

Bearings, Ball Screws and NSK Linear Guides, for Special Environments

Introduction

As technology has moved forward in various industries such as liquid crystals and semiconductors in recent years, it has become imperative to develop products that meet every one of our customers' needs.

NSK Motion and Control products reflect our corporate commitment to being environmentally responsible. While we improve the functionality and performance of various industrial machines with our unique core technologies—including clean technology, surface treatment technology, lubrication technology, precision guiding technology, and precision machining technology—our products also save energy and help preserve the environment.

NSK's bearings, ball screws and NSK linear guides, for special environments, were launched in 1998 as the SPACEA[™] Series. We have since focused on technological development and introduced various products, such as the world's first titanium alloy bearings and linear guides. In order to respond quickly to our customers' needs, we have also expanded our inventory lineup and established a system that enables delivery of products within one month.

As a result, our products have been used extensively in a wide variety of industries, such as liquid crystals, semiconductors, food, medicine, steel, and chemicals, earning exemplary reputations.

NSK is a comprehensive manufacturer that provides not only bearings but also precision products.

This new catalog was compiled for customers to use NSK's products, including bearings and precision products, in special environments with optimal specifications and under optimum conditions.

This comprehensive catalog was made for easy selection of a wide range of SPACEA products, with newly added content related to the SPACEA™ Series, including product dimensions/accuracy, lubricants and materials.

The SPACEA™ Series—responding to extreme, special environments

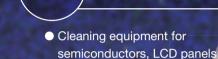
The NSK SPACEA™ Series was developed with vacuum lubrication technology, materials technology, and thin-film technology for space exploration equipment.

Our lineup of bearings, ball screws and NSK Linear Guides® for special environments will meet the strict requirements for harsh operating conditions, offering high functionality and quality. The highquality SPACEA™ Series is applicable in vacuum, corrosive, clean, high-temperature, non-magnetic, and radiation-resistant environments, among others.

The SPACEA™ Series is adaptable to a wide variety of applications, including machinery for semiconductors, LCDs, hard disk production, pharmaceutical/cosmetics production, and ceramics/chemistry/optical apparatuses. The Series consists of optimum bearings, ball screws and NSK Linear Guides® that can be applied to demanding operating environments.

- Food processing machinery
- Medical instrument

- Food processing machinery
- Woodworking machinery
- Tire buffs
- Welding lines
- Graphite processing machinery
- Laser machinery


- Electron beam rendering devices
- Electron beam aligners
- Inspection equipment

- Production machinery for semiconductors, LCD panels, PDPs, and hard disks
- Vacuum evaporation devices
- Vacuum robots
- Space exploration equipment

- PDPs, and hard disks Food processing machiner
- Conveyors
- Chemical plants
- Plating facilities
- Etching equipment

Application

Application

Clean environments

Corrosive

environments

- Transporters in clean rooms
- Production machinery for semiconductors and LCD panels, and conveyors in machinery
- Hard disk production machinery
- Solar cell product

High-temperature environments

- Kilns
- High-temperature conveyors
- Semiconductor production machinery
- Kiln cars

Table of Contents

SPACEA™ Series·····	P2-
Global Network ·····	P4-
Research and Development	P6-
SPACEA™ Bearings ·····	··P8–7
SPACEA™ Bearings·····	P8-
Inventory ·····	
Selection Guide	P12-1
Listed by Operating Environment ·····	P16–2
Dimensions, Accuracy and Availability	P22-2
Manufacture Introduction	P30-6
Applications of SPACEA™ Series Bearings······	P66-7
SPACEA™ Series Ball Screws and NSK Linear Guides®F	72–10
SPACEA™ Series Ball Screws and NSK Linear Guides®	P72-7
Inventory ·····	P74-7
Selection Guide	P76–7
Types and Specifications	P78-7
Dimensions and Availability	P80-8
Product Information	P84-9
Applications of SPACEA™ Series Ball Screws and NSK Linear Guides® ···P1	00–10
Appendices P1	02–12
Specification Inquiry	P12

Applicable in a variety of operating conditions, responding to a broad range of applications.

NSK Global Network

Headquarters

Sales office

Plant
Technical office

NSK's global network is the key to our ability to develop innovative products that incorporate the latest technologies.

The network connects each sales branch, distribution center, production facility, and technology center and enables us to gather the latest information from each location.

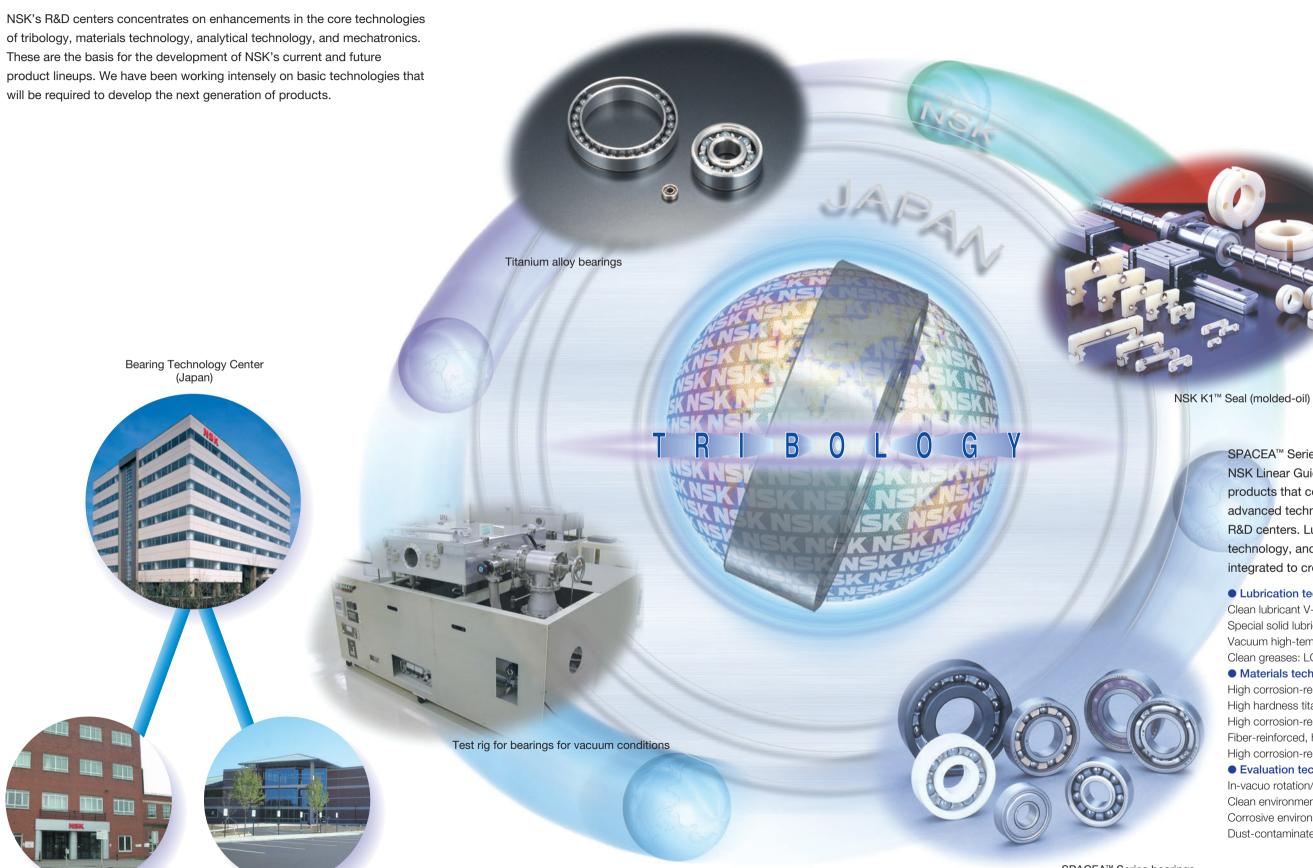
Data is instantly accessible to every part of the network, resulting in products of the highest quality.

Our global system also includes activities such as receiving and processing orders, shipping products, and supplying technical support

No matter how difficult or complex the challenge, NSK is able to respond immediately.

NSK's global network means excellent products and superior customer service.

NSK has established a communication system that links the major markets of the world in Europe, Asia, Japan, and the Americas. We use this highly developed system to share information, in real time, related to changes and trends in each market. As a result, we can react quickly to meet changing customer needs, supplying the best, high-quality products. Our global network makes NSK a truly global company. We are able to transcend borders and other restrictions to meet the needs of our customers around the globe.



NSK Research and Development

Extensive commitment to research and development through a network of four bases in the United States, Europe, and Asia, with Japan as the nucleus.

American Technology Center

SPACEA™ Series bearings, ball screws and NSK Linear Guides® are technology-driven products that continue to evolve, supported by advanced technologies developed in the NSK R&D centers. Lubrication technology, materials technology, and evaluation technology are integrated to create new SPACEA™ products.

Lubrication technology

Clean lubricant V-DFO Special solid lubricant Vacuum high-temperature solid lubricant Clean greases: LG2, LGU

Materials technology

High corrosion-resistant, non-magnetic stainless steel: ESA High hardness titanium alloys High corrosion-resistant ceramic materials

Fiber-reinforced, high corrosion-resistant fluororesin materials

High corrosion-resistant, long-life stainless steel: ES1

Evaluation technology

In-vacuo rotation/direct-acting tester Clean environment rotation/direct-acting tester Corrosive environment bearing endurance tester Dust-contaminated environment direct-acting tester

European Technology Centre

(England)

Wide range of product variation with high quality and high functionality

NSK's SPACEA™ Series bearings for special environments have a wide array of product variation applicable to vacuum environments, corrosive environments, clean environments, high-temperature environments, non-magnetic requirement and dust-contaminated environments.

The SPACEA™ Series offers high quality and high performance in severe operating environments, throughout a wide range of applications and in all kinds of machines and apparatuses.

Optimal bearings for particular applications can be found in the SPACEA™ Bearing Selection Guide on pages 12–15.

Table of Contents of SPACEA™ Bearings

A	Inventory	····P10–11
B	Selection Guide	P12–15
C	Listed by Operating Environment ·····	·····P16–21
D	Dimensions, Accuracy and Availability	P22–29
	1. Stainless Steel-Based SPACEA™ Series Bearings	
	2. Aqua-Bearing [™] —high corrosion-resistant resin bearings	
	3. All-Ceramic Bearings	
E	Specifications, Operating Instructions, and Technical Data	P30–65
	1. Stainless Steel Bearings	P30–31
	2. Molded-Oil™ Bearings ·····	P32–33
	3. Hybrid Bearings	·····P34–35
	4. Corrosion-Resistant Coated Bearings (Nickel coating)	P36–37
	5. High Corrosion-Resistant, Non-Magnetic Stainless Steel ESA Bearings	P38–39
	6. All-Ceramic Bearings (Oxide-based ceramics)	·····P40–41
	7. Aqua-Bearing™—High Corrosion-Resistant Resin Bearings ······	P42–43
	8. High Corrosion-Resistant All-Ceramic Bearings (Carbide-based ceramics)	P44–45
	9. LG2/LGU Grease-Packed Bearings (For use in normal atmosphere only)	P46–47
	10. DL2 Clean Grease-Packed Bearings (From normal atmosphere up to vacuum) ········	P48–49
	11. Bearings with Self-Lubricating Fluororesin Cages	P50–51
	12. Clean Lubricant V-DFO Bearings ·····	P52–53
	13. YS Bearings with MoS ₂ Self-Lubricating Cages ·····	P54–55
	14. High-Temperature Grease-Packed Bearings (For use in normal atmosphere only) ····	P56–57
	15. YS High-Temperature Bearings with Spacer Joints	P58–59
	16. SJ High-Temperature Bearings with Solid Lubrication	P60–61
	17. Completely Non-Magnetic Titanium Alloy Bearings·····	P62–63
	18. Molded-Oil™ Bearings for Dust-Contaminated Environments ·····	P64–65
E	Applications of SPACEA™ Series Bearings ·····	P66–71

SP/CE/

Inventory

NSK's SPACEA™ Series bearings for special environments are optimal for applications in operating environments that are too severe for ordinary bearings, such as semiconductor/FPD/hard-disk production machinery, food processing machinery, medical/cosmetics production machinery, and ceramics/chemistry/optical apparatuses.

Vacuum environments

Corrosion resistant

- · High corrosion-resistant, non-magnetic stainless steel ESA bearings
- · All-ceramic bearings (oxide-based ceramics)
- · All-ceramic bearings (carbide-based ceramics)

Clean

- · DL2 clean grease-packed bearings
- · Clean lubricant V-DFO bearings
- · Bearings with self-lubricating fluororesin cages
- · YS bearings with MoS₂ self-lubricating cage

High-temperature

- · YS high-temperature bearings with spacer joints
- · SJ high-temperature bearings with solid lubrication

Non-magnetic

- · High corrosion-resistant, non-magnetic stainless ESA bearings
- · Completely non-magnetic titanium alloy bearings
- · All-ceramic bearings (oxide-based ceramics)

Clean environments

- Normal atmosphere, room temperature
- · LG2/LGU clean grease-packed bearings
- Normal atmosphere, high-temperature/ vacuum, medium-temperature
- · DL2 clean grease-packed bearings

Vacuum, high-temperature

- · YS bearings with MoS₂ self-lubricating cage
- · Bearings with self-lubricating fluororesin cages
- · Clean lubricant V-DFO bearings

Bearings with self-lubricating fluororesin cages

SJ high-temperature bearings with solid lubrication

• N

Clean lubricant V-DFO bearings

High-temperature environments

- Normal atmosphere, high-temperature
- · KPM high-temperature grease-packed bearings
- Vacuum, high-temperature
- · YS high-temperature bearings with spacer joints
- · SJ high-temperature bearings with solid lubrication

Corrosive environments

All-ceramic bearings

Water environments

- · Stainless steel bearings
- Molded-Oil™ bearings
- Hybrid bearings
- Corrosion-resistant coated bearings (Nickel coating)

Alkali and weak acid environments

- High corrosion-resistant, non-magnetic stainless steel ESA bearings
- · All-ceramic bearings (oxide-based ceramics)

Strong acid and reactive gas environments

- Aqua-Bearing[™]—high corrosion-resistant resin bearings
- · All-ceramic bearings (carbide-based ceramics)

Stainless steel bearings

YS high-temperature bearings

with spacer joints

Completely non-magnetic titanium alloy bearings

Non-magnetic requirement

- Non-magnetic (relative permeability 1.01 or less)
- High corrosion-resistant, non-magnetic stainless steel ESA bearings
- Completely non-magnetic (relative permeability 1.001 or less)
- · Completely non-magnetic titanium alloy bearings
- · All-ceramic bearings

Molded-Oil™ bearings

Dust-contaminated environments

- Normal atmosphere, dust-contaminated
- Molded-Oil[™] bearings

Aqua-Bearing™—
high corrosion-resistant resin bearings

NSK 11

① Select the group of bearings appropriate for your operating environment and application.

② Find the bearings that suit your operating conditions.

③ Select the bearing most appropriate in terms of availability and price.

③ Select the bearing most appropriate in terms of availability and price.

Operating conditions																					
	1)		Deg	ree of va	cuum	Ope	rating ten	nperati	ure	② Op Cleanlir				nal speed	L	imiting lo	ad	3	3	Specifications	⑤
	Operating environment	Product name		Pa							ess(·)	$d_{\rm m}n^{(2)}$				P/C _H (3)		Price comparisor	Availability	Operating instructions	Bearing number for inquiry(4)
			Normal atmosphere	e ≤10 ⁻⁴	≤10-8	≤100	≤200	≤300	≤400	100	10	≤20 000	0 ≤50 00	0 ≤150 000	≤1%	≤2%	≤5%	Compansor		·Technical data	ioi iiiquiiy()
<u></u> - 9	D.	High corrosion-resistant, non-magnetic stainless steel ESA bearings				200	D,C									2%		Low	P24-27	P38-39	ESA 🗆 🗆 🗆 T36
Corrosion-	Reactive gas	All-ceramic bearings (oxide-based ceramics)		10 ⁻⁶ Pa		150°C						20 000					5%		P29	P40-41	□□□□ SZ1GT36
O ?		All-ceramic bearings (carbide-based ceramics)				200	D,C										370	High	1 20	P44-45	□□□□ SR1GT36
	Vacuum, medium- temperature (for conveyors)	DL2 clean grease-packed bearings	See t for C	the Scope of lean Enviro	of Applica Inments of	tions of Bea n P14.	rings	a					50 000				5%	Low		P48-49	□□□□ LZZ−H DL2
ean	Vacuum, high-temperature	Bearings with self-lubricating fluororesin cages (T3 specification)		10 ⁻⁶ Pa	a	200	D,C									2%			P24-27	P50-51	□□□□ LZZ−HT3
Vacuum	(for conveyors, coating processes)	Clean lubricant V-DFO bearings	See for 0	the Scope Clean Envir	of Applica	ations of Bea	arings	k				20 000				2 70			1 24-21	P52-53	□□□□ LZZ−HFD
		Bearings with self-lubricating YS fluororesin cages		10-7	Pa	200	D,C			•					See the Sc of Bearings Environme	ope of Applica s for Clean nts on P15.	c c	High		P54-55	□□□□ LZZC3−HMST4
High-	Up to 400°C	SJ high-temperature bearings with solid lubrication		10	[∗] Pa			4	00°C			20 000					5%	Low	P24-27	P60-61	U-□□□□ S4MLSJ01ZZ
ij	Up to 350°C	YS high-temperature bearings with spacer joints		10	ra			350°C				20 000			See the So of High-Te on P15.	ope of Applica	ations arings d	High	1 24-21	P58-59	□□□□ LZZC4−HMSS2
etic	Non-magnetic (relative permeability 1.01 or less)	High corrosion-resistant, non-magnetic stainless steel ESA bearings				20	0°C									2%		Low	P24-27	P38-39	ESA 🗆 🗆 🗆 T36
ı-magn	Completely non-magnetic (relative permeability 1.001	Completely non-magnetic titanium alloy bearings		10 ⁻⁶ Pa	a	20	0°C					20 000			1%				_	P62-63	□□□□ L −T T3
Nor	or less)	All-ceramic bearings (oxide-based ceramics)				150°C											5%	High	P29	P40-41	□□□□ <mark>SZ1</mark> T36
	High-humidity environments	Stainless steel bearings				80°C								150 000			5%	Low		P30-31	□□□□ -H-····*MA
Water	Water spray, immersed	Molded-Oil™ bearings				80 C								130 000	Minimum	required	load 1%	High		P32-33	□□□□ L11−H−20
M	vator opray, illimorood	Hybrid bearings				000	000					20 000				20%		Low	P24-27	P34-35	□□□□ LZZCG−YT3
osive	Immersed, de-ionized water	Corrosion-resistant coated bearings (Nickel coating)				20	0°C					20 000				2%		High		P36-37	□□□□ LZZCG−YNIT3
	Weak acid and alkali	High corrosion-resistant, non-magnetic stainless steel ESA bearings		1060		20	0°C					22.222				2%		Low		P38-39	ESA 🗆 🗆 🗆 T36
	environments	All-ceramic bearings (oxide-based ceramics) Strong acid and reactive gas environments		10 ⁻⁶ Pa		150°C						20 000					5%	High	P29	P40-41	□□□□ SZ1T36
	Strong acid and reactive	Aqua-Bearing [™] —high corrosion-resistant resin bearings				40°C						20 000			1%			Low	P28	P42-43	□□□□ L− P T3 (−Q T3)
	gas environments	All-ceramic bearings (carbide-based ceramics)		10 ⁻⁶ Pa	a	200	D,C					20 000					5%	High	P29	P44-45	□□□□ SR1GT36

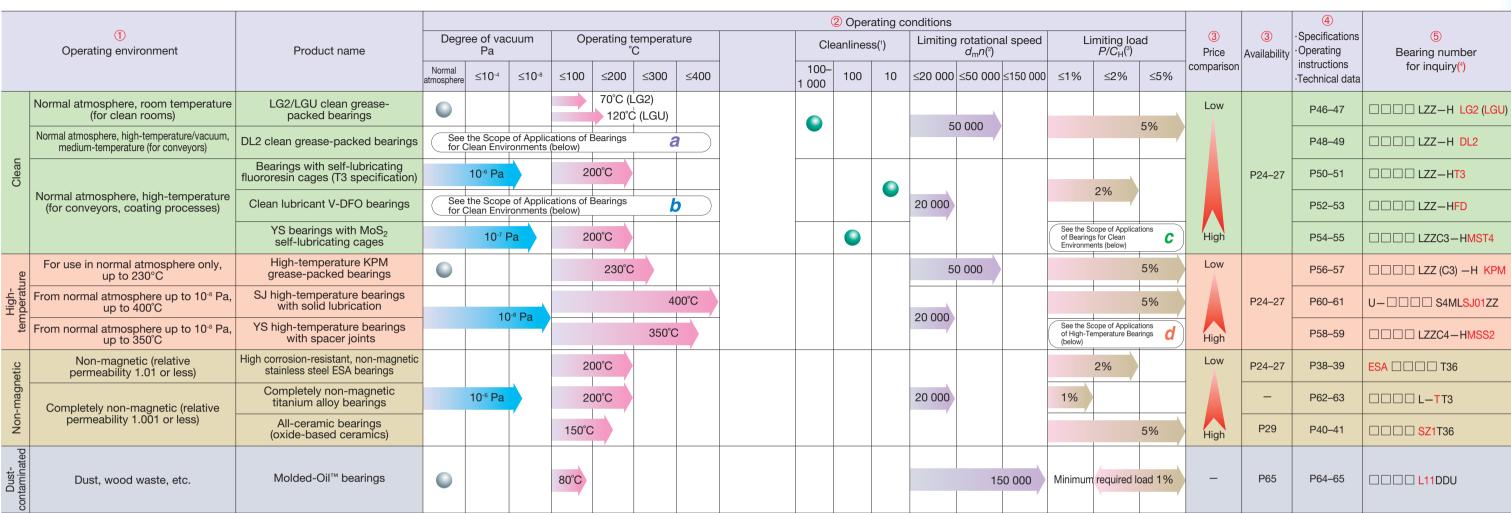
Notes

^{(&#}x27;) Cleanliness may vary depending on operating conditions, surrounding structures and other factors. (') $d_m n = \text{(bore diameter of bearing, mm+outer diameter of bearing, mm)} \div 2 \times \text{rotational frequency (min)}$

^(°) The limiting load is estimated based on the endurance (total rotational frequency) corresponding to 107 as a guideline. P: equivalent load (N), C_H: load rating (N) of the stainless bearing

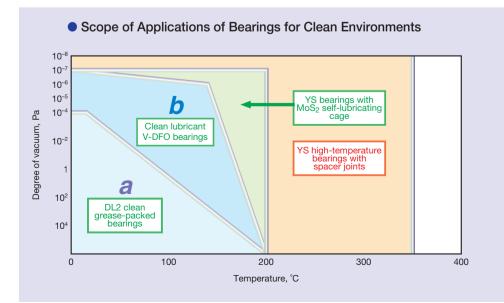
Remarks 1. See the SPACEA^m Bearing Dimension Table on P24–27 for the $C_{\rm H}$ value.

