	1	0	0	0	0	FRA4	FRA3	FRA2	FRA1	FRA0	
40.Frame Rate	1	0	0	0	0	FRB4	FRB3	FRB2	FRB1	FRB0	Frame rate setting in different temperature range
	1	0	0	0	0	FRC4	FRC3	FRC2	FRC1		tomporature range
	1	0	0	0	0	FRD4	FRD3	FRD2	FRD1	FRD0	
	0	0	1	1	1	1	0	0	1	0	
41.Temperature	1	0	0	TA6	TA5	TA4	TA3	TA2	TA1	TA0	Tomporature
Range	1	0	0	TB6	TB5	TB4	TB3	TB2	TB1	TB0	Temperature range setting
	1	0	0	TC6	TC5	TC4	TC3	TC2	TC1	TC0	

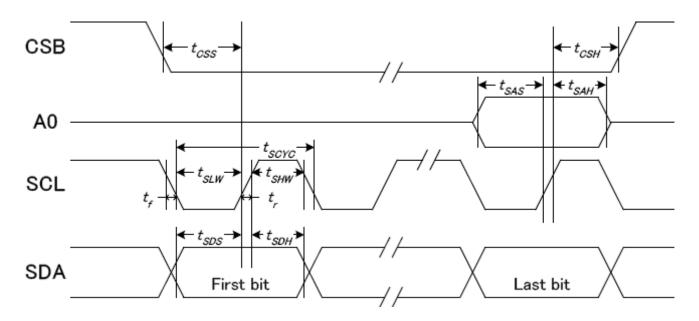

SPEC. REV.00 PAGE 9 OF 22

INCTRUCTION		DAM	İ		C	OMMAI	ND BY	ГΕ			DESCRIPTION
INSTRUCTION	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
	0	0	1	1	1	1	0	1	0	0	
	1	0	MT13	MT12	MT11	MT10	MT03	MT02	MT01	MT00	
	1	0	MT33	MT32	MT31	MT30	MT23	MT22	MT21	MT20	
42 Tomporatura	1	0	MT53	MT52	MT51	MT50	MT43	MT42	MT41	MT40	
42.Temperature Gradient Compensation	1	0	MT73	MT72	MT71	MT70	MT63	MT62	MT61	MT60	Set temperature gradient compensation coefficient
	1	0	MT93	MT92	MT91	MT90	MT83	MT82	MT81	MT80	compensation coefficient
	1	0	MTB3	MTB2	MTB1	MTB0	MTA3	MTA2	MTA1	MTA0	
	1	0	MTD3	MTD2	MTD1	MTD0	MTC3	MTC2	MTC1	MTC0	
	1	0	MTF3	MTF2	MTF1	MTF0	MTE3	MTE2	MTE1	MTE0	
Ext[1:0]=1,0(Extension	1 Com	mano	3)								
43.Set ID	0	0	1	1	0	1	0	1	0	1	Set ID
45.56110	1	0	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	Set ID
44 Read ID	0	0	0	1	1	1	1	1	1	RID	Read ID
44 Reau ID	0	1	D7	D6	D5	D4	D3	D2	D1	D0	RID=1 ; Enable RID=0 ; Disable

