

Input Specification

Code No.	Total resistance	Input range
1	100Ω to $10 \mathrm{k} \Omega$	0 to 100%

Reference voltage : 0.5 V
For Code No. Y
Limit of specifications
Span : More than 50\%
Note : No dip swithes can be used for the Yspecification.
By changing a Dip switch setup, change of an input range is possible.

Dip switch	Input range	Dip switch	Input range
$\mathrm{ON} \square \square \square$	0 to 70\%	ON	10 to 90\%
ON	0 to 80\%	ON	10 to 100\%
ON	0 to 90\%	ON	20 to 90\%
ON	0 to 100\% (Factory setting)	ON	20 to 100\%
ON \square	10 to 80\%	ON \square	30 to 100\%
1234		1234	

Note : Always maniqulate each dip switch with the power turned off.

Output Specification

Code No.	Output signal	Allowable Loadresistance	
0	0 to 5 VDC	More than $2 \mathrm{k} \Omega$	
1	1 to 5 VDC		
2	0 to 10 VDC	More than $4 \mathrm{k} \Omega$	
3	-10 to 10 VDC	Negative output:more than $10 \mathrm{k} \Omega$	
4	-2 to 2 VDC	More than $2 \mathrm{k} \Omega$	
5	-2.5 to 2.5 VDC		
6	-5 to 5 VDC		
7	0 to 4 VDC	More than $2 \mathrm{k} \Omega$	
A	4 to 20 mADC	Less than 550Ω	
B	0 to 20 mADC		
Y	Other than the above		

For code No. Y
Limit of specifications
Voltage output : Less than +15 VDC and more than -12 VDC Minimum span: Less than +27 VDC and more than 0.06 VDC (Road resistance : $10 \mathrm{k} \Omega$ at the output exceeding 10 V , and a negative output) (Base accuracy : $\pm 0.15 \%$ F.S and temperature characteristic : $\pm 0.03 \%$ F.S $/{ }^{\circ} \mathrm{C}$ for a span of less than 1 V)
Current output: Less than +20 mADC and more than 0 mADC Minimum span : Less than +20 mADC and more than 1 mADC Outputs can be reversed for both voltage and current outputs.

- General Specifications
 Base Accuracy :

± 0.1 \%F.S (At $25 \pm 2^{\circ} \mathrm{C}$)
Power supply variation: $\quad \pm 0.06 \%$ F.S
Load resistance variation $: \pm 0.06$ \%F.S
Temperature characteristic : $\pm 0.02 \% \mathrm{~F} . \mathrm{S} /{ }^{\circ} \mathrm{C}$
Response time : Less than $50 \mathrm{msec}($ TYP $)(0 \rightarrow 90 \%)$
Error caused by input range setting change : Within ± 2 \%F.S
Front adjustments:
$\pm 5 \%$ for zero and span
Insulation resistance: Between input and output/power supply;
Dielectric strength :
Power supply voltage :
Consuming current : More than $100 \mathrm{M} \Omega$ at 500 VDC Between input and output/power supply ; For 1 min. at 2000VAC 100 to $240 \mathrm{VAC} \pm 10$ \%

Less than 30 mA (100VAC at current output)
Operating ambient temperature : -5 to $50^{\circ} \mathrm{C}$
Operating ambient humidity : Less than 90% RH (No-condensing)
Storage temperature :
Storage humidity :
Case material :
Weight :
Vibration resistance :

■ Features

- AC power supply 90 VAC to 240 VAC
- DIN rail mounting
- Input/Output/Power supply isolated

■ Ordering Code

Potentiometer resistance : (total resistance 100Ω to $10 \mathrm{k} \Omega$)

■ Dimensions

■ Connection Diagram

Block Diagram

10 sweeps of 5 min each in X, Y, and Z direction