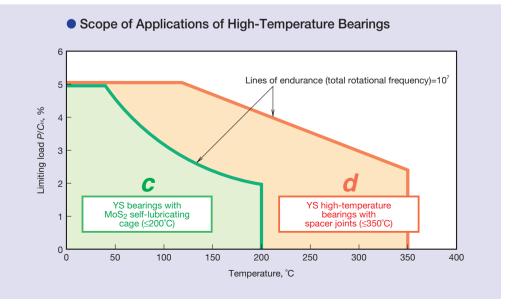
C_H is not applicable for calculating rolling fatigue of solid lubrication bearings or coated bearings.


^(*) The bearing number for inquiry can be used as a reference before finalizing the specifications. The number will enable NSK to identify the summarized specifications of your bearing and provide you with a price estimate.

A formal bearing number will be provided after the specifications are finalized.

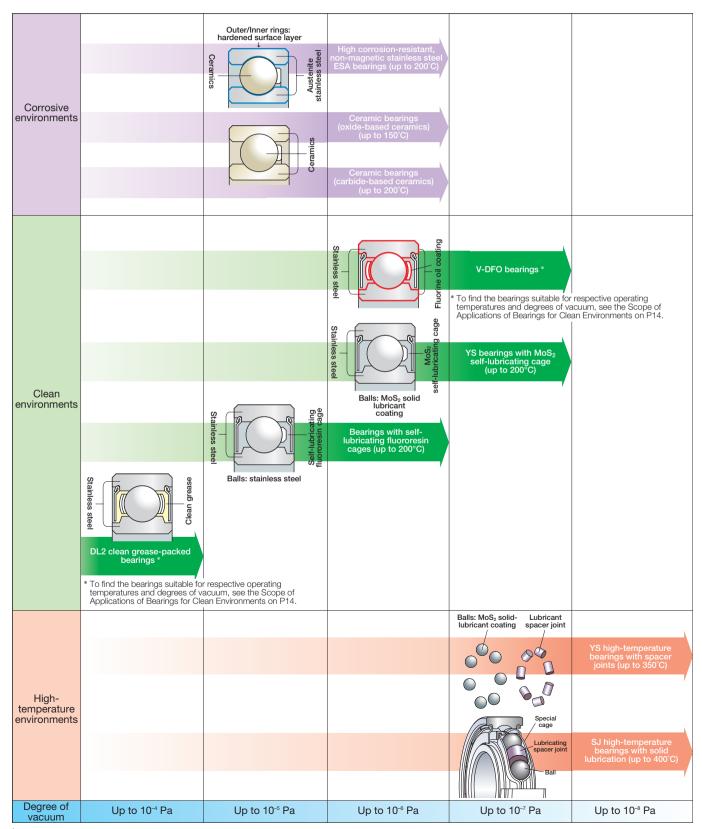
□□□□.....represents the basic bearing number

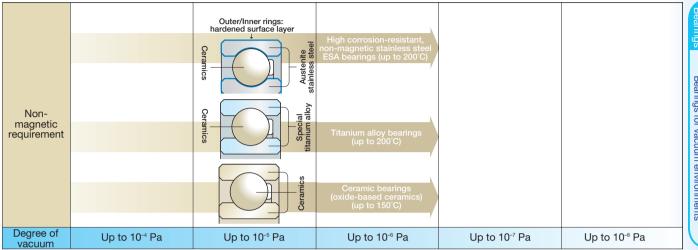




- (¹) Cleanliness may vary depending on operating conditions, surrounding structures and other factors. (2) $d_m n = \text{(bore diameter of bearing, mm+outer diameter of bearing, mm)} \div 2 \times \text{rotational frequency (min)}^{-1}$
- (3) The limiting load is estimated based on the endurance (total rotational frequency) corresponding to 107 as a guideline. P: equivalent load (N), $C_{\rm H}$: load rating (N) of the stainless bearing
- Remarks 1. See the SPACEA™ Bearing Dimension Table on P24-27 for the $C_{\rm H}$ value.
 - 2. C_H is not applicable for calculating rolling fatigue of solid lubrication bearings or coated bearings.

(4) The bearing number for inquiry can be used as a reference before finalizing the specifications. The number will enable NSK to identify the summarized specifications of your bearing and provide you with a price estimate A formal bearing number will be provided after the specifications are finalized. □□□□.....represents the basic bearing number



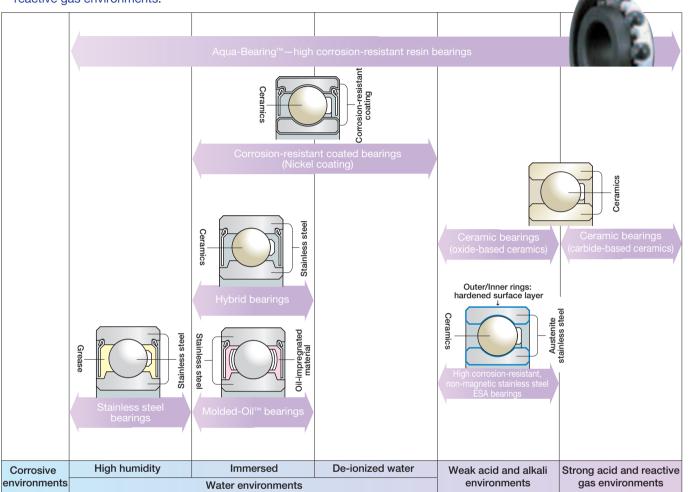

14 **NSK NSK** 15

Bearings for vacuum environments

■ Bearings for vacuum environments are basic products of the NSK SPACEA™ Series for special environments, which also includes bearings suitable for operating environments such as corrosive, clean, and high-temperature environments, and non-magnetic requirement.

© SPACEA™ Bearings Listed by Operating

Specifications of Bearings for Vacuum Environments

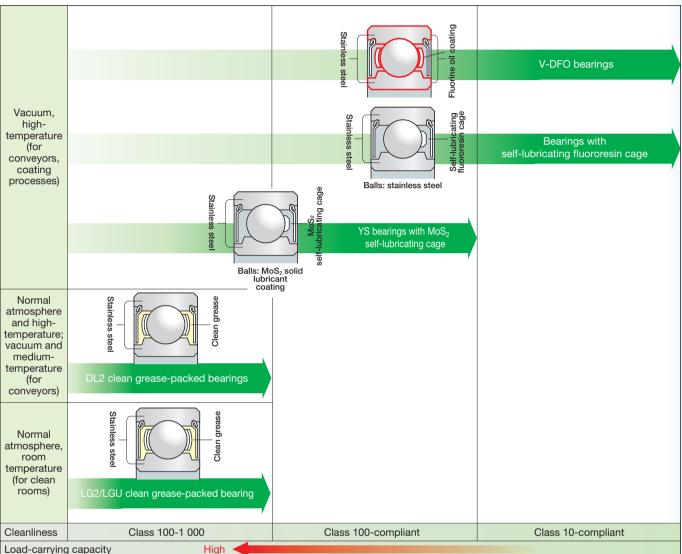

High corrosion-resistant, non-magnetic stainless steel ESA bearings All-ceramic bearings (carbide-based ceramics) Vacuum, medium-temperature (for conveyors) Vacuum, high-temperature (for conveyors/ coating processes) Vacuum, high-temperature (for conveyors/ coating processes) Vacuum, high-temperature (Social period)	□T36 1T36 1GT36
Reactive gas All-ceramic bearings (oxide-based ceramics) Ceramics Ceramics Fluororesin Solid lubrication (fluororesin) Stainless steel Stainless steel Stainless steel Stainless steel Stainless steel Fluororesin Fluorine clean grease steel Gro conveyors/ Coating processes) Yacuum, high-temperature (for conveyors/ coating processes) Vacuum, high-temperature (for conveyors/ coating processes) Yacuum, high-temperature (for conveyors/ coating processes) Stainless steel Fluororesin Stainless steel Fluororesin Fluorine oil coating Fluorine oil coating V-DFO MoS ₂ solid MoS ₂ solid MoS ₂ solid	1T36 1GT36
Vacuum, medium-temperature (for conveyors) Bearings with self-lubricating fluororesin cages Vacuum, high-temperature (for conveyors/coating processes) Vacuum, high-temperature (for co	1 G T36
Vacuum, medium-temperature (for conveyors) Bearings with self-lubricating fluororesin cages Vacuum, high-temperature (for conveyors/coating processes) Vacuum, high-temperature (for co	
temperature (for conveyors) DL2 clean grease-packed bearings Stainless steel Stainless Stainless steel Stainless	?-H DL2
Stainless steel Vacuum, high-temperature (for conveyors/ coating processes) VS bearings Stainless steel Stainless steel Stainless steel Stainless steel Stainless steel Stainless steel Stainless steel and fluorine oil coating VS bearings with MoS colf lubricating Stainless steel Stainless steel Stainless steel and fluorine oil coating VS bearings with MoS colf lubricating Stainless steel Stainless steel Stainless steel and fluorine oil coating V-DFO MoS2 solid MoS2 solid MoS2 solid MoS2 solid	
temperature (for conveyors/ coating processes) Clean lubricant V-DFO bearings Stainless steel and fluorine oil coating Stainless steel and fluorine oil coating Stainless steel and fluorine oil coating V-DFO Stainless steel and fluorine oil coating V-DFO Stainless steel and fluorine oil coating W-DFO MoS ₂ solid MoS ₂ solid	Z-HT3
Mas colf lubricating Stainless and Mas colid MOS2 SOII0 MOS2 SOIII	Z-HFD
steel steel lubrication lubrication lubrication lubrication	ZC3-HMST4
Up to 350°C VS high-temperature bearings with spacer joints Shielded Type Up to 450°C SJ high-temperature bearings with solid lubrication Stainless steel and MoS ₂ solid lubricant coating Corrugated stainless steel and lubrication spacer joints Up to 450°C Stainless steel coating Corrugated stainless steel and lubrication spacer joints Up to 450°C VS high-temperature bearings with solid lubrication	2C4-HMSS2
Up to 450°C SJ high-temperature bearings with solid lubrication Type steel solid lubrication Scheme Schem	34ML <mark>SJ01</mark> ZZ
Non-magnetic (relative permeability 1.01 or less) Non-magnetic (relative permeability 1.01 or less) Non-magnetic distribution or less) High corrosion-resistant, non-magnetic stainless steel ESA bearings Open Surface layer hardened austenite stainless steel Solid	⊒T36
Completely no- magnetic (relative bearings Completely no- magnetic (relative bearings Completely no- magnetic (relative bearings)	
permeability 1.001 All-ceramic bearings (oxide-based ceramics) All-ceramic bearings (oxide-based ceramics)	T3

NSK 17 16 **NSK**

Bearings for corrosive environments

- High corrosion-resistant bearings are applicable in corrosive environments such as water, weak acid and alkali, and strong acid and reactive gas.
- High corrosion-resistant bearings include stainless steel bearings, Molded-Oil™ bearings, and corrosion-resistant coated bearings (Nickel coating) for water environments; ceramic bearings and ESA bearings for weak acid and alkali environments; and ceramic bearings and the Aqua-Bearing™ for strong acid and reactive gas environments.

SPACEA™ Bearings Listed by Operating



Specifications of Bearings for Corrosive Environments

	Operating	Product			Spe	ecifications			Lubricant/	Bearing number	
	Operating environment	name	Structure	Inner ring/ Outer ring	Balls	Cage	Shields	Seals	Surface treatment	for inquiry	
Stuck	High-humidity environments	Stainless steel bearings	Open Type, Shielded	Stainless	Stainless	Stainless steel or resin		Nitrile	Grease (1)	□□□□-H-··· *MA	
amuc.	Water spray,	Molded-Oil™ bearings	Type, Sealed Type	steel	steel	Stainless steel	steel	rubber	Molded-oil™	□□□□ <mark>L11</mark> -H-20	
environments		Hybrid bearings	Open Type, Shielded Type	Stainless steel	Coromico	Fluororesin	Stainless		Solid lubricant	□□□□ LZZCG-YT3	
Water	Immersed, de-ionized water	Corrosion-resistant coated bearings (Nickel coating)	Shielded Type	Stainless steel and nickel- alloy coating	Ceramics	Fluororesin	steel	_	(fluororesin)	□□□□ LZZCG-YNIT3	
	Weak acid and alkali	High corrosion-resistant, non-magnetic stainless steel ESA bearings	Open Type	Surface layer hardened austenite stainless steel		Fluororesin	_	_	Solid lubricant	ESA □□□□ T36	
	environments	All-ceramic bearings (oxide- based ceramics)	only	Ceramics	Ceramics	riuororesiir			(Fluororesin)	□□□□ <mark>SZ1</mark> T36	
5	Strong acid and	Aqua-Bearing™— high corrosion-resistant resin bearings	Open Type	Fluororesin	Coromics	Fluororesin	_	_	Solid lubricant	□□□□ L-PT3 (-QT3)	
	reactive gas environments	All-ceramic bearings (carbide- based ceramics)	only	Ceramics	Ceramics	Fluororesin			(fluororesin)	□□□□ SR1GT3	

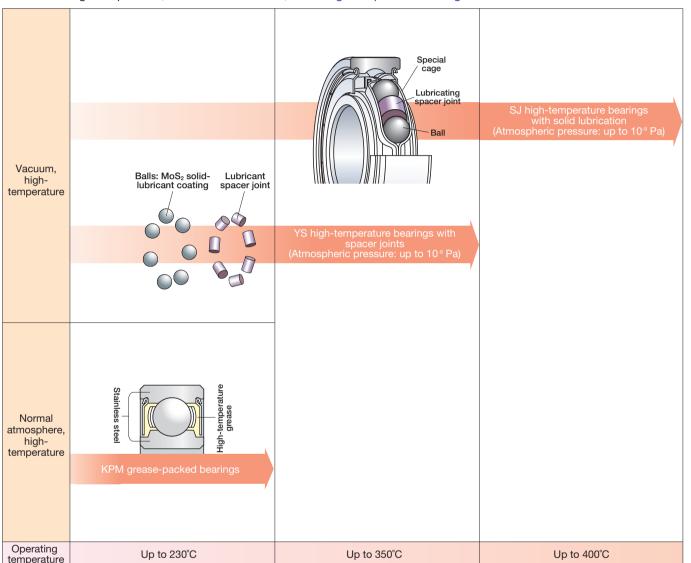
Bearings for lean environments

- Bearings for clean environments consist of clean grease-packed bearings, solid lubrication bearings, and clean lubricant V-DFO bearings.
- Clean grease-packed bearings are classified into bearings exclusively for use in normal atmosphere and bearings for vacuum environments. The solid lubrication bearings include MoS₂ solid lubricant or solid lubricant (fluororesin). The MoS₂ lubricant features long life; the fluorine lubricant, cleanliness.
- The clean lubricant V-DFO bearings represent a new concept in clean bearings, offering both long life and cleanliness.

Specifications of Bearings for Clean Environments

Onevetine	Draduat			Specif	ications			Dearing purples	
Operating environment	Product name	Structure	Inner ring/ Outer ring	Balls	Cage	Shields	Seals	Lubricant	Bearing number for inquiry
Normal atmosphere, room temperature (for clean rooms)	LG2/LGU clean grease-packed bearings	Shielded	Stainless	Stainless	Stainless steel or resin	Stainless		Clean grease	□□□□ LZZ-HLG2 (LGU)
Normal atmosphere, high- temperature/vacuum, medium-temperature (for conveyors)	DL2 clean grease- packed bearings	Type	steel	steel	Stainless steel	steel	_	Clean grease	□□□□ LZZ-HDL2
	Bearings with self- lubricating fluororesin cages (T3 specification)) steel		Stainless steel	Fluororesin			Solid lubricant (fluororesin)	□□□□ LZZ-HT3
Vacuum, high- temperature (for conveyors, coating	Clean lubricant V-DFO bearings	Shielded Type	Stainless steel and fluorine oil coating	Stainless steel and fluorine oil coating Stainless steel	Stainless steel and fluorine oil coating	Stainless steel	_	Fluorine oil coating V-DFO	□□□□ LZZ-HFD
processes)	YS bearings with MoS ₂ self- lubricating cage		Stainless steel		Self-lubricating MoS ₂ solid lubricant			MoS ₂ solid lubrication	□□□□ LZZC3-HMST4

Note (1) Open Type bearings are not grease-packed.

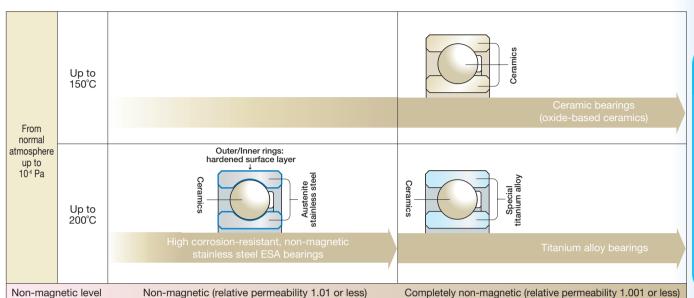

SPACEA™ Bearings Listed by Operating

Environment

SP/CE/

Bearings for hightemperature environments

- Bearings for high-temperature environments consist of high-temperature, grease-packed bearings and MoS₂ solidlubrication bearings.
- The high-temperature, grease-packed bearings are made exclusively for use under normal atmospheric pressure conditions in high-temperature environments (up to 230°C). They are packed with the NSK long-life fluorine grease, KPM, which has a life span five times as long as that of commercially available fluorine grease.
- For use in high-temperature, vacuum environments, SJ/YS high-temperature bearings with solid lubrication are recommended.

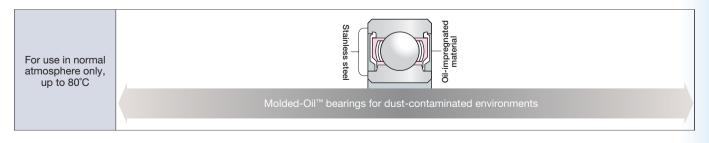


Specifications of Bearings for High-Temperature Environments

Ī	Onevetine	Duoduot			S	Specifications		Lubricant/	Decring number	
	Operating environment	Product name	Structure	Inner ring/ Outer ring		Cage	Shields Seal		Surface treatment	Bearing number for inquiry
	up to 230°C	High-temperature KPM grease-packed bearings			Stainless steel	Stainless steel			Fluorine grease	□□□□ LZZ (C3) -H KPM
	From normal atmosphere up to 10 ⁻⁸ Pa, up to 350°C	YS high-temperature bearings with spacer joints	Shielded Type	Stainless steel	steel and	Lubrication spacer joints	Stainless steel	_	MoS₂ solid	□□□□ LZZC4-HMSS2
	From normal atmosphere up to 10 ⁻⁸ Pa, up to 400°C	SJ high-temperature bearings with solid lubrication			MoS ₂ coating	Corrugated stainless steel and lubrication spacer joints			MoS ₂ solid lubricant	U- S4MLSJ01ZZ

Bearings for non-magnetic requirement

• Bearings for non-magnetic requirement are classified into non-magnetic (relative permeability 1.01 or less) bearings and completely non-magnetic (relative permeability 1.001 or less) bearings. Both bearings are harder and more resistant to corrosion than conventional stainless steel or beryllium-copper alloys.


Specifications of Bearings for Non-magnetic Requirement

Onevetine	Product			Specification			Decring number		
Operating environment	name	Structure	Inner ring/ Outer ring	Ball	Cages	Shield	Seal	Lubricant	Bearing number for inquiry
Non-magnetic (relative permeability 1.01 or less)	High corrosion-resistant, non-magnetic stainless steel ESA bearings	_	Surface layer hardened austenite stainless steel						ESA □□□□T36
Completely non- magnetic (relative permeability 1.001	Completely non- magnetic titanium alloy bearings	Open Type only	Special titanium alloy	Stainless steel	Fluororesin	_	_	Solid lubricant (fluororesin)	□□□□ L-TT3
or less)	All-ceramic bearings (oxide-based ceramics)		Ceramics						□□□□ SZ1T36

Bearings for dustcontaminated environments

For dust-contaminated environments, bearing steel Molded-Oil™ bearings are recommended. These bearings are more economical than stainless steel Molded-Oil™ bearings.

Note: Stainless steel Molded-Oil™ bearings are recommended for corrosive environments.

Specifications of Bearings for Dust-contaminated Environments

0	Duraturat			Speci	Lubricant/	D				
Operating environment	Product name	Structure	Inner ring/ Outer ring	Balls	Cage	Shields	Seals	Surface treatment	Bearing number for inquiry	
Dust or wood waste	Molded-Oil™ bearings (bearing steel)	Sealed Type	Bearings steel	Bearings steel	Soft steel	_	Nitrile rubber	Molded-oil™	□□□□ <mark>L11</mark> DDU	

20 **NSK** 21

Dimensions, Accuracy and Availability

1. Stainless steel-based SPACEA™ Series Bearings

Accuracy of boundary dimensions and running accuracy

Note: The dimensional tolerance of the bore and outside diameter for corrosive coating bearings may deviate from the JISO standard for coating thickness (maximum 5µm in diameter).