SPEC. REV.00 PAGE 10 OF 22


DISPLAY DATA RAM

4-Level Gray Scale Mode

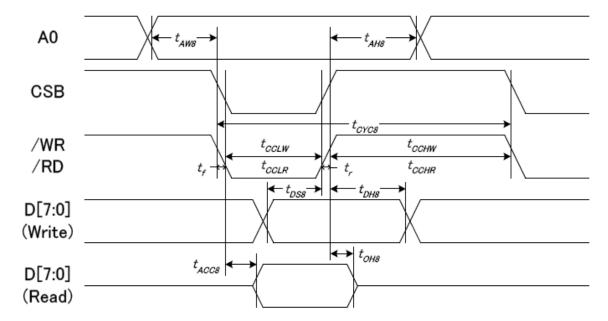

2 Bits	Data 0~3	DDF	RAM	LCD			
D2N+1	D2N		U IIVI	LOD			
1	1	1					
0	0	0	0 0				
1	0	1	0				
0	1	0	1				

Monochrome Mode

SERIAL INTERFACE TIMING DIAGRAM

System Bus Timing for 4-Line SPI MCU Interface

VDD1 = 1.8~3.3V, Ta = 25°C


Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		60	_	
SCLK "H" pulse width	SCLK	tSHW		30	_	
SCLK "L" pulse width		tSLW		30	_	
Address setup time	A0	tSAS		20	_	
Address hold time		tSAH		20	_	ne
Data setup time	00.4	tSDS		20	_	ns
Data hold time	SDA	tSDH		20	_	
CSB-SCLK time		tCSS		20	_	
CSB-SCLK time	CSB	tCSH		20	_	
CS "H" pulse width		tCHW		0	-	

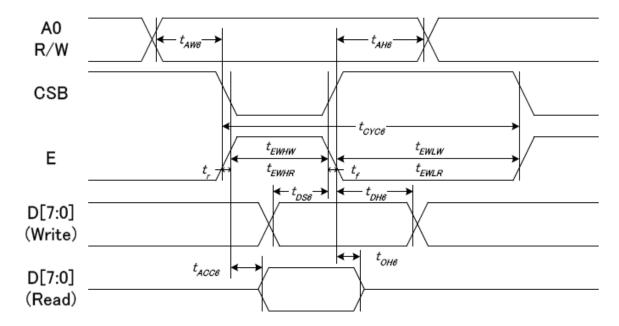
Note:

- 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
- 2. All timing is specified using 20% and 80% of VDD1 as the standard.

SPEC. REV.00 PAGE 12 OF 22

System Bus Timing for 8080 MCU Interface

VDD1 = 1.8~3.3V, Ta = 25°C


Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time	- A0	tAW8		20	_	
Address hold time	AU	tAH8		0	_	
System cycle time (WRITE)		tCYC8		160	_	
/WR L pulse width (WRITE)	WR	tCCLW		70	_	
WR H pulse width (WRITE)		tCCHW		70	_	
System cycle time (READ)		tCYC8		400	_	ne
/RD L pulse width (READ)	RD	tCCLR		180		ns
/RD H pulse width (READ)		tCCHR		180		
WRITE Data setup time		tDS8		15	_	
WRITE Data hold time	D(7:01	tDH8		15	_	
READ access time	D[7:0]	tACC8	CL = 30 pF	_	100	
READ Output disable time		tOH8	CL = 30 pF	10	110	

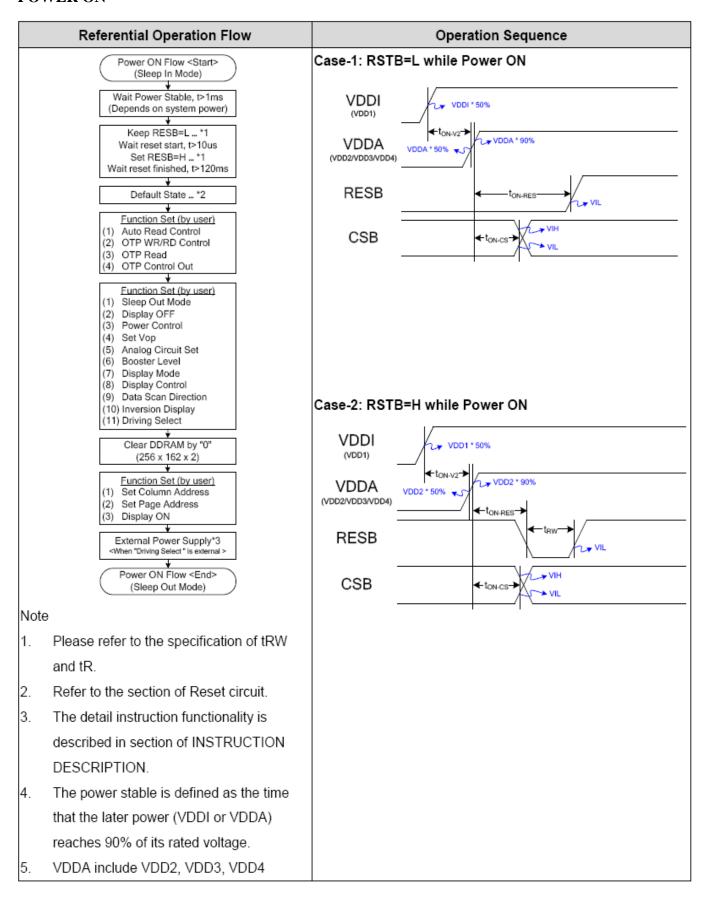
Note:

- The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) ≤ (tCYC8 tCCLW tCCHW) for (tr + tf) ≤ (tCYC8 tCCLR tCCHR) are specified.
- 2. All timing is specified using 20% and 80% of VDD1 as the reference.
- tCCLW and tCCLR are specified as the overlap between CSB being "L" and WR and RD being at the "L" level.

SPEC. REV.00 PAGE 13 OF 22

System Bus Timing for 6800 MCU Interface

VDD1 = 1.8~3.3V, Ta = 25°C


Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time	40	tAW6		20	_	
Address hold time	A0	tAH6		0	_	
System cycle time (WRITE)		tCYC6		160	_	
Enable L pulse width (WRITE)	E	tEWLW		70	_	
Enable H pulse width (WRITE)		tEWHW		70	_	
System cycle time (READ)		tCYC6		400		
Enable L pulse width (READ)		tEWLR		180	_	ns
Enable H pulse width (READ)		tEWHR		180		
Write data setup time		tDS6		15	_	
Write data hold time	D(7:0)	tDH6		15	_	
Read data access time	D[7:0]	tACC6	CL = 30 pF	_	100	
Read data output disable time		tOH6	CL = 30 pF	10	110	

Note:

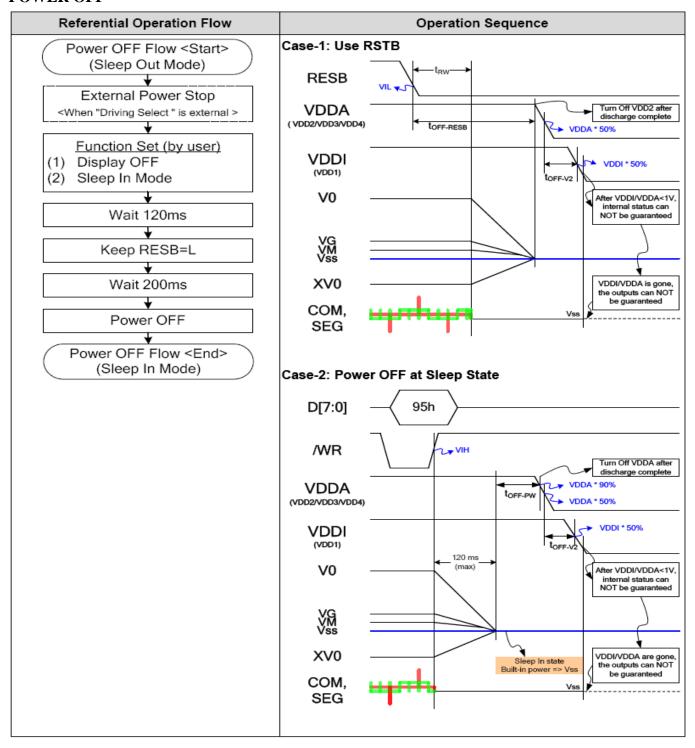
- The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) ≤ (tCYC6 tEWLW tEWHW) for (tr + tf) ≤ (tCYC6 tEWLR tEWHR) are specified.
- 2. All timing is specified using 20% and 80% of VDD1 as the reference.
- 3. tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.