Dimensional accuracy of bore diameter of inner ring

Unit: μ m

bore di	I bearing iameter nm)	Single plar diameter dev of single b	(Ou	re diameter t-of-roundn V _{dp} Diameter se	ess)	Mean bore diameter variation (Cylindricity) $V_{d\mathrm{mp}}$	
			ump	7, 8, 9	0, 1	2, 3, 4	
Over	Incl	High	Low		Max		Max
2.5	10	0	-8	10	8	6	6
10	18	0	-8	10	8	6	6
18	30	0	-10	13	10	8	8
30	50	0	-12	15	12	9	9

Dimensional accuracy of outside diameter of outer ring

Unit: um

Nominal	bearing	Single plane	e mean outside	Mea	n outside di (Out-of-ro	Mean outside				
outside o D (n	diameter	of single ou	viation (Deviation Itside diameter) 1D _{mp}	Оре	en type bear	Sealed/ Shielded	diameter variation (Cylindricity) $V_{d_{mp}}$			
			mp		Diamete	er series		√ <i>d</i> mp		
				7, 8, 9	0, 1	2, 3, 4	2, 3, 4			
Over	Incl	High	Low		Max			Max		
6	18	0	-8	10	8	6	10	6		
18	30	0	-9	12	9	7	12	7		
30	50	0	-11	14	11	8	16	8		
50	80	0	-13	16	13	10	20	10		

Dimensional accuracy of inner/outer ring width

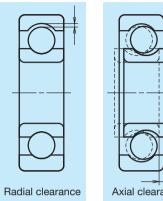
Unit: μ m

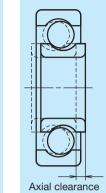
Nominal bore di d (n	ameter		single ring width $_{\rm S}$ or ${\it \Delta C}_{\rm S}$	Ring width variation (Max-min) $VB_{\rm S}$ or $VC_{\rm S}$
Over	Incl	High	Low	Max
2.5	10	0	-120	15
10	18	0	-120	20
18	30	0	-120	20
30	50	0	-120	20

Running accuracy

Unit: μ m

J	,			,
Nominal bore di d (n	ameter	bearing i	of assembled nner ring ^{ia}	Radial runout of assembled bearing outer ring k _{ea}
Over	Incl	High	Low	Max
2.5	10	10	0	15
10	18	10	0	15
18	30	1:	3	20
30	50	1:	5	25


Bearing internal clearance and the standard value


of SPACEA™ Series Bearings

Internal clearance of bearings is the amount that one ring, either the inner or outer, can be displaced relative to the other ring when one is fixed and the other is displaced either vertically or horizontally. The amount of displacement in the radial plane is called radial clearance, while the amount of displacement in the axial plane is called axial clearance. Clearance is measured by adding a specific measuring load to a bearing in order to obtain a stable measured value. As a result, the measured clearance value, or measured internal clearance, becomes slightly larger than the theoretical internal clearance value (also known as geometrical clearance in the case of a radial bearing). The difference is known as the elastic deformation volume, or approach amount.

Theoretical internal clearance is derived by compensating the increment of clearance caused by elastic deformation.

Internal clearance of bearings prior to installation is usually defined by the theoretical internal clearance value.

Radial internal clearance of nominal bearing bore diameter

Unit: μ m

Nominal bore di	bearing					Clea	ırance				
<i>d</i> (n			C2	CN C3		C	24	C5			
Over	Incl	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
10 only		0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73

Remarks When using the above values as measured clearance, the radial clearance increment caused by the measuring load will be compensated as the clearance compensation values listed in the following table. For compensation values for C2 clearance, the smaller value will be applied to the smallest clearance and the larger value shall be applied to the largest clearance.

Clearance compensation volume

Unit: μ m

N	Nominal b bore dia	meter	Measuring load		Clearance compensation value								
0	<i>d</i> (mr)ver	m) Incl	Measuring load (N)	C2	CN	C3	C4	C5					
1	10	18	24.5	3~4	4	4	4	4					
1	18	50	49	4~5	5	6	6	6					

Radial internal clearance of extra-small ball bearings

Unit: μ m

Clearance number	N	IC1	М	C2	М	C3	МС	C4	М	C5	М	C6
Clearance	Min	Max										
Clearance	0	5	3	8	5	10	8	13	13	20	20	28

Remarks 1. Standard clearances are MC3 values.

2. When used as measured internal clearance, the correction values in the following table will be added.

Clearance correction volume

Clearance number	MC1	MC2	MC3	MC4	MC5	MC6
Clearance correction value	1	1	1	1	2	2

Remarks The measuring load for an extra-small ball bearing is 4.4 N.

NSK 23

Dimensions, Accuracy and Availability

of SPACEA™ Series Bearings

1. Stainless steel-based SPACEA™ Series Bearings

Extra-emall hall hearings

Extra-sma	all ball bear	ings												r				
Product	Stainless steel bearings	Molded-Oil™ bearings	Hybrid bearings	Corrosion- resistant coated bearings (Nickel coating)	ESA bearings	Clean grease- packed bearings	YS bearings with MoS ₂ self-lubricating cage	Bearings with self-lubricating fluororesin cages (T3 specification)	V-DFO bearings	High- temperature clean grease- packed bearings	YS high- temperature bearings with spacer joints	SJ high- temperature bearings with solid lubrication	ØD		ød øD –		− ød ↓ 	
	eseauD Stainless steel	east ssalutas	stainless stainless	Ceramics trusts is an unique of the control of the	Outer/Inner rings: hardened surface layer	Stainless steel	Stainless steel	Stainless stee	Bulletin Bul	anterage earlies and a search a	Balls: MoSs solid- lubricant coating spacer joint	Special cage Lubricating spacer joint		Open Type		Shielded Type ZZ·ZZS		Dynamic
Bearing number for inquiry	000 -H-		□□□ LZZCG−YT3	DDD LZZCG	ESA □□□ T36	DDD LZZC3-H		□□□ LZZ¢3−	□□□ LZZC3–HFD	□□□ LZZČ3–H KPM		U-000 S4	Bore diameter	Outside diameter	Width Open Type, Shielded Type	Chamfer dimension (min)	Basic bearing	load rating, C _H (reference
Basic bearing number	NS7 grease	Molded-oil™	Solid lubricant	-YNIT3 Solid lul	bricant	LG2 (LGU, DL2) Clean grease	HMST4 Solid lu	ubricant	Fluorine oil coating	KPM grease	HMSS2 Solid Iu	MLSJ01ZZ ubricant	. d (mm)	(mm)	(mm)	(mm)	number	(reference value) (N)
684	0						0		0	0				9	4	0.15	684	545
694	0					0	0		0	0	0		-	11	4	0.15	694	815
604	•		0	0		0	0	0	0	0	0		4	12	4	0.2	604	815
624	•					0	0		0	0	0			13	5	0.2	624	1 110
634	0					0	0		0	0	0			16	5	0.3	634	1 470
685	0					0	0		0	0				11	5	0.15	685	610
695	0					0	0		0	0	0			13	4	0.2	695	915
605	•					0	0		0	0	0		5	14	5	0.2	605	1 130
625	•		0	0		0	0	0	0	0	0			16	5	0.3	625	1 470
635	0	0				0	0		0	0	0			19	6	0.3	635	2 220
686	•					0	0		0	0	0			13	5	0.15	686	920
696	•		0	0		0	0	0	0	0	0			15	5	0.2	696	1 470
606			0	0		0	0	0	0	0			6	17	6	0.3	606	1 920
626		0	0	0		O	0	0	0	0	0			19	6	0.3	626	2 220
636	0	0				0	0		0		\circ			22	7	0.3	636	2 800
687						0	0		0	0	0			14	5	0.15	687	1 000
697			0	0		0	0	0	0	0	0			17	5	0.3	697	1 370
607		0	0	0		0	0	0	0	0	0		7	19	6	0.3	607	2 220
627	•	0	0	0		0	0	0	0	0	0			22	7	0.3	627	2 800
637	0	0												26	9	0.3	637	3 900
688	•		0	0		0	0	0	0	0	0			16	5	0.2	688	1 370
698	•	0	0	0		0	0	0	0	0	0			19	6	0.3	698	1 900
608	•	0	0	0	0	0	0	0	0	0	0	0	8	22	7	0.3	608	2 800
628	•	0	0	0	0	0	0	0	0	0	0			24	8	0.3	628	2 850
638	0					0	0	0	0	0	0			28	9	0.3	638	3 900
689	•		0	0		0	0	0	0	0	0			17	5	0.2	689	1 130
699	•	0	0	0		0	0	0	0	0	0			20	6	0.3	699	1 460
609	•	0	0	0	0	0	0	0	0	0	0		9	24	7	0.3	609	2 850
629	•	0	0	0	0	0	0	0	0	0	0			26	8	0.6	629	3 900
639	0	0												30	10	0.6	639	4 350
R6	0	0	0	0	0	0	0	0	0	0	0		9.525	22.225	7.142*2	0.4	R6	2 830

Remarks For large orders of standard inventory items or rush items, delivery time may be adjusted.

OProduction on demand

Blank: TBA

Remarks Load rating C_H—load ratings of stainless steel bearings. Used to calculate an limiting load P of SPACEA™ bearing from P/C_H. This value cannot be applied to calculation of rolling fatigue life.

^{*1} Radial internal clearance is MC3 (standard clearance of extra small and miniature ball bearings).

^{*2} For ESA bearing, standard width is 5.558mm.

Dimensions, Accuracy and Availability

of SPACEA™ Series Bearings

1. Stainless steel-based SPACEA™ Series Bearings

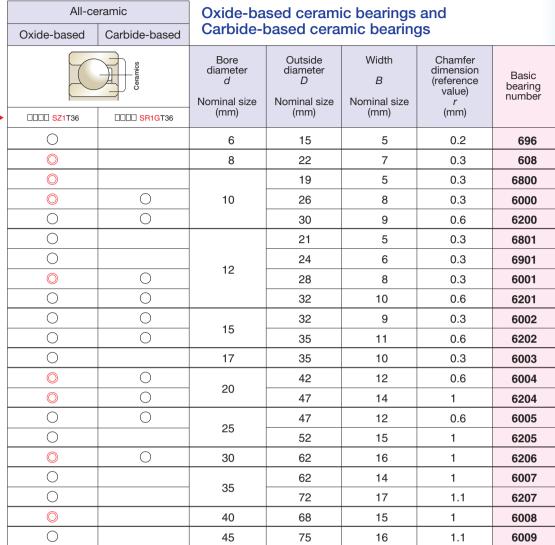
Standard	ndard bearings *Standard inventory items for Molded-Oil™ bearings are Contact-Seal Type.											icated with high-tem s of C3 clearance are							
Product	Stainless steel bearings	Molded-Oil™ bearings*	Hybrid bearings	Corrosion- resistant coated bearings (Nickel coating)	ESA bearings	Clean grease- packed bearings	YS bearings with MoS ₂ self-lubricating cage	Bearings with self-lubricating fluororesin cages (T3 specification)		V-DFO bearings	High- temperature clean grease- packed bearings*	YS high- temperature bearings with spacer joints	SJ high- temperature bearings with solid lubrication		ØD	ød			
	esea.g	mateual multiple standarduring	Stairless steel	bujaco tuestisa-luojsous	Outer/Inner rings: hardened surface layer	Stainless steel	leets sselurers	Self-lubricating	Stainless steel	loorine oil coating	loops ssolurely	Balls: MoS. solid- lubricant coating space joint	Special cage cage Lubricating spacer joint			Open Type S	hielded Type ZZ Chamfer		Dynamic
Bearing number for inquiry	□□□□ -H- ····*MA	□□□□ L11 –H–20	□□□□ LZZCG -YT3	DDD LZZCG -YNIT3	ESA DODD T36	□□□□ LZZ−H LG2 (LGU, DL2)	DDD LZZC3- HMST4	DDD LZZ- HT3		DDDD LZZ-HFD	□□□□ LZZ (C3) -H KPM	DDD LZZC4- HMSS2	U-000 S4 MLSJ01ZZ	Bore diameter d	Outside diameter D	Open Type, Shielded Type	dimension (min)	Basic bearing	load rating, C _H (reference
Basic bearing number	NS7 grease	Molded-oil™	Solid lubricant	Solid lu	ıbricant	Clean grease	Solid lu	bricant		Fluorine oil coating	KPM grease	Solid lu	bricant	(mm)	(mm)	B (mm)	(mm)	number	value) (N)
6800	•	0	0	0		0	0	0		<u> </u>	0	0			19	5	0.3	6800	1 460
6900	•		0	0		0	0	0		0	(()	0			22	6	0.3	6900	2 290
6000			0	0	0	0	0	0		0	○ (○)	0	0	10	26	8	0.3	6000	3 900
6200			0	0	0	0	0	0		0	0	0	0		30	9	0.6	6200	4 350
6300	0		_			0	0	_		0	0	0			35	11	0.6	6300	6 900
6801			0	0		0	0	0		0	0	0			21	5	0.3	6801	1 630
6901			0	0		0	0	0		0	0	0			24	6	0.3	6901	2 460
6001			0	0	0	0	0	0		0	0(0)	0	0	12	28	8	0.3	6001	4 350
6201 6301	0		0	0	0	0	0	0		<u> </u>	○ (○)	<u> </u>	O		32	10	0.6	6201	5 800
6802		0				0	0				0	0			37 24	12 5	0.3	6301 6802	8 250 1 760
6902		0	0			0	0				0	0			28	7	0.3	6902	3 700
6002			0	0	0	0	0	0			0 (0)	0	<u> </u>	15	32	9	0.3	6002	4 750
6202			0	0	0	0	0	0			0 (0)	0	0		35	11	0.6	6202	6 500
6302	0	0				0	0			0	0	0			42	13	1	6302	9 700
6803		0				0	0			0	0	0			26	5	0.3	6803	2 240
6903		0	0	0		0	0	0		0	0	0			30	7	0.3	6903	3 900
6003			0	0	0	0	0	0		0	◎ (◎)	0	0	17	35	10	0.3	6003	5 100
6203			0	0	0	0	0	0		0	0	0	0		40	12	0.6	6203	8 150
6303	0	0				0	0			0	0	0			47	14	1	6303	11 600
6804	•	0	0	0		0	0	0		<u> </u>	0	0			32	7	0.3	6804	3 400
6904		0	0	0		0	0	0		0	0	0			37	9	0.3	6904	5 400
6004			0	0	0	0	0	0		0	○ (○)	0	0	20	42	12	0.6	6004	7 950
6204			0	0	0	0	0	0		<u> </u>	<u>(()</u>	0	<u></u>		47	14	1	6204	10 900
6304 6805	0	0	0	0		<u> </u>	0	0		<u> </u>	0	0			52	15	1.1	6304	13 500
6905		0	0	0		0	0	0		<u>_</u>	0	0			37 42	7 9	0.3	6805 6905	3 800 5 950
6005			0	0	0	0	0	0		O	0 (0)	0		25	42	12	0.3	6005	8 550
6205			0	0	0	0	0	0		O	0	0			52	15	1	6205	11 900
6006			0	0	0	0	0	0			0	0			55	13	1	6006	11 300
6206		0	0	0	0	0	0	0			0	0		30	62	16	1	6206	16 500
6007		0	0	0		0	0	0			0	0			62	14	1	6007	13 600
6207		0	0	0		0	0	0		0	0	0		35	72	17	1.1	6207	21 800
6008		0	0	0		0	0	0		0	0	0		40	68	15	1	6008	14 200
6208		0	0	0		0	0	0		0	0	0		40	80	18	1.1	6208	24 800
6009	0	0				0	0			0	0	0		45	75	16	1	6009	17 800

Remarks For large orders of standard inventory items or rush items, delivery time may be adjusted.

Remarks Load rating C_H—load ratings of stainless steel bearings. Used to calculate an limiting load P of SPACEA™ bearing from P/C_H. This value cannot be applied to calculation of rolling fatigue life of bearings with solid lubrication and coated bearings.

OProduction on demand

Blank: TBA



2. Aqua-Bearing[™]—high corrosion-resistant resin bearings

	Aqua-B	earing™					_				
	Ceramic ball	Special glass ball	Ceran	nic ball b	earings	and Spe	eciai gia:	ss dali d	earings		
В	Ceramics	Special glass ball	dian	ore neter d	L	neter O		dth B	Chamfer dimension (reference value)	Basic bearing	Radial internal clearance
Bearing number for inquiry		™ (-QT3)	Nominal size (mm)	Tolerance (mm)	Nominal size (mm)	Tolerance (mm)	Nominal size (mm)	Tolerance (mm)	r (mm)	number	(mm)
umbe Jiry	0		5		16		5		0.3	625	
					15		5		0.2	696	
	0		6		17		6		0.3	606	
	0				19		6		0.3	626	
	0				17		5		0.3	697	
	0		7		19		6		0.3	607	
	0	0		+0.05	22	0	7	0	0.3	627	0.04-0.12
	0			0	16	-0.05	4	-0.12	0.2	688	0.04-0.12
	0	0	0		19		6		0.3	698	
	0	0	8		22		7		0.3	608	
	0	0			24		8		0.3	628	
	0				20		6		0.3	699	
	0	0	9		24		7		0.3	609	
	0	0			26		8		0.6	629	
	0	0	9.525		22.225		5.558		0.4	R6	
	0				19		5		0.3	6800	
	•	•	40		22		6		0.3	6900	
	•	•	10		26		8		0.3	6000	
	•	•			30		9		0.6	6200	
	0				21		5		0.3	6801	
			10		24		6		0.3	6901	
	•	•	12		28		8		0.3	6001	
		•			32		10		0.6	6201	
		•			28		7		0.3	6902	
			15		32		9		0.3	6002	
				+0.05	35	0	11	0	0.6	6202	0.04-0.16
	•	•		0	30	-0.05	7	-0.12	0.3	6903	0.04-0.16
			17		35		10		0.3	6003	
	•				40		12		0.6	6203	
	0				32		7		0.3	6804	
			00		37		9		0.3	6904	
	•	•	20		42		12		0.6	6004	
	•	•			47		14		1	6204	
	0				37		7		0.3	6805	
			0.5		42		9		0.3	6905	
			25		47		12		0.6	6005	
	0				52		15		1	6205	
								•			•

Standard inventory items

3. All-Ceramic Bearings

Rush items (within one month)

Remarks 1. Dimensional accuracy is compliant with the stainless steel bearings.

Open Type

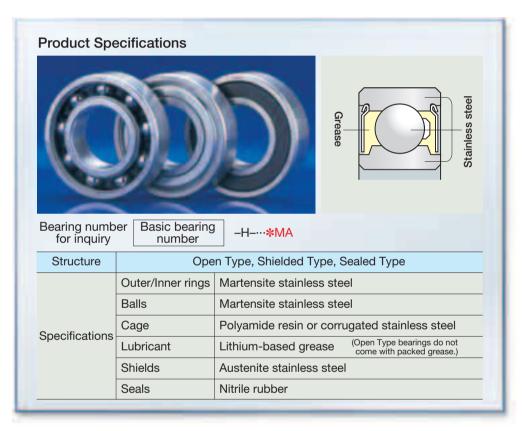
28 **NSK**

OProduction on demand

Blank: TBA

Remarks For large orders of Standard inventory items, delivery time may be adjusted.

OProduction On Demand


^{2.} The standard of radial internal clearance for All-ceramic bearings is as follows; Extra-small ball bearings/Miniature ball bearings: Lower limit of MC3 to upper limit of MC5 Normal size ball bearings: Lower limit of CN to upper limit of C4

SP/CE/

1. Stainless Steel Bearings

Stainless steel bearings, the standard products of the NSK SPACEA[™] Series for special environments, are suitable for high-humidity environments.

Applications: Equipment used in high-humidity environments: food processing, cleaning, chemical processing, fishery equipment

Operating Instructions and Notes

- Lubrication grease for standard inventory bearings is NS7 (lithium-based grease).
- For use in normal atmosphere only.
- Water-resistant grease-packed bearings are available.
- The scope of applications is shown in the table below.

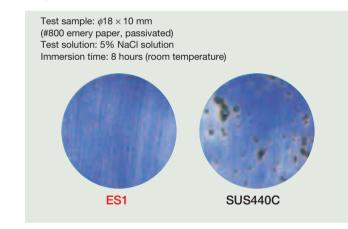
Operating environment	Operating temperature	Limiting rotational speed	Limiting load
High-humidity environments	Up to 80°C	$d_{\rm m}n = 150~000$	5% of the stainless steel bearing load rating $C_{\rm H}$

Remarks 1. $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) $\div 2 \times$ Rotational speed, rpm

- 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
- 3. See the SPACEATM Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings.

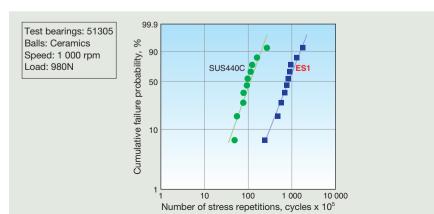
Features

- For use in normal atmosphere only, grease lubrication
- Higher corrosion resistance than bearing steel
- Open Type, Shielded Type, and Contact-seal Type are available (see P24–27)


NSK High Corrosion-Resistant Stainless Steel ES1 NSK high corrosion-resistant stainless steel ES1 is expanding to use for stainless steel bearings. High corrosion resistance Outperforms SUS440C bearings Equivalent with SUS440C bearings Outperforms SUS440C bearings

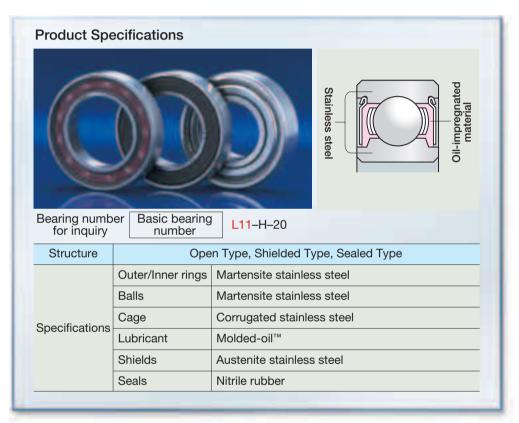
Performance

Material	Hardness, HRC	Corrosion resistance	Features
NSK high corrosion-resistant stainless steel ES1	58–62	0	NSK-developed steel
Martensite stainless steel SUS440C	58–62	Δ	Ordinary stainless steel
Bearing steel SUJ2	60–64	×	Ordinary steel for bearings


Corrosion resistance of ES1

Outperforms SUS440C in corrosion resistance

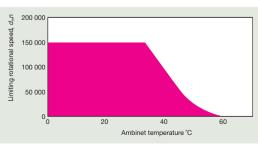
• Immersion rolling fatigue life
Outperforms SUS440C in durability


30 **NSK**

SPACEA

2. Molded-Oil™ Bearings

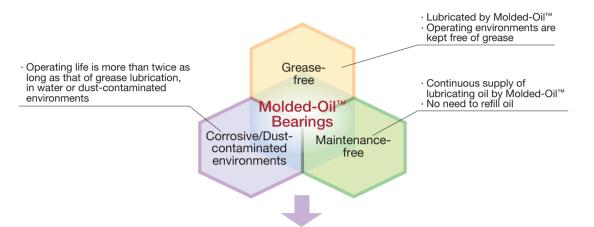
Molded-oil[™] bearings, made of stainless steel, are lubricated with NSK's original oil-impregnated material, Molded-oil[™], and are suitable for corrosive and dust-contaminated environments in normal atmosphere.

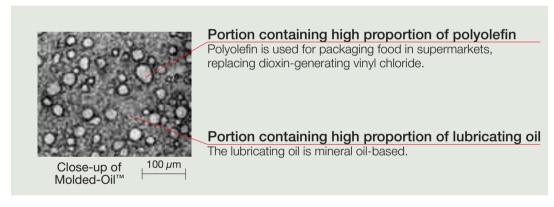


Applications: Semiconductor cleaning equipment, liquid-crystal bases, hard-disk cleaning equipment, food processing machinery, various conveyor lines

Operating Instructions and Notes

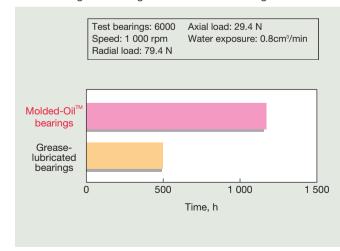
- Molded-Oil™ bearings should not be exposed to degreasing liquids such as organic solvents.
- Molded-Oil™ melts at a temperature of 120°C. The bearings must not be heated over 100°C, especially during shrink fitting.
- A radial load is required for the bearings to properly rotate. The minimum radial load recommended for maintaining proper rotation is at least 1% of the basic dynamic load rating.
- For use in normal atmosphere only.
- The scope of applications is shown in the table below.


Operating environment	Operating temperature	Limiting rotational speed	Limiting load
Water spray, water immersion	Refer to the figu	ure on the right side	Between 1% and 5%, inclusive, of the stainless steel bearing load rating $C_{\rm H}$

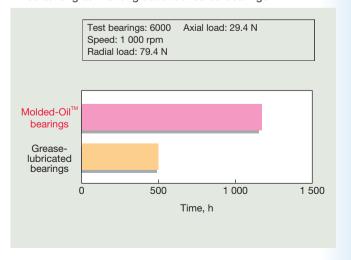

- Remarks 1. $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) $\div 2 \times \text{Rotational speed, rpm}$
 - 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

Features

- Molded-Oil™—provides continuous supply of lubrication oil
- Grease-free property with no oil refilling keeps operating environments clean
- Operating life more than twice as long as grease lubrication, in water or dust-contaminated environments
- Contact-seal Type available in standard inventory (see P24–27)



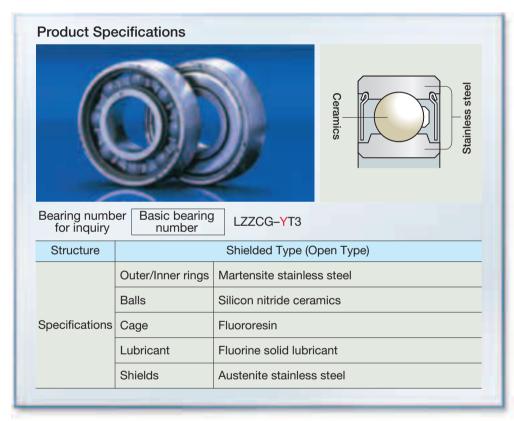
Performance


Durability under wet conditions

Molded-Oil™ bearings have an operating life that is more than twice as long as that of grease-lubricated bearings.

Durability in water-immersed conditions

Molded-Oil™ bearings have an operating life that is more than twice as long as that of grease-lubricated bearings.

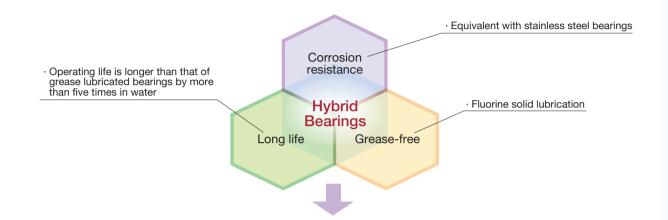


3. Hybrid Bearings

Hybrid bearings, combining ceramic balls and fluororesin self-lubricating cages, are suitable for corrosive environments from normal atmosphere up to vacuum.

Applications: Devices and conveyor lines used in water-spray and water-immersed environments such as food processing and fishery equipment

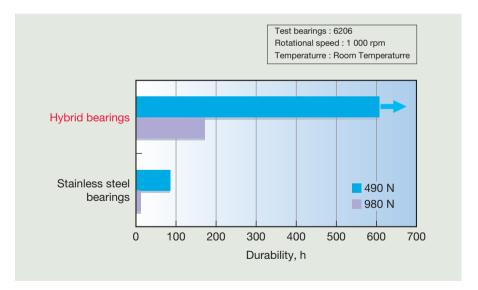
Operating Instructions and Notes


- The scope of applications is shown in the table below.
- The standard of radial internal clearance for Hybrid bearings is as follows: Normal size ball bearings: From the lower limit of CN to the upper limit of C3; Extra-small ball bearings: From the lower limit of MC3 to the upper limit of MC4.

Operating environment	Operating temperature	Limiting rotational speed	Limiting load
Water, grease-free environments	Up to 200℃	$d_{\rm m}n = 20\ 000$	2% of the stainless steel bearing load rating C _H

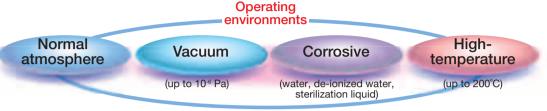
- Remarks 1. $d_m n = (Bearing bore diameter, mm + Bearing outside diameter, mm) ÷ 2 × Rotational speed, rpm$
 - 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings.

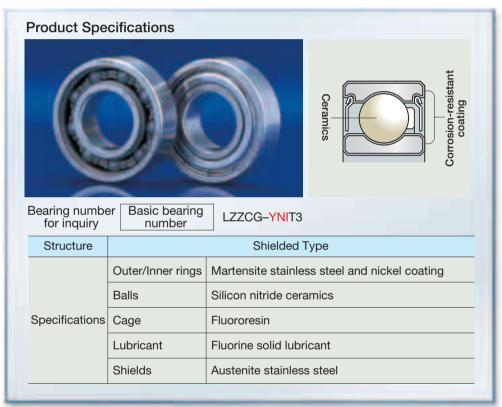
Features


- Grease-free, fluorine solid lubricant
- Operating life more than five times as long as that of stainless steel bearings, in water-immersed environments
- Applicable from normal atmosphere up to 10-6 Pa

Performance

Durability in water-immersed environments


Hybrid bearings have an operating life more than five times as long as that of stainless steel bearings.

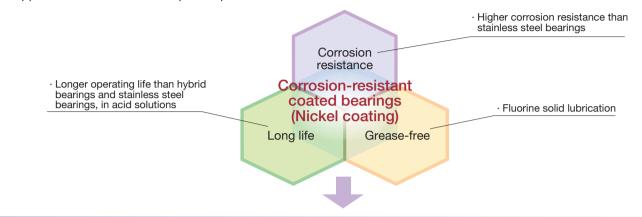


4. Corrosion-Resistant Coated Bearings (Nickel coating)

Corrosion-resistant coated bearings (Nickel coating) are coated with a nickel coating on the outer and inner rings to enhance corrosion resistance and durability, and are suitable for corrosive environments such as normal atmosphere or high temperature.

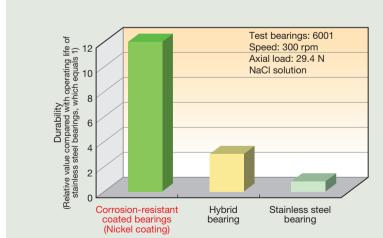
Applications: Semiconductor/FPD/HD cleaning equipment, etching equipment, food processing machinery, various conveyor lines

Operating Instructions and Notes


- Corrosion-resistant coated bearings (Nickel coating) should be used with a light load range to protect the coating.
- The dimensional tolerance of the bore and outside diameter for corrosion-resistant coated bearings may deviate from the JISO standard for coating thickness (maximum 5 μ m in diameter).
- The standard of radial internal clearance CG is as follows; Normal size ball bearings: Lower limit of CN to upper limit of C3, Extra-small ball bearings: Lower limit of MC3 to upper limit of MC6.
- The scope of applications is shown in the table below.

Operating environment	Operating temperature	Limiting rotational speed	Limiting load
Water, de-ionized water,	Up to 200°C	$d_{\rm m}n = 20~000$	2% of the stainless steel bearing load rating C _H

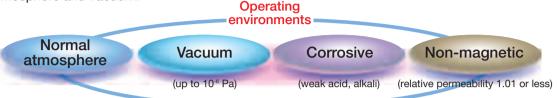

- Remarks 1. $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) $\div 2 \times$ Rotational speed, rpm
 - 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings.

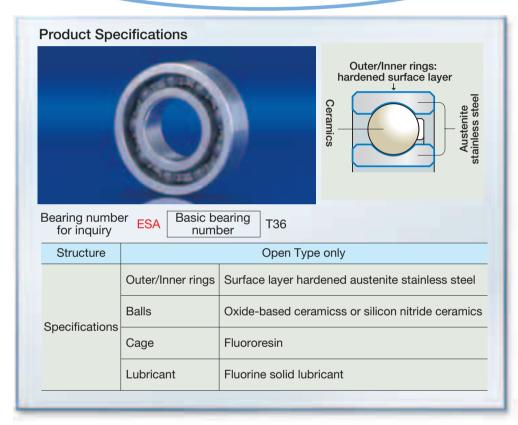

Features

- Grease-free, fluorine solid lubricant
- Higher corrosion-resistance and longer life than stainless steel bearings or hybrid bearings
- Resistant to sterilization liquids such as hydrogen peroxide and oxonia
- Applicable from normal atmosphere up to 10⁻⁶ Pa

Performance

Durability in NaCl solution

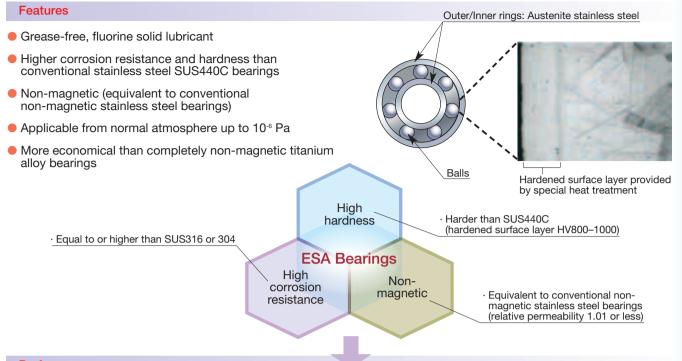

In NaCl solution, corrosion-resistant coated bearings (Nickel coating) have an operating life more than four times as long as that of hybrid bearings, and more than 12 times as long as that of stainless steel bearings.



5. High Corrosion-Resistant, Non-Magnetic Stainless Steel ESA Bearings

ESA Bearings, combining austenite stainless steel and hardened surface layers, possess high hardness, corrosion resistance and non-magnetic properties, and are suitable for corrosive environments and non-magnetic requirement in normal atmosphere and vacuum.

Applications: Corrosive environments: Cleaning equipment (except for etching equipment)
Non-magnetic requirement: Electron beam drawing devices, electron beam
exposure equipment, testers


Operating Instructions and Notes

- For use with a light load.
- Relative permeability (μ) should be 1.01 or less. For completely non-magnetic requirement, titanium alloy bearings are recommended.
- The standard of radial internal clearance for ESA bearings is as follows; Normal size ball bearings: Lower limit of CN to upper limit of C4, Extra-small ball bearings: Lower limit of MC3 to upper limit of MC5.
- The scope of applications is shown in the table below.

Operating environment	Operating temperature	Limiting rotational speed	Limiting load
Corrosive (chemical, weak acid, alkali), non-magnetic	Up to 200°C	$d_{\rm m}n = 20~000$	2% of the stainless steel bearing load rating $C_{\rm H}$

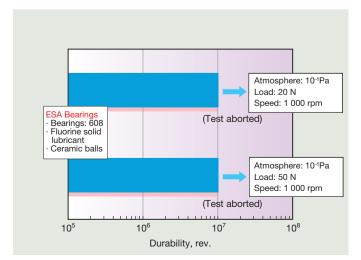
Remarks 1. There are some cases where the operating temperature is restricted by basic bearing number. Please contact NSK.

- 2. $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) $\div 2 \times$ Rotational speed, rpm
- 3. The limiting load is calculated based on a bearing life of 10⁷ rotations.
- 4. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

Performance

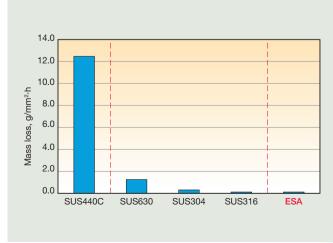
Comparison with conventional materials

Material	Hardness (HV) (1)	Relative permeability	Corrosion resistance	Features
ESA	800–1 000 (²)	1.01 or less	0	NSK-developed steel
SUS440C	670	Ferromagnetic body	Δ	Ordinary stainless steel
Non-magnetic stainless steel	450	1.01 or less	Δ	Due to its properties, it is difficult to machine, requiring advanced processing technology
Beryllium-copper alloy	320–400	1.001 or less	0	Apt to oxidize and hard to handle; the oxidation by-product is harmful
Silicon nitride	1 500	1.001 or less	0	Due to its properties, it is difficult to machine, requiring advanced processing technology; high cost


Corrosion resistance evaluation : Not corroded

○: Slightly corroded △: Partially corroded

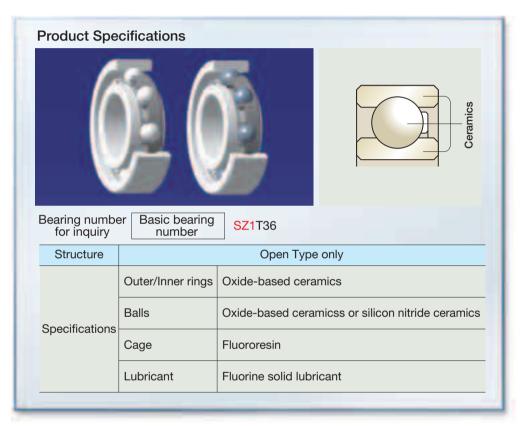
Notes (¹) Indicated in HV hardness for comparison
(²) Hardened surface layer


Durability in water-immersed conditions

ESA bearings have durability of more than 10⁷ rotations.

Results of 20% sulfuric acid immersion test

Corrosion resistance is equivalent with SUS316, 304



6. All-Ceramic Bearings (Oxide-based ceramics)

With ceramic outer/inner rings and balls, all-ceramic bearings have self-lubricating fluororesin cages and are suitable for corrosive environments and non-magnetic requirement from normal atmosphere up to vacuum.

Applications: Corrosive environments: Semiconductor production machinery, chemical processing equipment, metal plating equipment Non-magnetic requirement: Electron beam drawing devices, electron beam exposure equipment, testers

Operating Instructions and Notes

- Ceramics is a fragile material. Please observe the following precautions.
- ★Do not drop or strike the bearing. ★Allow for sufficient clearance when installing the bearing.
- ★Do not strike the bearing with a hammer or other tool when installing the bearing to a shaft or axle box.
- Silicon nitride-based ceramics may be recommended for specific high-temperature and heavy-load conditions.
- The scope of applications is shown in the table below.

Operating environment	Operating environment		Limiting load	
Corrosive (alkali, weak	Up to 150°C	$d_{\rm m}n = 20~000$	5% of the stainless steel bearing load rating C _H	

Remarks 1. $d_m n = \text{(Bearing bore diameter, mm + Bearing outside diameter, mm)} \div 2 \times \text{Rotational speed, rpm}$

- 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
- 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings.

Features

- Grease-free, fluorine solid lubricant
- Higher corrosion resistance and longer life than conventional stainless steel bearings and hybrid bearings (more than
 five times longer in water environments)
- Non-magnetic property outperforms conventional non-magnetic bearings
- Applicable from normal atmosphere up to 10⁻⁶ Pa
- Oxide-based ceramics are lower in cost than other ceramics

• The operating life is more than 20 times longer than that of SUS440C in water-immersed conditions

High corrosion resistance

Oxide-Based Ceramics

Cost

Non-magnetic

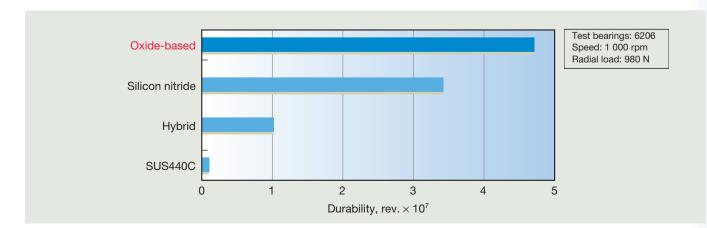
Non-magnetic

Performance

Comparison of performance and cost

Oxide-based ceramics (ZrO₂) are:

- ★More corrosion-resistant than stainless steel SUS440C or silicon nitride ceramics (Si₃N₄)
- ★Lower in price than other ceramics

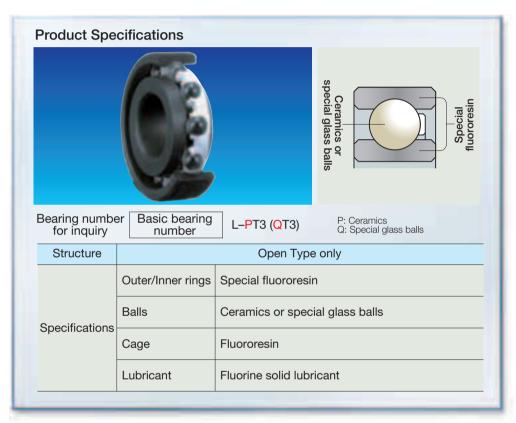

- Oxide-based ceramics · · · · · · ZrO₂
 Carbide-based ceramics · · · · · SiC
- Carbide-based ceramics····· SiCSilicon nitride ceramics···· Si₃N₄

Evaluation item		Ceran	Stainless steel	
		Oxide-based	Silicon nitride	SUS440C
	3% Sulfuric acid (room temperature)		Δ	×
Corrosion resistance	8% Hydrochloric acid (room temperature)	0	Δ	×
	5% Fluoric acid (room temperature)	Δ	Δ	×
Relative permeability		1.001 or less	1.001 or less	Ferromagnetic body
Cost		Standard	High	Low

Corrosion resistance evaluation : Slightly corroded : Partially corroded : Corroded

Durability in water-immersed conditions

Oxide-based ceramics (ZrO₂) are 20 times more durable than SUS440C under water-immersed conditions.



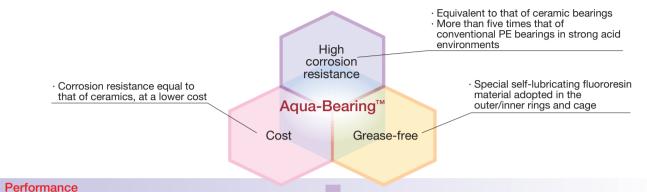
7. Aqua-Bearing[™] – High Corrosion-Resistant Resin Bearings

Aqua-Bearing[™] features a special fluororesin for outer/inner rings and cages equipped to meet a broad range of applications in water, alkali and strong acid environments. Aqua-Bearing™ is suitable for corrosive environments exclusively in normal atmosphere.

Applications: Cleaning equipment for semiconductors/liquid crystals/hard disks, metal plating equipment, etching equipment, food processing machinery

Operating Instructions and Notes

- Tolerances for bore and outside diameters and the internal clearance of the bearings deviate from specifications for standard bearings. (Refer to the Bearing Dimension Table on P28 for more detail).
- For bearings used in hydrofluoric acid or organic solvent environments, deterioration may occur. Please contact NSK.
- It is possible to use at temperatures higher than 40°C, but the linear expansion coefficient of special fluorocarbon resin is large $(\alpha=1.7\times10^{-4})^{\circ}$ C), so it is necessary to pay attention to fitting.
- For use in normal atmosphere only.
- The scope of applications is shown in the table below.


Operating environment	Operating temperature	Limiting rotational speed	Limiting load
Water, alkali, strong acid, reactive gas	Up to 40°C	$d_{\rm m}n = 20~000$	1% of the stainless steel bearing load rating $C_{\rm H}$

Remarks 1. $d_m n = \text{(Bearing bore diameter, mm} + \text{Bearing outside diameter, mm)} \div 2 \times \text{Rotational speed, rpm}$

- 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
- 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings.