SPEC. REV.00 PAGE 14 OF 22

POWER ON

SPEC. REV.00 PAGE 15 OF 22

CG240160D

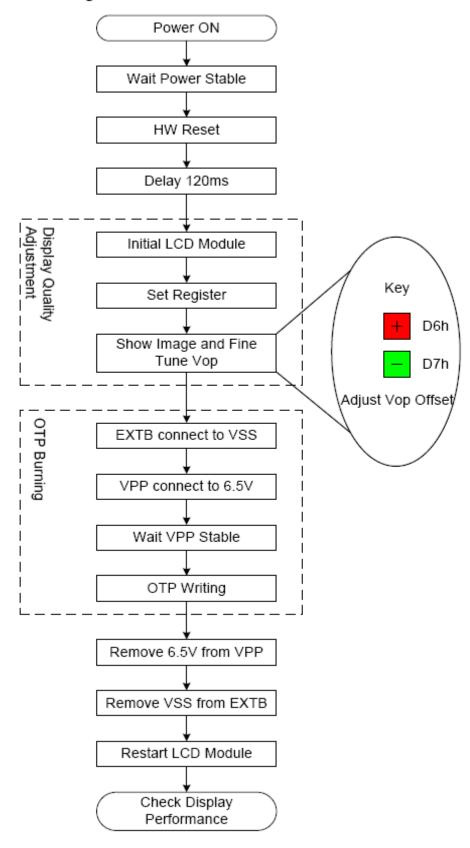

Item	Symbol	Requirement		Description
			• \	VDDI and VDDA can be applied in any order. IC
			١	will NOT be damaged when one of VDD1 and
			١	VDD2 is ON but another is OFF.
VDD2 power ON delay	+	No Limitation	• F	Power stable is defined as the time that the later
VDD2 power ON delay	t _{on-v2}	NO LITHIAGOT	ŀ	power (VDDI or VDDA) reaches 90% of its rated
			١	voltage.
			• F	Recommend Setting: -50ms \leq t_{ON-V2} \leq No
			l	Limitation.
			• [RESB=L can be input at any time after power is
	t _{on-res}	Case-1	9	stable.
DESD input time		$t_{RW} \le t_{ON-RES}$	• t	${\rm t_{RW}}$ & ${\rm t_R}$ should match the timing specification of
RESB input time		Case-2	F	RESB.
		No Limitation	• F	RESB has priority over CSB.
			• F	Recommend Setting: $0 \le t_{ON-RES} \le 50$ ms.
CSB input time	+	No Limitation	• (CSB can be input at any time after power is
CSB input time	t _{on-cs}	NO LIMITATION	9	stable.

Note:

- 1. If the contents of internal registers are the same as default, the related commands can be ignored.
- If RESB is held high or unstable during power ON, a successful hardware reset by RSTB is required after VDDI and VDDA are both stable (as illustrated in Case-2). Otherwise, correct functionality can NOT be guaranteed.

SPEC. REV.00 PAGE 16 OF 22

POWER OFF



Item		Symbol	Requirement		Description	
Power OFF	Case-1	t _{OFF-RESB}	200ms ≤t _{OFF-RESB}	Power can be turned OFF after built-in ;		
Time	Case-2	t _{off-PW}	0 ≤ t _{off-PW}	becomes VSS.		
•				•	VDD1 and VDD2 can be powered down in any	
					order. IC will NOT be damaged when one of	
VDD2 power ON delay		t _{OFF-V2}	No Limitation		VDD1 and VDD2 is ON but another is OFF.	
				•	Recommend Setting: -50ms ≤ t _{OFF-V2} ≤ No	
					Limitation.	

Note: In Case-2, RSTB can fall to VSS at the same time as VDDI.