Features

- High corrosion resistance equivalent to that of ceramic bearings
- Excellent durability in acid solvents; over 1 000 times more resistant than SUS440C stainless bearings and over five times more resistant than conventional resin (PE) bearings
- Special self-lubricating fluororesin makes grease or oil unnecessary

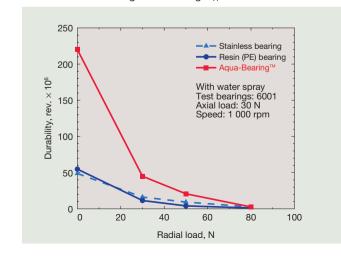
Comparison of corrosion resistance

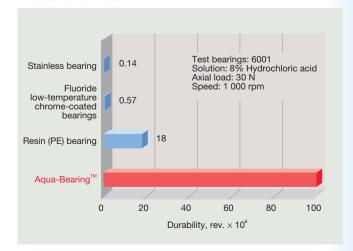
Results of water-spray durability tests

stainless steel bearing's load rating C_H or less

Remarkable durability can be observed under light-load

conditions. Application recommended is under 1% of the

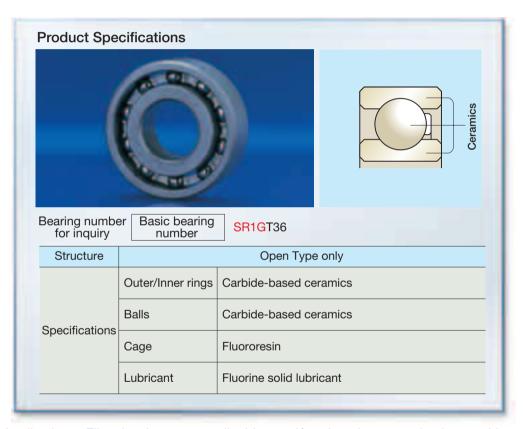

Corrosion resistance equals that of all-ceramic bearings (oxide-base)


	Aqua-Bearing [™]	PE	All-ceramic bearings (Oxide based)
5% Sulfuric acid	Δ	×	Δ
8% Hydrochloric acid	Δ	×	Δ
Aqua regalis	0	×	0
15% Acetic acid	0	Δ	0
70% Aqua fortis	Δ	×	Δ
70% Phasphoric acid	0	Δ	0
40% Hydrogen peroxide solution	0	Δ	0

Corrosion resistance evaluation

Results of durability tests in strong acid solution

Durability is higher than that of SUS440C bearings and conventional resin bearings by, respectively, more than 1 000 times and five times.



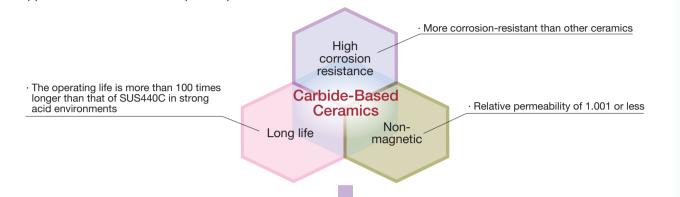
8. High Corrosion-Resistant All-Ceramic Bearings (Carbide-based ceramics)

With ceramic outer/inner rings and balls, all-ceramic bearings have self-lubricating fluororesin cages and are suitable for highly corrosive environments from normal atmosphere up to vacuum.

Applications: Film cleaning systems, liquid crystal/semiconductor production machinery, chemical processing equipment, metal plating equipment

Operating Instructions and Notes

- $\ \, \bullet \,$ Ceramics are fragile materials. Please observe the following precautions.
- ★Do not drop or strike the bearing.
 ★Allow for sufficient clearance when installing the bearing.
- ★Do not strike the bearing with a hammer or other tool when installing the bearing to a shaft or axle box.
- The scope of applications is shown in the table below.


Operating environment	Operating temperature	Limiting rotational speed	Limiting load
Strong acid, alkali, and reactive gas environments	Up to 200°C	$d_{\rm m}n = 20~000$	5% of the stainless steel bearing load rating C _H

Remarks 1. $d_m n = (Bearing bore diameter, mm + Bearing outside diameter, mm) + 2 × Rotational speed, rpm$

- 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
- 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings.

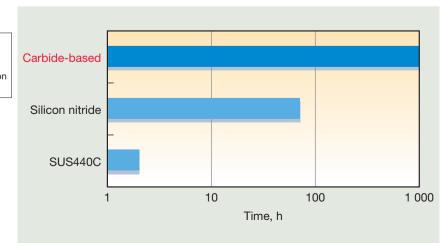
Features

- Grease-free, fluorine solid lubricant
- Higher corrosion resistance than other types of ceramics
- Over 100 times more durable than stainless steel bearings under strong acidic environments
- Applicable from normal atmosphere up to 10⁻⁶ Pa

Performance

Comparison of performance and cost

Carbide-based ceramics (SiC) are more corrosion-resistant than other ceramics.

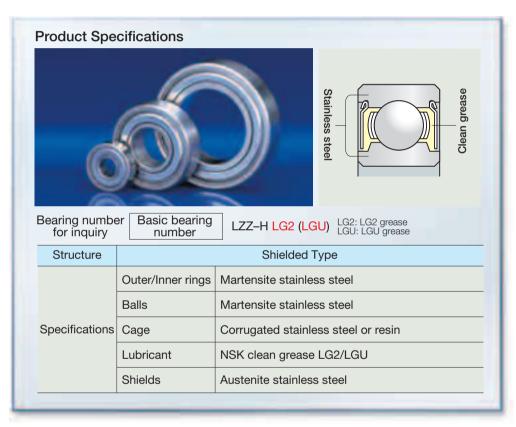

- Oxide-based ceramics · · · · · · ZrO₂
 Oxide based ceramics · · · · · · · ZrO₂
- Carbide-based ceramics····· SiC
 Silicon nitride ceramics···· Si₃N₄

	Evaluation item	Ceran	nics	Stainless steel
	Evaluation item	Carbide-based	Silicon nitride	SUS440C
	3% Sulfuric acid (room temperature)	0	Δ	×
Corrosion resistance	8% Hydrochloric acid (room temperature)	0	Δ	×
	5% Fluoric acid (room temperature)	0	Δ	×
F	Relative permeability	1.001 or less	1.001 or less	Ferromagnetic body
	Cost	High	High	Low

Durability in strong acid

Carbide-based ceramics (SiC) are 100 times more durable than stainless steel bearings SUS440C.

Test bearings: 6206 Speed: 1 000 rpm Radial load: 980 N 10% Sulfuric acid solution Room temperature

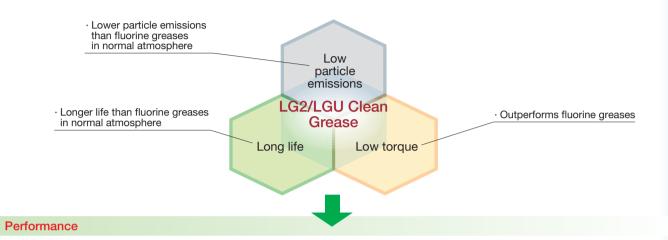

44 **NSK**

9. LG2/LGU Grease-Packed Bearings (For use in normal atmosphere only)

LG2/LGU clean grease-packed stainless steel bearings are suitable for clean environments in normal atmosphere at room temperature.

Applications: Equipment in clean rooms

Operating Instructions and Notes

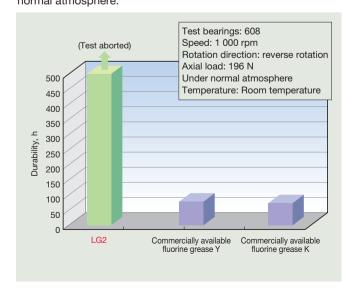

- LG2/LGU greases are for use in normal atmosphere only.
- The scope of applications is shown in the table below.

	Normal atmosphere, vacuum	Cleanliness	Operating temperature	Limiting rotational speed	Limiting load
LG2 grease	For use in normal	Class 100, 1000	Up to 70°C	d n E0 000	EN of the stainless steel bearing load rating C
LGU grease	atmosphere only Class 100–1000	Up to 120°C		5% of the stainless steel bearing load rating C _H	

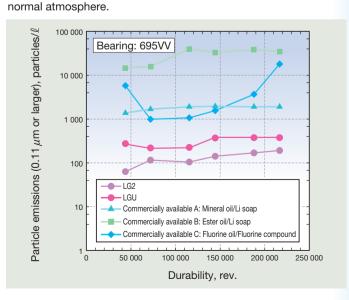
- Remarks 1. Cleanliness may vary depending on operating conditions, surrounding structures and other factors
 - 2. $d_{\rm m}n$ = (Bearing bore diameter, mm + Bearing outside diameter, mm) ÷ 2 × Rotational speed, rpm
 - 3. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 4. See the SPACEA $^{\text{TM}}$ Bearing Dimension Table on P24–27 for load rating C_{H} for stainless steel bearings

Features

- Clean grease lubrication for use in normal atmosphere only
- Lower particle emissions, lower torque, longer operating life and higher corrosion resistance than commercially available fluorine greases
- LGU grease is free of metallic elements



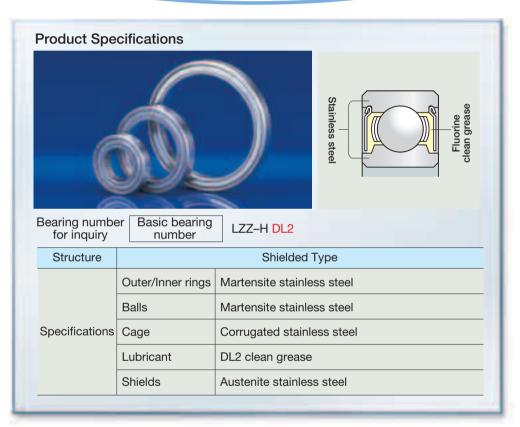
Properties of Grease


Operating environment	For use in normal atmosphere only				
Product	LG2	LGU			
Base oil	Mineral oil and synthetic hydrocarbon oil	Synthetic hydrocarbon oil			
Thickener	Lithium soap	Diurea			
Kinematic viscosity (mm²/s, 40°C)	30	94.8			
Consistency	207	209			
Maximum operating temperature, °C	up to 70	up to 120			

LGU grease is free of metallic elements

• Results of durability tests in normal atmosphere LG2/LGU grease has a longer life than any other grease in normal atmosphere.

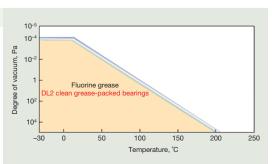
• Results of particle emission tests in normal atmosphere LG2/LGU grease are lowest in particle emissions in



SP/CE/

10. DL2 Clean Grease-Packed Bearings (From normal atmosphere up to vacuum)

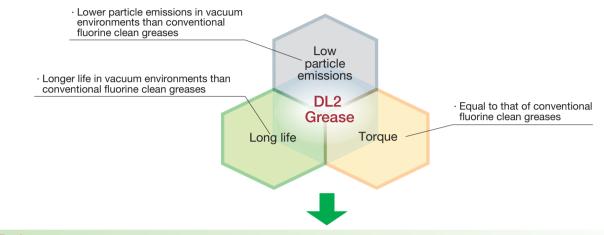
DL2 clean grease-packed stainless steel bearings are suitable for clean environments from normal atmosphere up to vacuum.



Applications: Liquid crystal and semiconductor manufacturing equipment, hard disk manufacturing equipment

Operating Instructions and Notes

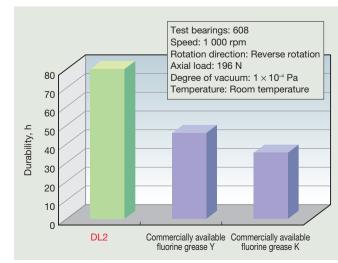
• The scope of applications is shown in the table below.


Cleanliness	Normal atmosphere, vacuum	Operating temperature	Limiting rotational speed	Limiting load
Class 100-1000	Refer to on the r	the figure ight side.	$d_{\rm m}n = 50~000$	5% of the stainless steel bearing load rating $C_{\rm H}$

- Remarks 1. Cleanliness may vary depending on operating conditions, surrounding structures and other factors
 - 2. $d_{\rm m}n$ = (Bearing bore diameter, mm + Bearing outside diameter, mm) \div 2 × Rotational speed, rpm
 - 3. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 4. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

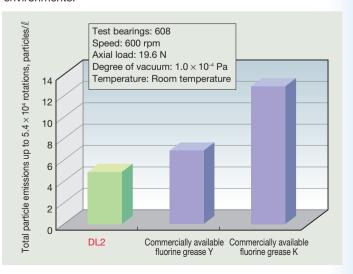
Features

- Fluorine clean grease lubrication
- More suitable for vacuum and at higher temperatures than LG2/LGU greases
- Lower particle emissions and longer life than conventional fluorine clean greases


Performance

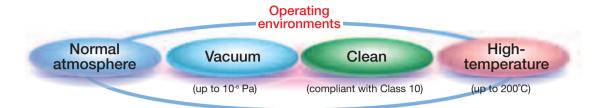
Properties of grease

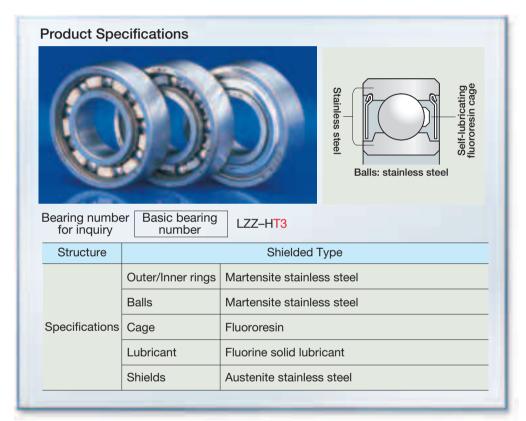
Operating environments	From normal atmosphere up to vacuum
Name	DL2
Base oil	Fluorine oil
Thickener	PTFE
Kinematic viscosity (mm²/s, 40°C)	200
Consistency	280
Maximum operating temperature, °C	up to 200


Results of durability tests in vacuum

DL2 clean grease has a longer operating life than any other grease in vacuum environments.

Results of particle emission tests in vacuum


DL2 clean grease is lowest in particle emissions in vacuum environments.

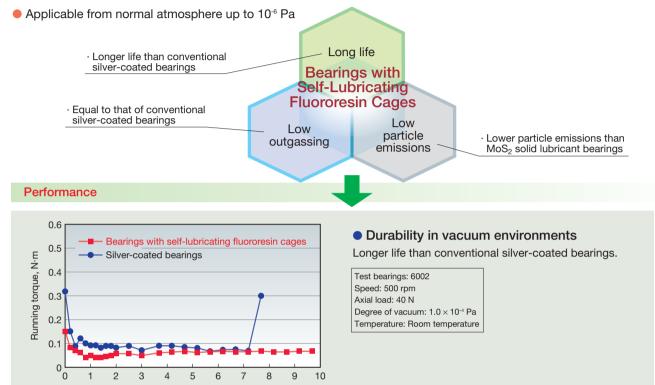


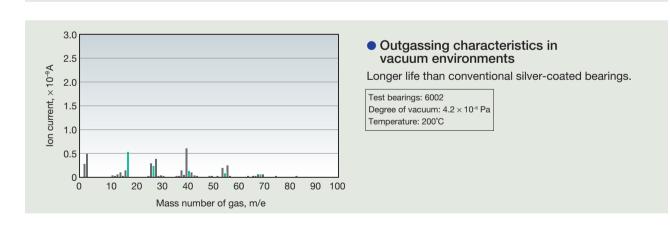
11. Bearings with Self-Lubricating Fluororesin Cages

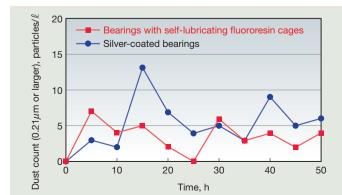
These bearings have stainless steel balls and self-lubricating fluororesin cages that provide for low particle emissions, and are suitable for clean environments from normal atmosphere up to vacuum.

Applications: Liquid crystal and semiconductor manufacturing equipment, hard disk manufacturing equipment, solar cell manufacturing equipment, robots for vacuum environments

Operating Instructions and Notes


- While bearings with a self-lubricating cage can be used under the same operating conditions as grease-packed bearings, the latter have a longer operating life and are recommended wherever grease lubrication is indicated.
- The limiting load of these fluorine-lubricated bearings is lower when used as a substitute for YS bearings for vacuum environments (with MoS₂-based lubrication).
- The scope of applications is shown in the table below.


Normal atmosphere, vacuum	Cleanliness	Operating temperature	Limiting rotational speed	Limiting load
Atmosphere up to 10 ⁻⁶ Pa	Compliant with Class 10	Up to 200°C	$d_{\rm m}n = 20~000$	2% of the stainless steel bearing load rating $C_{\rm H}$


- Remarks 1. Cleanliness may vary depending on operating conditions, surrounding structures and other factors
 - 2. $d_{\rm m}n$ = (Bearing bore diameter, mm + Bearing outside diameter, mm) \div 2 × Rotational speed, rpm
 - 3. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 4. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

Features

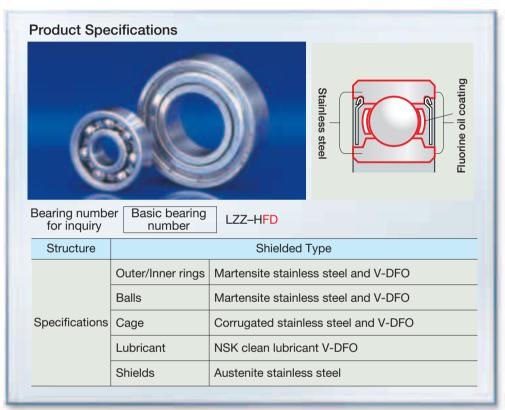
- Grease-free, fluorine solid lubrication
- More suitable in vacuum and at higher temperatures than fluorine clean grease
- Lower particle emissions than MoS₂ solid lubricant bearings
- Applicable in environments for which lubricants containing metallic elements such as MoS₂ are not suitable

Total revolutions, rev. × 106

 Low particle emissions in vacuum environments

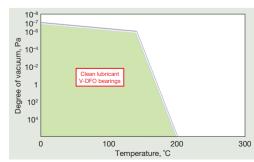
Outperforms conventional silver-coated bearings (Significant deterioration of silver coating particles was not found).

Test bearings: 608
Speed: 600 rpm
Axial load: 10 N
Degree of vacuum: 1.0 × 10⁻⁴ Pa
Temperature: Room temperature


50 **NSK**

12. Clean Lubricant V-DFO Bearings

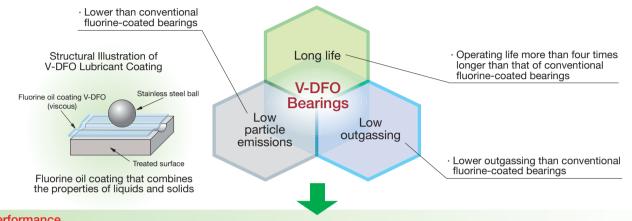
V-DFO bearings feature a new innovation: a fluorine oil coating is applied to inner/outer rings, balls and cage to deliver cleanliness and long life. These bearings are suitable for use in clean environments from normal atmosphere up to vacuum.



Applications: Liquid crystal and semiconductor manufacturing equipment, hard disk manufacturing equipment, solar cell manufacturing equipment, robots for vacuum environments

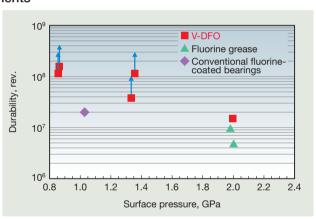
Operating Instructions and Notes

- Open the de-aeration package of the bearing immediately before use.
- Store the bearing in a desiccator. Do not apply anti-rust oil or use anti-tarnish paper to the bearing.
- Do not degrease to clean or apply new lubricant to the bearing.
- The scope of applications is shown in the table below.


Cleanliness	Normal atmosphere, vacuum	Operating temperature	Limiting rotational speed	Limiting load
Class 100–1000		Refer to the figure on the right side.		2% of the stainless steel bearing load rating $C_{ m H}$

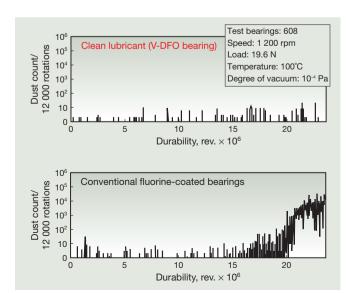
- Remarks 1. Cleanliness may vary depending on operating conditions, surrounding structures and other factors
 - 2. $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) ÷ 2 × Rotational speed, rpm
 - 3. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 4. See the SPACEATM Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

Features

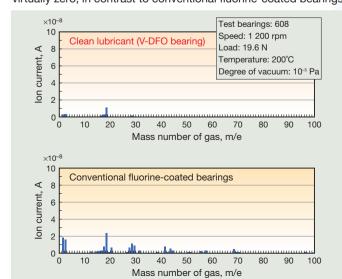

- Operating life more than four times longer than conventional fluorine-coated bearings
- Lower particle emissions and outgassing than MoS₂ solid lubricated bearings
- Applicable in environments for which lubricants containing metallic elements such as MoS₂ are not suitable
- Applicable from normal atmosphere up to 10⁻⁷ Pa (room temperature), although the degree of vacuum in which the bearings can be used varies according to the operating temperature

Performance

Durability in vacuum environments


Over four times more durable than conventional fluorine-coated bearings

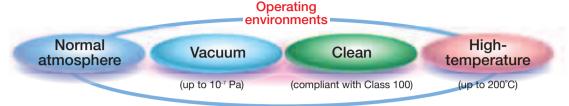
Test conditions Test bearings: 608 Speed: 1 000 rpm Degree of vacuum: 2 × 10⁻⁵ Pa

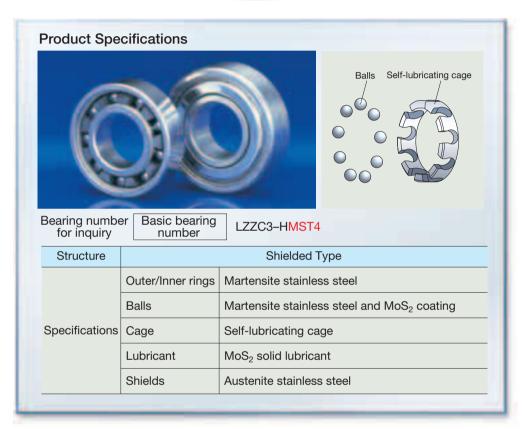


Superior to conventional fluorine-coated bearings

high-temperature environments

In high-temperature environments, harmful outgassing is virtually zero, in contrast to conventional fluorine-coated bearings

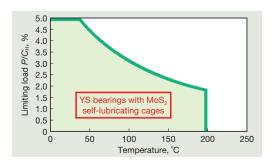



SPACEA

13. YS Bearings with MoS₂ Self-Lubricating Cages

YS bearings for clean environments have newly developed self-lubricating cages, delivering high cleanliness and long life.

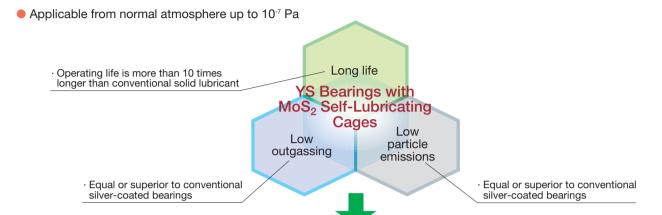
These bearings are suitable for clean environments from normal atmosphere up to vacuum.



Applications: Vapor deposition equipment, sputtering equipment, etching equipment, vacuum pumps

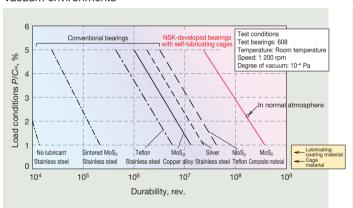
Operating Instructions and Notes

- YS bearings use a MoS₂ solid lubricant. A fluorine-based bearing is recommended for environments where MoS₂ is not suitable.
- ullet The internal radial clearance of Extra-small ball bearings of YS bearings with self-lubricating cages is 8 to 23 μ m.
- The scope of applications is shown in the table below.

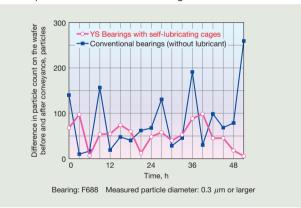

Normal atmosphere, vacuum	Cleanliness	Operating temperature	Limiting rotational speed	Limiting load
From normal atmosphere up to 10 ⁻⁷ Pa	Class 100- compliant	up to 200°C	$d_{\rm m}n = 20\ 000$	Refer to the figure on the right side.

- Remarks 1. Cleanliness may vary depending on operating conditions, surrounding structures and other factors
 - 2. $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) $\div 2 \times$ Rotational speed, rpm
 - 3. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 4. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

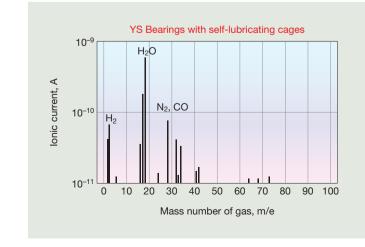
Features

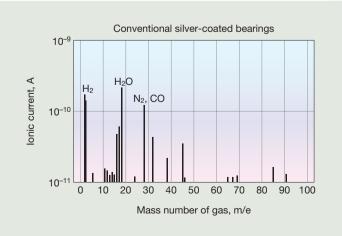

- Utilizes newly developed, long-life MoS₂ self-lubricating cages
- Operating life is longer than that of conventional high-temperature solid-lubricant bearings by more than 10 times (Life is presumable)
- Particle emissions and outgassing are as low as that of conventional silver-coated bearings

Performance


Durability

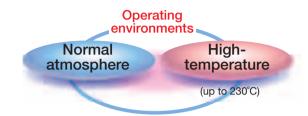
Over ten times more durable than conventional bearings for vacuum environments

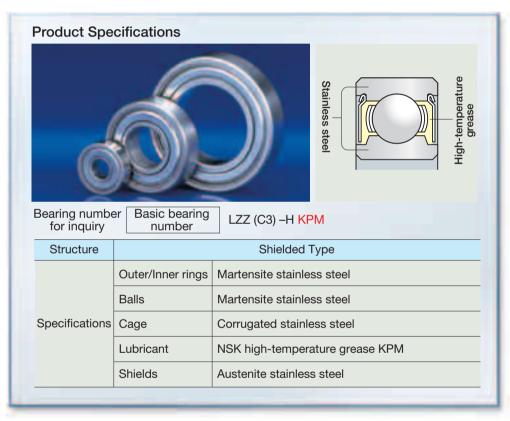

Particle emissions evaluation in actual line of vacuum robots for wafer conveyance


Equal or superior to conventional bearings for vacuum environments

Outgassing characteristics

Virtually no outgassing of high mass number species; similar to conventional (silver-coated) bearings





14. High-Temperature Grease-Packed Bearings (For use in normal atmosphere only)

These high-temperature bearings are grease-packed with NSK's long-life, high-temperature grease KPM, for use in normal atmosphere only.

Applications: Copying machines, kilns, high-temperature conveyance equipment, other equipment for high-temperature environments

Operating Instructions and Notes

- KPM is a high-temperature, long-life grease for use in normal atmosphere only.
- For higher-temperature or vacuum environments, solid lubricant bearings are recommended.
- Not applicable in clean environments.
- The scope of applications is shown in the table below.

Normal atmosphere, vacuum Operating tempera		Operating temperature	Limiting rotational speed	Limiting load
	For use in up to 230°C		$d_{\rm m}n = 50~000$	5% of the stainless steel bearing load rating C _H

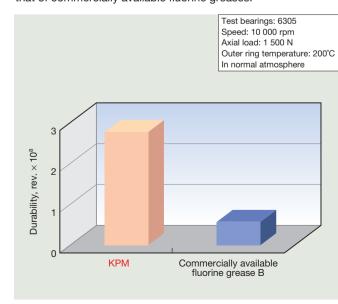
Remarks 1. $d_m n = \text{(Bearing bore diameter, mm} + \text{Bearing outside diameter, mm)} \div 2 \times \text{Rotational speed, rpm}$

- 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
- 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings
- 4. There are some cases where bearings do not rotate smoothly because radial internal clearance is decreased by fitting. For example, if material of large linear expansion coefficient such as austenite steel is used for the shaft, please select a loose fit with enough margin.

Features

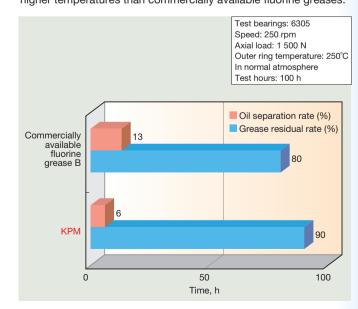
- Applicable in high-temperature environments, up to 230°C
- Longer operating life than commercially available fluorine greases (five times longer at 200°C)
- Longer operating life than that of solid lubricant high-temperature bearings

Performance


Properties of Grease

Name	NSK high-temperature grease KPM	Commercially available fluorine grease B
Base oil	Fluorine oil	Fluorine oil
Thickener	PTFE	PTFE
Kinematic viscosity (mm²/s, 40°C)	380	390
Consistency	280	280
Maximum operating temperature, °C	230	230

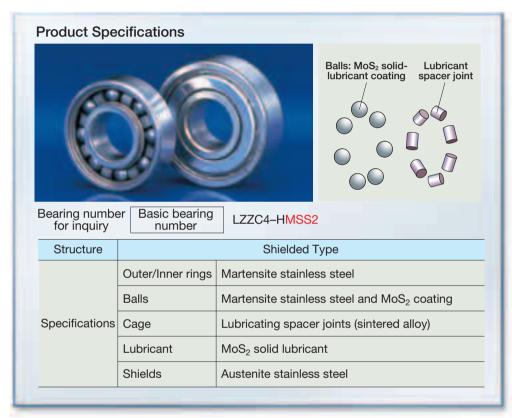
KPM: NSK-developed grease for use in normal atmosphere only


Durability

KPM's operating life is approximately five times longer than that of commercially available fluorine greases.

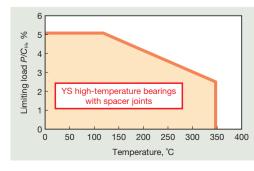
Oil separation and grease residual rates

KPM is highly heat resistant, with lower oil separation rates at higher temperatures than commercially available fluorine greases.



15. YS High-Temperature Bearings with Spacer Joints

YS high-temperature bearings with spacer joints made of an alloy-based self-lubricating material (sintered alloy) between balls. They are suitable for high-temperature and vacuum environments.

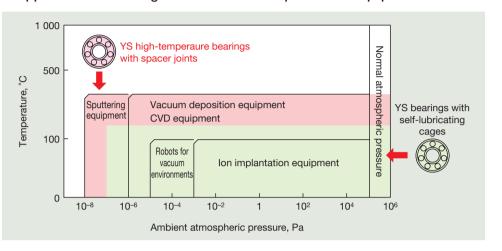


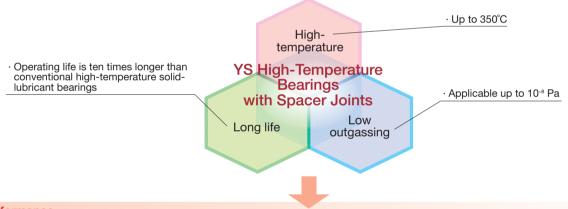
Applications: Ion implantation equipment, sputtering equipment, vacuum vapor deposition equipment, high-temperature conveying equipment

Operating Instructions and Notes

- Due to notch on one side of the inner and outer rings, the high-temperature bearings with spacer joints must be installed in a certain direction when used on the vertical axis. (For details, see the instruction manual that accompanies the product.)
- ullet The internal radial clearance of Extra-small ball bearings of YS high-temperature bearings with spacer joints is 14 to 29 μ m.
- The scope of applications is shown in the table below.

Ī	Normal atmosphere, vacuum	Operating temperature	Limiting rotational speed	Limiting load
	Normal atmosphere up to 10-8 Pa	Up to 350°C	$d_{\rm m}n = 20~000$	Refer to the figure on the right side.

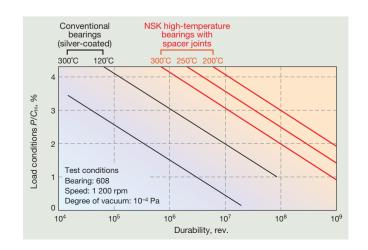

Remarks 1. $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) $\div 2 \times \text{Rotational speed, rpm}$


- 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
- 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

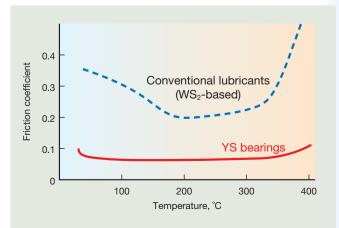
Features

- Grease-free, MoS₂ solid lubrication
- Applicable from normal atmosphere up to 10-8 Pa and temperatures up to 350°C
- Operating life is longer than that of conventional high-temperature solid-lubricant bearings by more than 10 times (Life is presumable)

• Applications of bearings for semiconductor production equipment



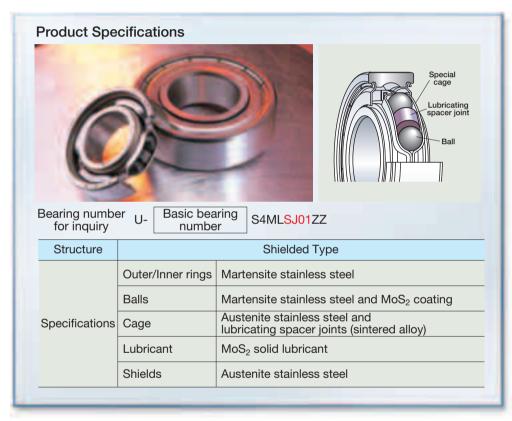
Performance


Durability

Over ten times more durable than conventional high-temperature solid-lubricant bearings.

Friction coefficient

The friction coefficient is 60% to 75% lower than that of conventional high-temperature solid lubricants, which results in longer operating life.



16. SJ High-Temperature Bearings with Solid Lubrication

SJ high-temperature bearings with solid lubrication have a "peapod" structure, with solid lubricant spacer joints mounted between two balls in cage pockets. These bearings are suitable in vacuum, high-temperature environments.

Applications: Vacuum vapor deposition equipment, kilns, kiln cars, steel plants, high-temperature conveyance equipment

Operating Instructions and Notes

- Applicable at high temperatures in normal atmosphere, vacuum environments.
- The standard of radial internal clearance for SJ high-temperature bearings with solid lubrication is as follows; Normal size ball bearings: Lower limit of C5 to twice as large as upper limit of C5, Extra-small ball bearings: 20 to 80 μ m.
- The scope of applications is shown in the table below.

Normal atmosphere, vacuum Operating temperature		Limiting rotational speed	Limiting load	
From normal atmosphere Up to 400°C		$d_{\rm m}n = 20~000$	5% of the stainless steel bearing load rating $C_{\rm H}$	

- Remarks 1. $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) $\div 2 \times \text{Rotational speed, rpm}$
 - 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

Features

- Grease-free, MoS₂ solid lubricant
- Applicable from normal atmosphere up to 10-8 Pa and temperatures up to 400°C
- "Peapod" structure provides excellent torque stability and long life

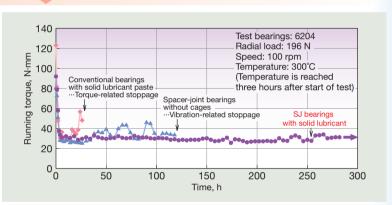
Over six times more durable than conventional high-temperature bearings with solid lubricant paste

High temperature

Operating life more than six times longer than that of conventional bearings with solid lubricant paste

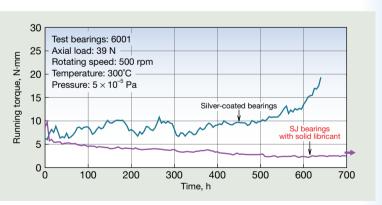
SJ High-Temperature

Bearings with Solid Lubrication

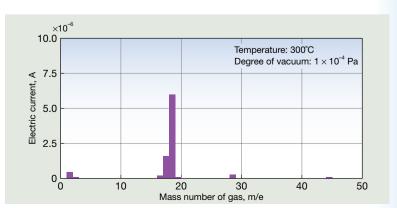

Low outgassing

Applicable up to 10° Pa

Performance


Durability

More than six times more durable than bearings with conventional solid lubricant paste, and more than twice as durable as conventional cageless bearings with spacer joints.


Durability of bearings in vacuum conditions

Outperforms silver-coated bearings in durability and torque stability.

Outgassing in vacuum conditions

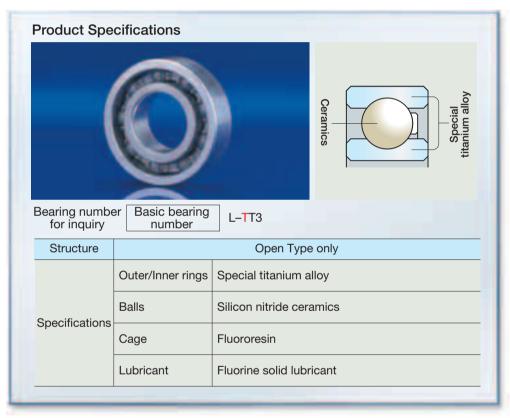
Solid lubricant spacer joints exhibit minimal outgassing in high-temperature, vacuum environments, easing pollution concerns.

17. Completely Non-Magnetic Titanium Alloy Bearings

Titanium alloy bearings have special titanium alloy inner/outer rings and ceramic balls, making them completely non-magnetic (relative permeability 1.001 or less). These bearings are suitable for non-magnetic requirement from normal atmosphere up to vacuum.

Normal atmosphere

Vacuum


Non-magnetic

Corrosive

High-temperature

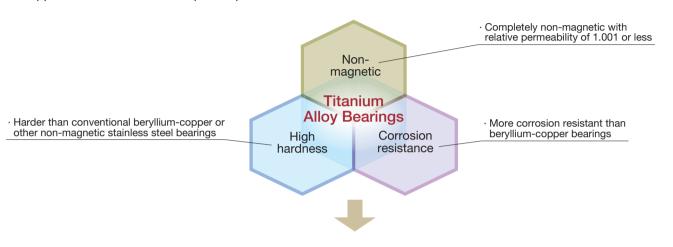
(up to 10° Pa) (relative permeability 1.001 or less)

(up to 200°C)

Applications: Electron beam drawing devices, electron beam exposure equipment, testers

Operating Instructions and Notes

- For light loads only.
- Applicable in corrosive environments.
- Electrically conductive bearings are also available.
- The scope of applications is shown in the table below.


Normal atmosphere, vacuum	Operating temperature	Limiting rotational speed	Limiting load
From normal atmosphere up to 10-6 Pa	Up to 200℃	$d_{\rm m}n = 20~000$	1% of the stainless steel bearing load rating $C_{\rm H}$

Remarks 1. $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) $\div 2 \times \text{Rotational speed, rpm}$

- 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
- 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

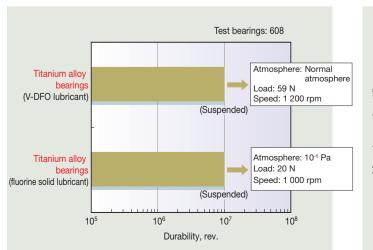
Features

- Grease-free, fluorine solid lubricant
- Completely non-magnetic with relative permeability of 1.001 or less
- More corrosion resistant than conventional non-magnetic beryllium-copper alloy bearings
- Free of harmful oxidation by-products such as beryllium in conventional beryllium-copper alloy
- Harder than conventional beryllium-copper alloy
- Applicable from normal atmosphere up to 10⁻⁶ Pa

Performance

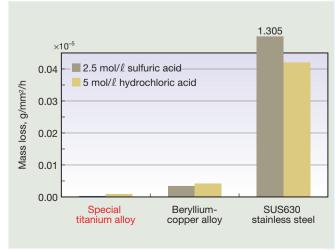
Comparison with conventional bearings

Material	Hardness (HV) (1)	Relative permeability	Corrosion resistance	Features
Special titanium alloy	450-500	1.001 or less	0	NSK-developed material
SUS440C	670	Ferromagnetic	Δ	Commercially available stainless steel
Non-magnetic stainless steel	450	1.01 or less	Δ	Due to its properties, it is difficult to machine, requiring advanced processing technology
Beryllium-copper alloy	320-400	1.001 or less	0	Generates harmful oxidation by-products
Silicon nitride ceramics	1 500	1.001 or less	0	High in cost


Note (¹) Indicated in HV hardness for comparison

Corrosion resistance evaluation \mathbb{O} : Not corroded

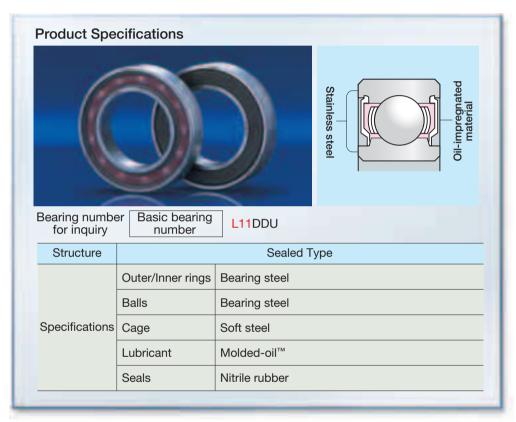
: Slightly corroded


Durability

Titanium alloy bearings have an operating life of more than 10⁷ rotations

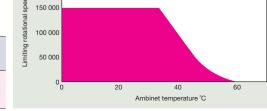
Results of corrosion resistance test


The special titanium alloy is more corrosion resistant than SUS630 or beryllium-copper alloys



18. Molded-Oil™ Bearings for Dust-Contaminated Environments

Molded-Oil[™] bearings, lubricated with NSK's own oil-impregnated material, are suitable in dust-contaminated environments; for use in normal atmosphere only.



Applications: Food processing equipment, agricultural machines, woodworking machines, various conveyor lines

Operating Instructions and Notes

- Stainless steel Molded-Oil™ bearings are recommended for use in corrosive environments (See P32–33).
- Do not expose to degreasing liquids such as organic solvents.
- Because the oil-impregnated solid lubricant melts at 120°C, bearings should be shrink-fitted at temperatures of 100°C or lower.
- To rotate bearings properly, operate the bearing under a radial load of 1% or more of the basic dynamic load rating.
- For use in normal atmosphere only.
- The scope of applications is shown in the table below.