SPEC. REV.00 PAGE 17 OF 22

Referential OTP Burning Flow

Note:

 In this section "+" and "-" key button, please execute command D6h to increase one step at Vop and execute command D7h to decrease one step at Vop.

SPEC. REV.00 PAGE 18 OF 22

ELECTRO-OPTICAL CHARACTERISTICS

MEASURING CONDITION: POWER SUPPLY = Vop / 64 Hz TEMPERATURE = 22 ± 5 °C

RELATIVE HUMIDITY = $60 \pm 15 \%$

ITEM	SYMBOL	UNIT	TYP. STN
RESPONSE TIME	Ton	ms	320
	Toff	ms	430
CONTRAST RATIO	Cr	-	8
	V3:00	0	40
VIEWING ANGLE	V6:00	0	55
(Cr ≥ 2)	V9:00	0	40
	V12:00	0	35

THE ELECTRO-OPTICAL CHARACTERISTICS ARE MEASURED VALUE BUT NOT GUARANTEED ONES.

RELIABILITY OF LCD MODULE

		TEST CONDITION	TEST CONDITION	
NO.	Item	FOR NORMAL TEMPERATURE	FOR WIDE TEMPERATURE	TIME
1	High temperature operating	50°C	70°C	240 hours
2	Low temperature operating	0°C	-20°C	240 hours
3	High temperature storage	60°C	80°C	240 hours
4	Low temperature storage	-10°C	-30°C	240 hours
5	Temperature-humidity storage	40°C 90% R.H.	60°C 90% R.H.	96 hours
6	Temperature cycling	-10°C to 60°C	-30°C to 80°C	5 avala
		30 Min Dwell	30 Min Dwell	5 cycle
7	Vibration Test at LCM Level	Freq 10-55 Hz	Freq 10-55 Hz	
		Sweep rate: 10-55-10 at 1 min	Sweep rate: 10-55-10 at 1 min	
		Sweep mode Linear	Sweep mode Linear	_
		Displacement: 2 mm p-p	Displacement: 2 mm p-p	
		1 Hour each for X, Y, Z	1 Hour each for X, Y, Z	

Inspection condition:

No. 1 ~ 6:

The samples should be placed in room temperature for 2 hours before inspection.

Acceptance criteria:

No non-conformance found in functional and cosmetic.