The coops of approximate to the state of the								
Operating environment	Operating temperature	Limiting rotational speed	Limiting load					
Dust, wood waste, etc.	Refer to the figu	re on the right side.	Between 1% and 5%, inclusive, of the stainless steel bearing load rating C _H					

- Remarks 1. $d_m n = \text{(Bearing bore diameter, mm + Bearing outside diameter, mm)} \div 2 \times \text{Rotational speed, rpm}$
 - 2. The limiting load is calculated based on a bearing life of 10⁷ rotations.
 - 3. See the SPACEA™ Bearing Dimension Table on P24–27 for load rating C_H for stainless steel bearings

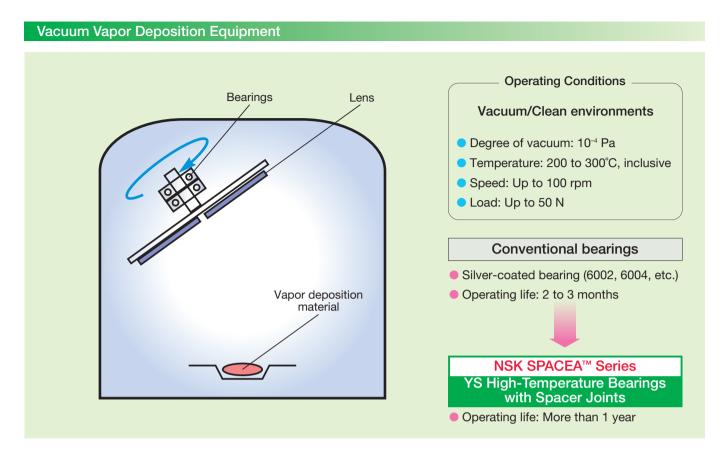
Features

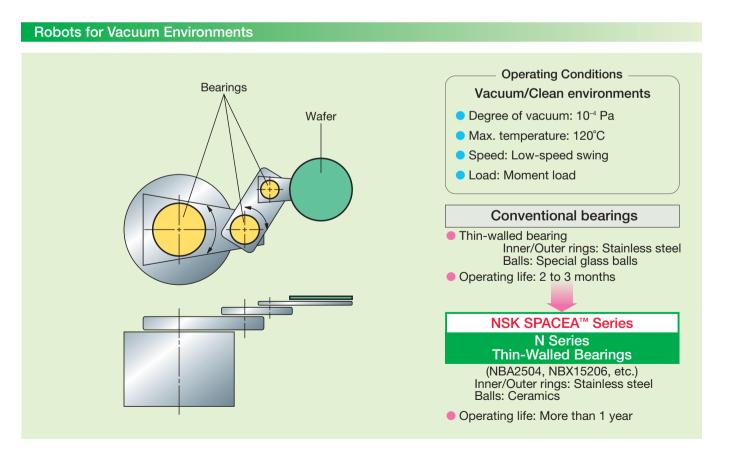
- Continuous controlled flow of oil from the Molded-Oil™ inside the bearing provides sufficient lubrication
- Grease-free property keeps operating environments clean with no oil refilling
- Operating life in dust-contaminated environments more than twice as long as that of grease lubricant
- Contact-seal Type is a standard inventory item (See the table below)

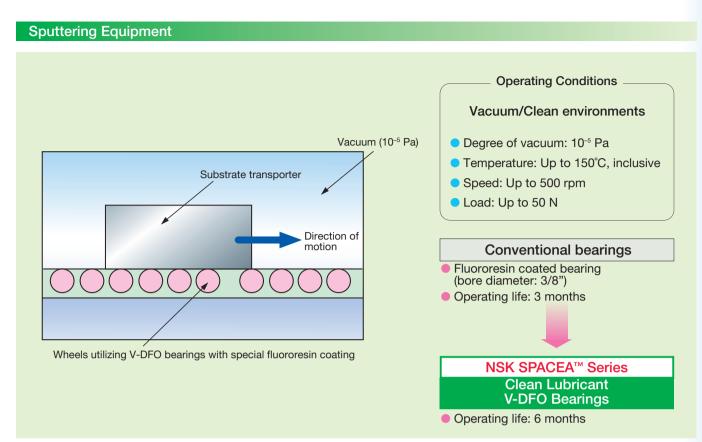
Table of Dimensions and Availability (Contact-seal Type)

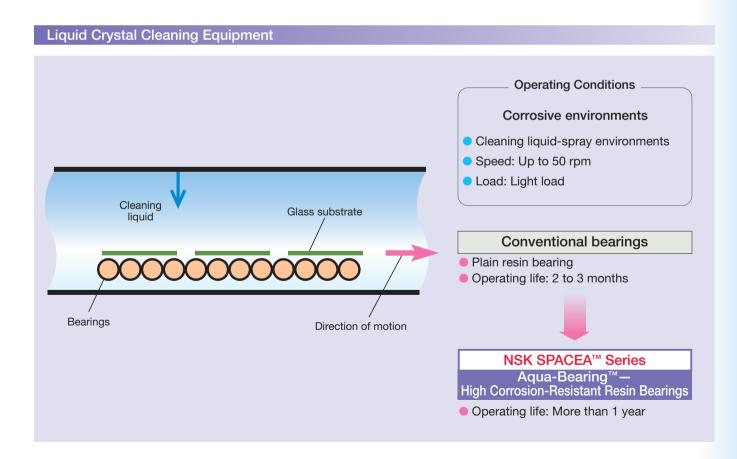
Availability	Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Basic bearing number
0	5	19	6	635
0	6	19	6	626
0	6	22	7	636
0		19	6	607
0	7	22	7	627
0		26	9	637
0		19	6	698
0	0	22	7	608
0	8	24	8	628
0		28	9	638
0		20	6	699
0	0	24	7	609
0	9	26	8	629
0		30	10	639
0	9.525	22.225	7.142	R6
0		19	5	6800
0		22	6	6900
0	10	26	8	6000
•		30	9	6200
0		35	11	6300
0		21	5	6801
•		24	6	6901
•	12	28	8	6001
•		32	10	6201
0		37	12	6301
0		24	5	6802
•		28	7	6902
•	15	32	9	6002
•		35	11	6202
0		42	13	6302

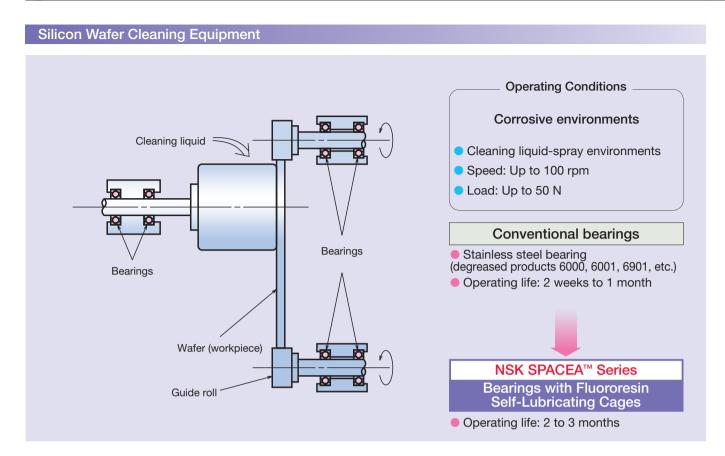
26 5 6803 30 7 6903 40 12 6203 47 14 6303 32 7 6804 37 9 6904 47 14 6204 52 15 6304 37 7 6805 42 9 6905 42 9 6905 42 9 6905 52 15 6205 62 17 6305 52 15 6205 62 17 6305 62 14 6006 62 14 6006 62 14 6007 80 21 6307 68 15 6008 90 23 6308 90 23 6308 90 23 6309 100 25 6309 100 25 6309 90 20 6210 <th>Availability</th> <th>Bore diameter d (mm)</th> <th>Outside diameter D (mm)</th> <th>Width <i>B</i> (mm)</th> <th>Basic bearing number</th>	Availability	Bore diameter d (mm)	Outside diameter D (mm)	Width <i>B</i> (mm)	Basic bearing number
● 40 12 6203 47 14 6303 32 7 6804 37 9 6904 • 42 12 6004 • 47 14 6204 • 52 15 6304 • 52 15 6304 • 42 9 6905 • 42 9 6905 • 42 9 6905 • 52 15 6205 • 62 17 6305 • 55 13 6006 • 55 13 6006 • 62 14 6007 • 62 14 6007 • 80 21 6307 • 80 21 6307 • 80 18 6208 • 90 23 6308 • 45 85 19 6209 • 100	0		26	5	6803
● 40 12 6203 47 14 6303 32 7 6804 37 9 6904 • 42 12 6004 • 47 14 6204 • 52 15 6304 • 52 15 6304 • 42 9 6905 • 42 9 6905 • 42 9 6905 • 52 15 6205 • 62 17 6305 • 55 13 6006 • 55 13 6006 • 62 14 6007 • 62 14 6007 • 80 21 6307 • 80 21 6307 • 80 18 6208 • 90 23 6308 • 45 85 19 6209 • 100	0		30	7	6903
○ 47 14 6303 ○ 32 7 6804 ○ 37 9 6904 ● 42 12 6004 ● 47 14 6204 ○ 52 15 6304 ○ 37 7 6805 ● 42 9 6905 ● 42 9 6905 ● 42 9 6905 ● 52 15 6205 ● 62 17 6305 ● 55 13 6006 ● 55 13 6006 ● 72 19 6306 ● 62 14 6007 ● 35 72 19 6207 ● 80 21 6307 ● 40 80 18 6208 ● 40 80 18 6208 ● 45 85 19 6209 ● <td< td=""><td>•</td><td rowspan="3">17</td><td>35</td><td>10</td><td>6003</td></td<>	•	17	35	10	6003
○ 32 7 6804 ○ 37 9 6904 ● 42 12 6004 47 14 6204 52 15 6304 ○ 37 7 6805 ○ 42 9 6905 ● 42 9 6905 ● 42 9 6905 ● 52 15 6205 ● 62 17 6305 ● 55 13 6006 ● 55 13 6006 ● 62 16 6206 ● 62 14 6007 ● 35 72 19 6207 ● 80 21 6307 ● 40 80 18 6208 ● 40 80 18 6208 ● 45 85 19 6209 ● 45 85 19 6209 ● 16 <	•		40	12	6203
○ 20 42 12 6004 ● 47 14 6204 ○ 52 15 6304 ○ 37 7 6805 ○ 42 9 6905 ● 42 9 6905 ● 42 9 6905 ● 42 9 6905 ● 52 15 6205 ● 62 17 6305 ● 55 13 6006 ● 55 13 6006 ● 72 19 6306 ● 62 14 6007 ● 35 72 19 6207 ● 80 21 6307 ● 40 80 18 6208 ● 90 23 6308 ● 45 85 19 6209 ● 45 85 19 6209 ● 45 6309 600 6000	0		47	14	6303
20 42 12 6004 47 14 6204 52 15 6304 37 7 6805 42 9 6905 42 9 6905 42 9 6905 52 15 6205 62 17 6305 62 16 6206 72 19 6306 62 14 6007 80 21 6307 68 15 6008 90 23 6308 90 23 6308 75 16 6009 100 25 6309 100 25 6309 80 16 6010	0		32	7	6804
47 14 6204 52 15 6304 37 7 6805 42 9 6905 42 9 6905 52 15 6205 62 17 6305 62 16 6206 72 19 6306 62 14 6007 62 14 6007 80 21 6307 68 15 6008 90 23 6308 90 23 6308 75 16 6009 100 25 6309 80 16 6010	0		37	9	6904
52 15 6304 37 7 6805 42 9 6905 42 9 6905 52 15 6205 62 17 6305 55 13 6006 72 19 6306 62 14 6007 80 21 6307 80 21 6307 68 15 6008 90 23 6308 90 23 6308 75 16 6009 85 19 6209 100 25 6309 80 16 6010	•	20	42	12	6004
37 7 6805 42 9 6905 52 15 6205 62 17 6305 55 13 6006 72 19 6306 62 14 6007 80 21 6307 80 21 6307 68 15 6008 90 23 6308 90 23 6308 75 16 6009 85 19 6209 100 25 6309 80 16 6010	•		47	14	6204
42 9 6905 52 15 6205 62 17 6305 55 13 6006 72 19 6306 62 14 6007 62 14 6007 80 21 6307 68 15 6008 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	0		52	15	6304
25 47 12 6005 52 15 6205 62 17 6305 55 13 6006 72 19 6306 62 14 6007 80 21 6307 68 15 6008 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	0		37	7	6805
52 15 6205 62 17 6305 55 13 6006 72 19 6306 62 14 6007 80 21 6307 80 21 6307 68 15 6008 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	0		42	9	6905
62 17 6305 55 13 6006 62 16 6206 72 19 6306 62 14 6007 80 21 6307 68 15 6008 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•	25	47	12	6005
55 13 6006 30 62 16 6206 72 19 6306 62 14 6007 80 21 6307 68 15 6008 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•		52	15	6205
30 62 16 6206 72 19 6306 62 14 6007 35 72 19 6207 80 21 6307 68 15 6008 40 80 18 6208 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•		62	17	6305
72 19 6306 62 14 6007 80 21 6207 80 21 6307 68 15 6008 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•	30	55	13	6006
62 14 6007 35 72 19 6207 80 21 6307 68 15 6008 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•		62	16	6206
35 72 19 6207 80 21 6307 68 15 6008 40 80 18 6208 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•		72	19	6306
80 21 6307 68 15 6008 40 80 18 6208 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•		62	14	6007
68 15 6008 40 80 18 6208 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•	35	72	19	6207
40 80 18 6208 90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•		80	21	6307
90 23 6308 75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•		68	15	6008
75 16 6009 45 85 19 6209 100 25 6309 80 16 6010	•	40	80	18	6208
45 85 19 6209 100 25 6309 80 16 6010	•		90	23	6308
100 25 6309 80 16 6010	•	45	75	16	6009
80 16 6010	•		85	19	6209
	•		100	25	6309
5 0 90 20 6210	•		80	16	6010
	•	50	90	20	6210
110 27 6310			110	27	6310

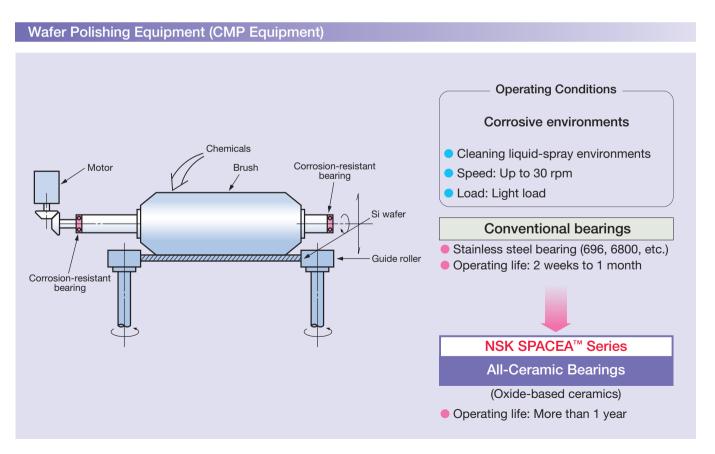

Standard inventory items

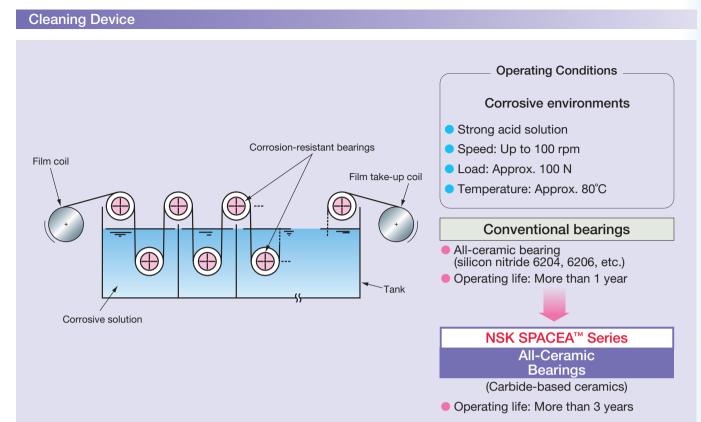

OProduction on demand

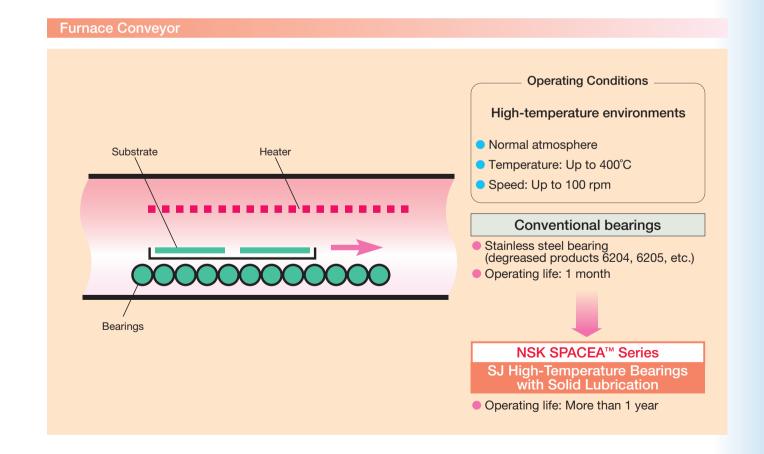

Remarks For large orders of standard inventory items, delivery time may be adjusted.

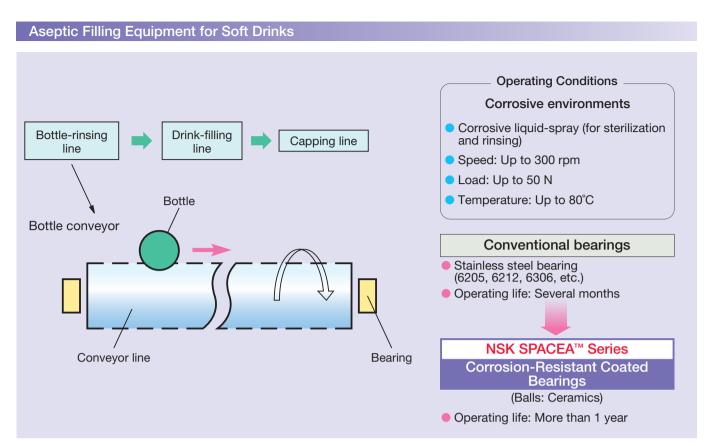

■ Applications of SPACEA[™] Series Bearings

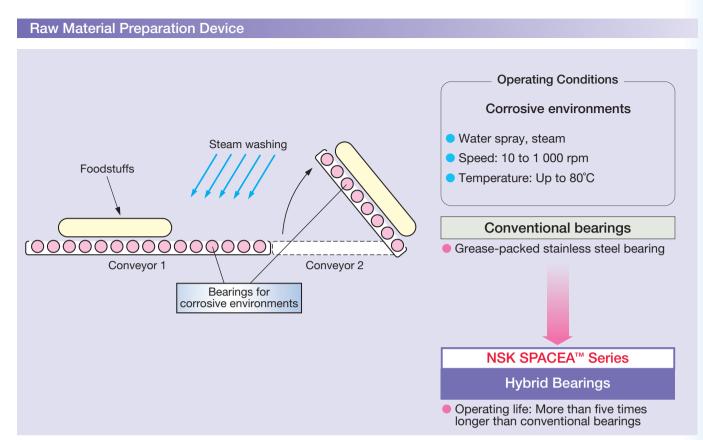


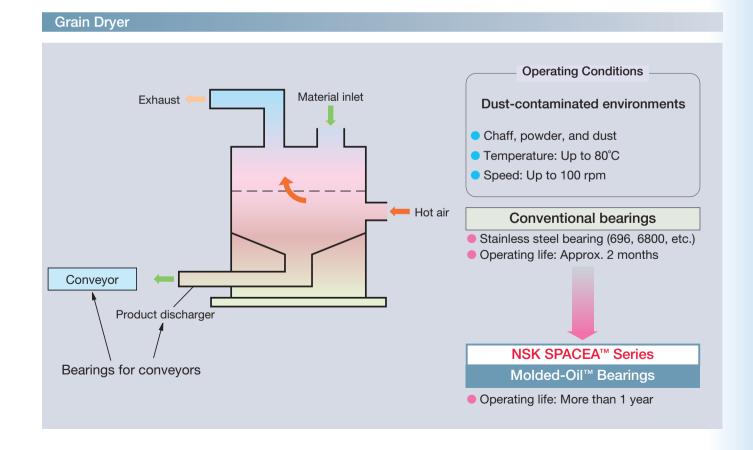



66 **NSK NSK** 67


■ Applications of SPACEA[™] Series Bearings




68 **NSK NSK** 69


■ Applications of SPACEA[™] Series Bearings

Conveyor for Glass-Bottle Production Machine **Operating Conditions** High-temperature/Corrosive environments Corrosive gas atmosphere Conveyor for annealing line Glass bottles (after bottle molding) Temperature: Up to 200°C Speed: Up to 100 rpm Conventional bearings High-temperature grease-packed stainless steel bearing (6005, 6306, etc.) Operating life: Several months Bearings NSK SPACEA™ Series **Corrosion-Resistant Coated** Bearings (Balls: Ceramics) Operating life: More than 1 year

NSK proudly offers cutting-edge products developed with state-of-the-art technology

SPACEA™ Series—NSK Ball Screws and NSK Linear Guides for Special Environments—offers a wide array of products for special environments, including vacuum and clean, corrosive, sanitary, water-and dust-contaminated, high-temperature, and non magnetic environments. NSK's state-of-the-art technology creates products that deliver high performance in a variety of severe conditions.

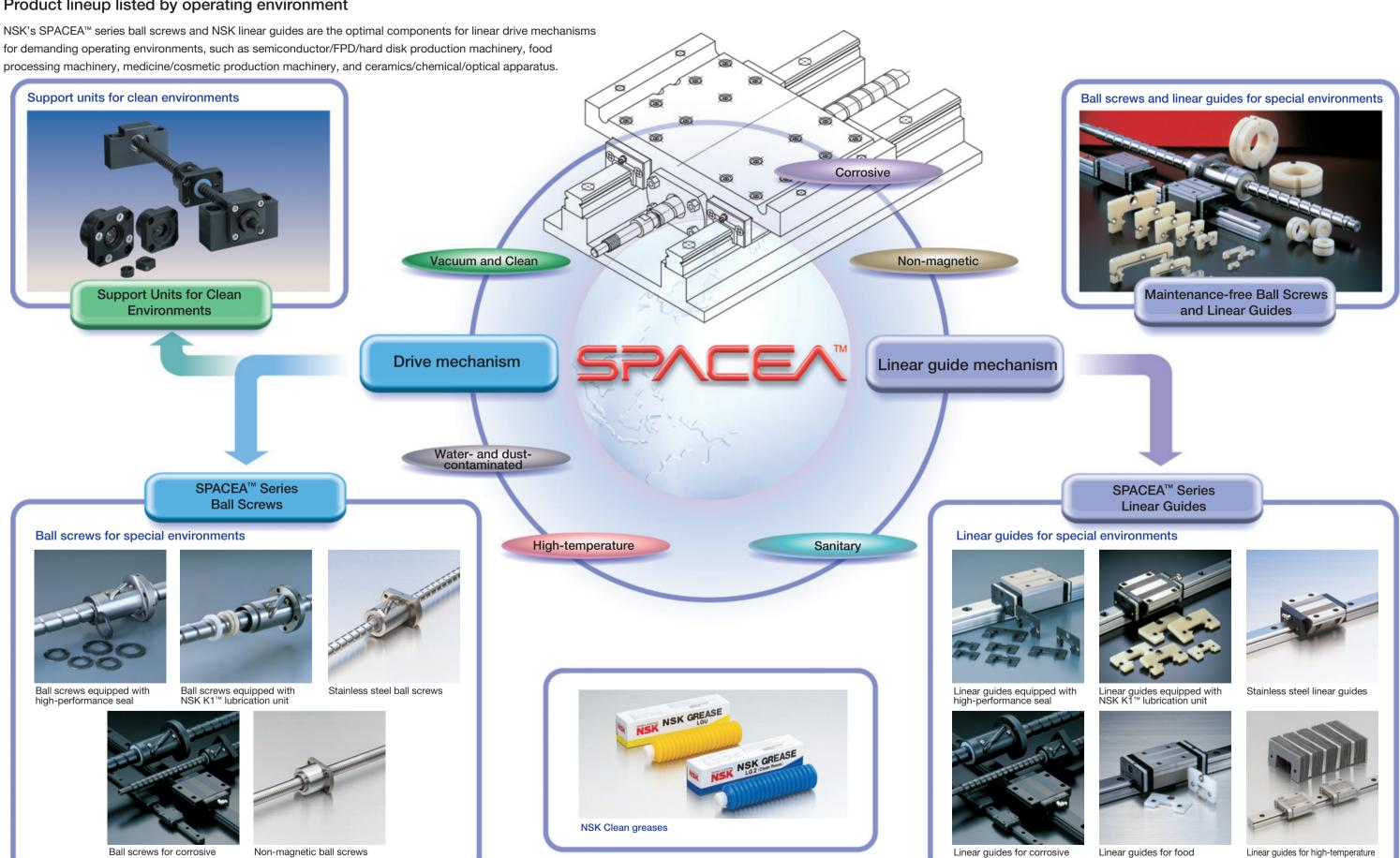
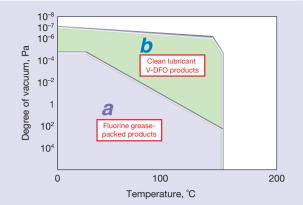

Optimal products for specific applications can be found in the SPACEA series ball screws and linear guides Selection Guide on pages 76–77.