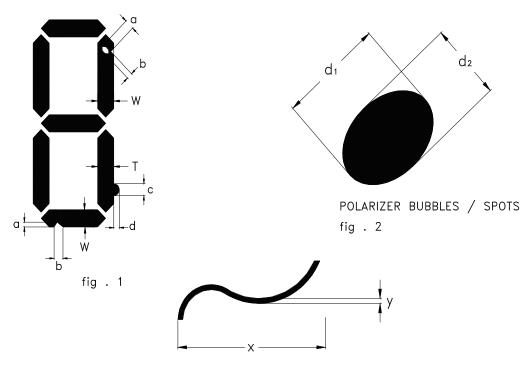
SPEC. REV.00 PAGE 19 OF 22

SAMPLING METHOD

SAMPLING PLAN: MIL-STD 105E

CLASS OF AQL: LEVEL II/ SINGLE SAMPLING

MAJOR-0.65% MINOR – 1.5%


QUALITY STANDARD

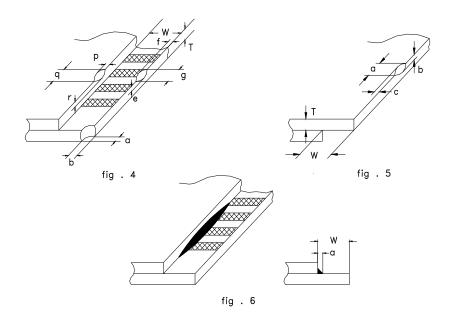
DEFECT	CRITER	CRITERIA		FIGURE
SHORT CIRCUIT	-		MAJOR	-
MISSING SEGMENT	-		MAJOR	-
UNEVEN / POOR CONTRAST	-		MAJOR	-
CROSS TALK	-		MAJOR	-
PIN HOLE	$MAX(a,b) \leq 1/4 W$		MINOR	1
EXCESS SEGMENT	$MAX(c,d) \le 1/4 T$		MINOR	1
BUBBLES	d* ≥ 0.2	QTY=0	MINOR	2
BLACKS SPOTS	d ≤ 0.3	N.A.**	MINOR	2
	0.3 <d≤0.4< td=""><td>QTY≤1</td><td></td><td></td></d≤0.4<>	QTY≤1		
	0.4 <d< td=""><td>QTY=0</td><td></td><td></td></d<>	QTY=0		
LINE SCRATCHES	x≥0.7 y≥0.05	QTY=0	MINOR	3
BLACK LINE	x≥0.7 y≥0.05	QTY=0	MINOR	3

* $d = MAX(d_1,d_2)$

** N. A . = NOT APPLICABLE

DEFECT TABLE : B

LINE SCRATCHES / BLACK LINE fig . 3


SPEC. REV.00

$\ \, \textbf{QUALITY STANDARD} \ (\ \textbf{CONT}\ .)$

DEFECT		CRITERIA	ТҮРЕ	FIGURE
	CONTACT EDGE	e≤1/2T f≤1/3W g≤3.5		4
CHIPS	BOTTOM GLASS	p≤1.0 q≤3.5 r≤1/2T	MINOR	4
	CORNER	a≤1.5 b≤W		4
	TOP GLASS	a≤3.0 b≤1/3T c≤1/2W		5
GLASS PROTRUSION		$a \le 1/4 \text{ W}$	MINOR	6
RAINBOW		-	MINOR	-

UNLESS STATE OTHERWISE , ALL UNIT ARE IN MILLIMETER .

DEFECT TABLE : B

SPEC. REV.00 PAGE 21 OF 22

HANDLING PRECAUTIONS

(1) CAUTION OF LCD HANDLING & CLEANING

Use soft cloth with solvent (recommended below) to clean the display surface and wipe lightly.

- Isopropyl alcohol, ethyl alcohol, trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent;

-water, ketone, aromatics

(2) CAUTION AGAINST STATIC CHARGE

The LCD modules use CMOS LSI drivers, so customers are recommend that any unused input terminal would be connected to V_{DD} or V_{SS} , do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

Remove the protective film slowly and, if possible, under ESD control device like ion blower and humidity of working room should be kept over 50%RH to reduce risk of static charge.

(3) PACKAGING

Avoid intense shock and falls from a height and do not operate or store them exposed direct to sunshine or high temperature/humidity.

(4) CAUTION FOR OPERATION

It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage than the limit causes the shorter LCD life. The use of direct current drive should be avoided because an electrochemical reaction due to direct current causes LCD's undesirable deterioration.

Response time will be extremely delayed at low temperature, and LCD's show dark color at high temperature. However those phenomena do not mean malfunction or out of order with LCD's.

Some font will be abnormally displayed when the display area is pushed hard during operation. But it resumes normal condition after turning off once.

(5) SOLDERING (for Pin type)

It is recommended to complete dip soldering at 270 °C or hand soldering at 280 °C within 3 seconds. The soldering position is at least 3mm apart from the pin head. Wave or reflow soldering are not recommended. Metal pins should not be soldered for more than 3 times and each soldering should be done after cool down of metal pins

(6) SAFETY

For crash damaged or unnecessary LCD's, it is recommended to wash off liquid crystal by either of solvents such as acetone and ethanol and should be burned up later.

When any liquid leaked out of a damaged glass cell comes in contact with your hands, wash it off with soap and water.

WARRANTY

CLOVER will replace or repair any of her LCD module in accordance with her LCD specification for a period of one year from date of shipment. The warranty liability of Clover is limited to repair and/or replacement. Clover will not be responsible for any subsequent or consequential event.

SPEC. REV.00 PAGE 22 OF 22