	Table of Contents of SPACEA™ Series Ball Screws and NSK Linear Guides®	
A	InventoryP7	74–75
B	Selection GuideP7	76–77
C	Types and SpecificationsP7	78–79
D	Dimensions and AvailabilityP8	30–83
	1. Ball Screws	
	2. Clean Support Unit	
	3. Linear Guides	
E	Specifications, Operating Instructions, and Technical Data	34–99
	Corrosion-resistant Ball Screws and NSK Linear Guides® (Fluoride Low-temperature Chrome Coating)	84–85
	2. LG2/LGU Clean Greases	86–87
	3. NSK Clean Lubricant V-DFO	88–89
	4. Support Units for Clean Environments	90–91
	5. Lubrication Unit for "NSK K1™" ····	92–95
	6. NSK High Performance Seals····	96–97
	7. Ball Screws and NSK Linear Guides® for High-temperature EnvironmentsP	98–99
Đ	Applications of SPACEA™ Series Ball Screws and NSK Linear Guides®P100	0–101
	Semiconductor Manufacturing Equipment	

2. LCD/Semiconductor Production Machinery

Product lineup listed by operating environment

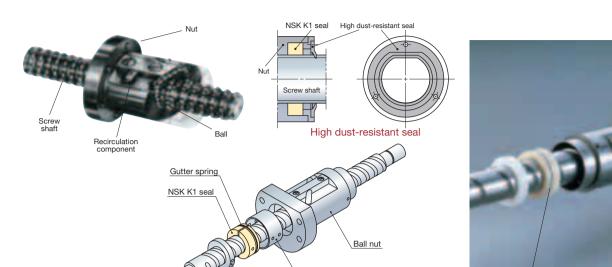
74 **NSK**

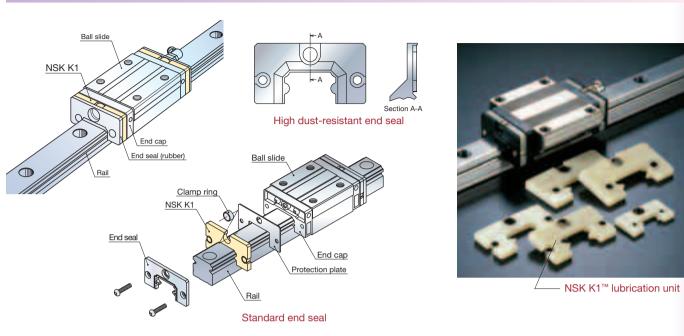

processing

Select the most appropriate product with the following selection flow chart.

Select the group of 2 Find the product series products appropriate for that will meet your your operating environment operating conditions.

4 Follow the operating Select the product most instructions that are appropriate in terms of availability and price. provided.


Scope of applications for fluorine grease-packed products and V-DFO products


											2	Operati	ng con	ditions							4)	
	Operation	① ng environment	Product na	ıme	Degr	ree of vacuum Pa		Te	mperature °C	Э	CI	eanlines	SS ⁽¹⁾	Limiting rotations d·n value		Limiting s	peed of lin m/min	ear guide	Price comparison	Dimensions (availability)	· Specifications · Operating instructions	
					Normal atmosphere	≤10-4 ≤10	8	≤100	≤200	≤300	100– 1 000	≤100	≤10	≤50 000 ≤100 000	≤150 000	≤100	≤200	≤300			· Technical data	
	Clean	Normal atmosphere	LG2 clean grease-packed ball sci	rews and linear guides				≤80°C						≤70 000		≤100			Low		P86–87,	
	Clean	(room temperature)	LGU clean grease-packed ball sc	rews and linear guides				≤120°C						≥/0 000		2100			High		P92–93	TI III
Vacuum and	Vacuum	From normal atmosphere up to vacuum (room temperature)	Fluorine grease-packed ball screv	ws and linear guides	See the s	scope of application	for	fluorine grease-pack	ked products (u	pper right) a				≤70 000		≤100			Low	Ball	P84–85	all Scr
clean	vacuum	From normal atmosphere up to vacuum (up to 150°C)	Clean lubricant V-DFO ball screw	s and linear guides	See the	scope of applicat	ons	for V-DFO produ	ıcts (upper ri	ght) b				≤70 000		≤100			High	screws (P80)	P88-89	ews/NS
	Non- magnetic	Non-magnetic (relative permeability 1.01 or less) (from normal atmosphere up to vacuum)	Non-magnetic stainless steel ball	screws and linear guides		10 ⁻⁵ Pa		≤150	o°C					≤70 000		≤100			_		-	K Linear Guic
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Water vapor, high-humidity environments	Ball screws and linear guides for corrosive environments	(Standard grease)				400°O						(70,000		(100			Low	Support	P84–85,	es
0	Water	Water-immersed, water-spray	Ball screws and linear guides for corrosive environments	`(Standard seal) '				≤80°C						≤70 000		≤100			High	units (P81)	P92-93	
Corrosive	V	Veak acid, weak alkali	Corrosion-resistant coated ball screws and linear guides	(Fluorine grease)				≤80°C						- ≤70 000		≤100			Low		P84–85	Selecti
	St	trong acid, strong alkali	Stainless steel ball screws and linear guides	(Corrosion-resistant seal)				≤150	D°C					≥70 000		≥100			High	Linear guides	P64-65	ion Guic
Sanitary	Food	I processing environments	Ball screws and linear guides for	food processing	0			≤80°C						≤70 000		≤100			_	(P82-83)	P94–95	Φ
Water- and dust-contaminated		Dust or wood chips	Ball screws and linear guides, equal a high-performance seal	uipped with	0			≤80°C						≤70 000		≤100			Low		P84–85, P92–93, P96–97	
High- temperature	Norma	al atmosphere (up to 150°C)	Ball screws and linear guides for environments	high-temperature	0			≤150	0°C					≤70 000		≤100			_		P98-99	
Non- magnetic	From nor	mal atmosphere up to vacuum	Non-magnetic stainless steel ball	screws and linear guides		10⁻⁵ Pa		≤150)°C					≤70 000		≤100			_		_	

(1) Cleanliness may vary depending on surrounding structures and other factors.

(2) $d \cdot n = \text{Shaft diameter of ball screws, mm} \times \text{rotational speed (min}^{-1})$

SPACEA™ NSK Linear Guides®

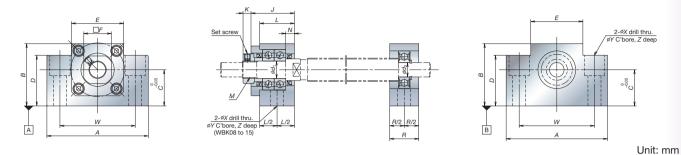
						Component s	pecifications				· Specifications
	Operating 6	environment	Product name	Ball screw specifications	Shaft, nut	Ball	Recirculation components	Seal	Corrosion-resistant	Lubricant	· Operating instructions
				Linear guide specifications	Rail, ball slides	Dall	End cap	Seai	coating	Lubricant	· Technical data
	Cloan	Normal atmosphere		cked ball screws and	Standard material	Standard material	Standard material	Standard seal		LG2 clean grease, NSK K1	P86–87,
	and Vacuum	(room temperature)	linear guides					Standard Sear	Fluoride low-temperature	LGU clean grease, NSK K1	P92–93
Vacuum and	Vacuum	From normal atmosphere up to vacuum (room temperature)	Fluorine grease-p linear guides	packed ball screws and	Martensite stainless steel	Martensite stainless steel	Austenite stainless steel		chrome plating	Fluorine grease	P84–85
clean	vacuum	From normal atmosphere up to vacuum (up to 150°C)	Clean lubricant V linear guides	-DFO ball screws and					_	V-DFO (+ DLC) or Molybdenum disulfide	P88–89
	Non-magnetic	From normal atmosphere up to vacuum	Non-magnetic sta linear guides	ainless steel ball screws and	Special austenite stainless steel	Ceramics	Austenite stainless steel	Standard seal	_	Standard grease, Fluorine grease	_
	Matar	Water vapor, high-humidity environments	Corrosion-resista linear guides	ant coated ball screws and	Standard material	Standard material	Standard material	Standard seal	Fluoride low-temperature	Standard grease + NSK K1	P84–85,
Corrosive	vvater	Water Water-immersed, water-spray Stainless steel ball screws and linear gu		all screws and linear guides	Martensite stainless steel	Martensite stainless steel		Standard Seal	chrome plating	Standard grease + NSK KT	P92-93
Corrosive	We	water-spray	Corrosion-resista linear guides	ant coated ball screws and	Standard material	Standard material	Austenite stainless steel	Corrosion-	Fluoride low-temperature	Fluorine grease	P84–85
	Stroi	ng acid, strong alkali	Stainless steel ba	all screws and linear guides	Martensite stainless steel	Martensite stainless steel		resistant seal	chrome plating	Fluorine grease	F04-03
Sanitary	Food pr	rocessing environments	Ball screws and I food processing	inear guides for	Martensite stainless steel	Martensite stainless steel	Austenite stainless steel	Standard seal	_	Grease for food processing applications, NSK K1 seal for food processing applications	P94-95
Water-and dust- contaminated	dust- D	ust or wood chips	Ball screws and I a high-performan	inear guides, equipped with	Standard material	Standard material	Standard material	High dust- resistant seal	Fluoride low-temperature chrome plating	Standard grease + NSK K1	P84–85, P94–95, P96–97
High- temperature	Normal a	atmosphere (up to 150°C)	Ball screws and I high-temperature		Martensite stainless steel	Martensite stainless steel	Austenite stainless steel	(Heat- resistant seal)	_	Heat-resistant grease, Fluorine grease	P98–99
Non-magnetic	From norma	al atmosphere up to vacuum	Non-magnetic sta	ainless steel ball screws and	Special austenite stainless steel	Ceramics	Austenite stainless steel	Standard seal	_	Standard grease, Fluorine grease	_


- NSK K1™ lubrication unit

Note: Under radioactive operating conditions, resins used in standard products may cause distortion of the products, and resins used in lubricants may deteriorate;

Dimensions and Availability of SPACEA™

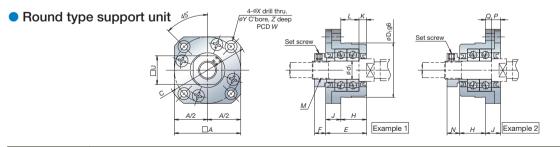
Series Ball Screws


1. Dimensions of Ball Screws

Series	Shaft	Lead	Effective turns of	Number	Nut	Flange outer	Nut	Maximum	Stroke	Dynamic		Suitability	for special e	nvironments (a		
S	diameter d	Leau	balls	start	diameter		length L	shaft length L ₀ max	Stroke S _t	load rating (N)	Clean	Vacuum	Corrosive	High- temperature	Water- and dust- contaminated	Sanitary
	6	1	1×3	1	12	24	21	174	100	470	•		•		oon an in a cou	
	8	1	1×3	1	14	27	21	248	150	545						
	0	2	1×3	1	16	29	28	248	150	1 080						
	10	2	1×3	1	18	35	29	308	200	1 210						
		4	2.5×3	1	26	46	34	430	300	2 250						
KA		2	1 × 3	1	20	37	29	380	250	1 360						
	12	5	2.5 × 1	1	30	50	40	580	450	3 070						
		10	2.5 × 1	1	30	50	50	580	450	3 070						
	15	10	2.5 × 1	1	34	57	51	1 161	1 000	5 780						
		20	1.7×1	1	34	55	45	1 161	1 000	4 150						
	16	2	1 × 4	1	25	44	40	461	300	2 870						
	20	20	1.5 × 1	1	46	74	63	1 208	1 000	5 760						
	10	2	1×3	1	22	39	29	308		1 210	<u> </u>		0			
		4	2.5 × 1	1	26	46	34	430		2 250	<u> </u>		0	0		$\stackrel{\circ}{\sim}$
	4.0	2	1×3	1	24	41	29	380		1 360	0		0			$\stackrel{\circ}{\sim}$
	12	5	2.5 × 1	1	30	50	40	580		3 070	<u> </u>	0	0	0		$\stackrel{\circ}{\sim}$
		10	2.5 × 1	1	30	50	50	580		3 070	<u> </u>	0	0	0		$\stackrel{\circ}{\sim}$
	15	10	2.5 × 1	1	34	57	51	1 161		5 780		0	0	0		0
	10	20	1.7×1	1	34	55	45	1 161		4 150	<u> </u>			0		$\stackrel{\circ}{\sim}$
	16	2	1 × 4	1	30	49	40	461		2 870	<u> </u>					$\stackrel{\circ}{\sim}$
	20	20	1.5 × 1	1	46	74	63	1 208		5 760	<u> </u>		0	0		$\stackrel{\circ}{\sim}$
	0.5	5	2.5×2	1	50	73	55	1 800		13 600	<u> </u>	0	0	0		$\frac{\circ}{\circ}$
	25	25	1.5 × 1	1	44	71	90	1 800		8 280	$\frac{0}{0}$			0		$\stackrel{\circ}{\sim}$
		25	1.5 × 1	1	47	74	119	1 800		8 280						0
		5	2.5×2	1	58	85	106	2 400		15 100	<u> </u>					${}$
		10	2.5×2 2.5×1	1	74 78	108 105	125 107	2 400		37 900 14 700	$\frac{\circ}{\circ}$			Ö		
		20 25	2.5×1	1	78	105	120	2 400		14 700	$\frac{\circ}{\circ}$					
_		32	1.5×1	1	51	85	109	2 400		9 450	$\frac{\circ}{\circ}$		 	0		
anc	32	32	1.5×1	1	51	85	131	2 400		9 200	$\frac{\circ}{\circ}$	 	 	Ö		$\frac{\circ}{\circ}$
E E	32	32	1.5 × 1	2	58	85	128	2 400		15 000	$\frac{\circ}{\circ}$	 	<u> </u>	Ŏ		$\overline{}$
ğ		32	1.5 × 2	2	78	105	107	2 400		15 400	$\frac{\circ}{\circ}$	0	 	Ö		
٥		20	3.5×2	2	78	120	142	2 400		48 500	$\frac{\circ}{\circ}$	 		Ŏ		
ţi		10	2.5×2	1	82	124	193	3 000		42 500	$\frac{\circ}{\circ}$	0	$\stackrel{\circ}{\sim}$	Ö		$\stackrel{\circ}{\sim}$
Sp	36	20	2.5×4	2	96	138	186	3 000		69 500	$\frac{\circ}{\circ}$	Ö	Ö	Ŏ		$\overline{}$
Production on demand	- 50	25	2.5×1	1	100	133	136	3 000		23 400	$\frac{\circ}{\circ}$	 0	 	Ŏ		$\frac{\circ}{\circ}$
ш		32	1.5×2	1	100	133	122	3 000		24 600	$\overline{}$	Ö	ŏ	Ö		$\widetilde{}$
		40	1.5 × 1	1	64	106	133	3 000		15 100	$\overline{}$	Ö	Ö	Ö		$\widetilde{}$
	40	40	1.5 × 1	1	64	106	155	3 000		15 100	$\frac{\circ}{\circ}$	Ö	Ö	Ö		<u> </u>
		40	1.5 × 1	2	73	114	154	3 000		24 700	<u> </u>	0	0	Ö		$\widetilde{}$
		40	1.5 × 2	2	100	133	136	3 000		24 600	$\frac{\circ}{\circ}$	Ŏ	Ŏ	Ŏ		
		8	2.5×4	1	82	120	162	3 300		55 400	<u> </u>	Ö	Ö	Ö		0
	45	10	2.5×2	1	88	132	117	3 300		44 300	Ŏ	Ŏ	ŏ	Ŏ		Ö
		8	2.5×4	1	90	129	149	3 500		57 500	$\frac{\circ}{\circ}$	Ŏ	Ŏ	Ŏ		$\overline{}$
		10	2.5 × 4	1	93	135	163	3 500		85 700	-	Ŏ	Ŏ	Ŏ		Ŏ
		25	2.5 × 1	1	120	156	140	3 300		34 900	Ŏ	Ŏ	Ŏ	Ŏ		
		32	2.5×1	1	120	156	158	3 300		34 900	Ŏ	Ŏ	Ŏ	Ŏ		
	50	40	1.5 × 1	2	120	156	140	3 300		36 700	$\overset{\smile}{\circ}$	Ŏ	Ŏ	Ŏ		
		50	1.5 × 1	1	80	126	161	3 500		22 500	Ŏ	Ŏ	Ŏ	Ŏ		0
		50	1.5×2	2	80	126	167	3 500		36 800	Ŏ	Ŏ	Ŏ	Ŏ		Ŏ
		50	1.5×2	2	120	156	158	3 500		36 700	Ŏ	Ŏ	Ŏ	Ŏ		
		50	1.7×2	2	90	135	170	3 500		40 900	Ŏ	Ŏ	Ŏ	Ŏ		0
		- •							l							

Standard stock items

Square type support unit



		Fixed	support sid	de unit (squ	uare type)					
Reference No. (for use in clean environments)	Locknut tightening torque (reference) [N·cm]	Set screw tightening torque (reference) [N·cm]	d ₁	F	J	К	L	N	М	Availability
WBK08-01C	490	69 (M3)	8	14	23	7	_	4	M8 × 1	•
WBK10-01C	930	147 (M4)	10	17	30	5.5	24	6	M10 × 1	•
WBK12-01C	1 370	147 (M4)	12	19	30	5.5	24	6	M12 × 1	•
WBK15-01C	2 350	147 (M4)	15	22	31	12	25	5	M15 × 1	•

												Offic. Hilli			
Simple sup	port side	unit	Common dimensions with square type												
Reference No. (for use in clean environments)	or use in clean d_2 R		А	В	С	D	Ε	W	Х	Y	Z	Availability			
WBK08S-01C	6	15	52	32	17	26	25	38	6.6	11	12	•			
WBK10S-01C	8	20	70	43	25	35	36	52	9	14	11	•			
WBK12S-01C	10	20	70	43	25	35	36	52	9	14	11	•			
WBK15S-01C	15	20	80	50	30	40	41	60	11 9	17 14	15 11	•			

Note: For dimensions of X, Y, and Z for WBK15S-01C, the upper number indicates dimensions of fixed support side unit, and the lower number shows dimensions of simple support side unit.

Standard stock items

- 1	1	:4.	
ι	JΠ	11:	111

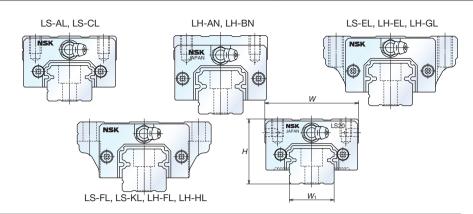
Reference No. (for use in clean									Fixed	suppo	ort side	e unit	(rounc	l type)						
environments)	d ₁	Α	С	U	W	Χ	Y	Z	<i>D</i> ₁	E	F	Н	J	K	L	N	Р	Q	М	Availability
WBK08-11C	8	35	43	14	35	3.4	6.5	4	28	23	7	14	9	4	10	8	5	4	M8 × 1	•
WBK10-11C	10	42	52	17	42	4.5	8	4	34	27	7.5	17	10	5	12	8.5	6	4	M10 × 1	•
WBK12-11C	12	44	54	19	44	4.5	8	4	36	27	7.5	17	10	5	12	8.5	6	4	M12 × 1	•
WBK15-11C	15	52	63	22	50	5.5	9.5	6	40	32	12	17	15	6	11	14	8	7	M15×1	•

Note: Refer to the dimensions of square type support unit for tightening torque of locknuts and setscrews.

Standard stock items

OProduction on demand Special dimension because of the specification

Note: The dynamic load ratings listed are those of martensite stainless steel screws, with the internal clearance as a reference. The dynamic load ratings may vary depending on materials or internal specifications.


^{2.} Dimensions of Clean Support Unit

Dimensions and Availability of SPACEA™

Series NSK Linear Guides®

3. Dimensions of Linear Guides

တ္သ	Model No. Height Overall width Ball slide lengt			mensions (mm)		Suitability for special e				l environments (availability)			
erie	Model No.	Height	Overall width	Ball slid		Rail width	Dynamic load rating	01	.,		High-	0 "	Water- and
တ		Н	W	Standard	With NSK K1 seal	W ₁	(N)	Clean	Vacuum	Corrosive	temperature	Sanitary	dust- contaminated
	LH08AN	11	16	24	31	8	1 240	0				0	
	LH10AN	13	20	31	40	10	2 250	0				0	
	LH12AN	20	27	45	54	12	5 650	0				0	
	LH15AN	28	34	55	65.6	16	10 800	0				0	
	LH15BN	28	34	74	84.6	16	14 600	0				0	
	LH15FL	24	47	55	65.6	16	10 800	0				0	
	LH15HL	24	47	74	84.6	16	14 600	0				0	
	LH15EL,EM	24	47	55	65.6	16	10 800	0				0	
	LH15GL,GM	24	47	74	84.6	16	14 600	0				0	
	LH20AN	30	44	69.8	80.4	20	17 400	0	0	0	0	0	
	LH20BN	30	44	91.8	102.4	20	23 500	0	0	0	0	0	
	LH20FL	30	63	69.8	80.4	20	17 400	0	0	0	0	0	
	LH20HL	30	63	91.8	102.4	20	23 500	0	0	0	0	0	
	LH20EL,EM	30	63	69.8	80.4	20	17 400	0	0	0	0	0	
	LH20GL,GM	30	63	91.8	102.8	20	23 500	0	0	0	0	0	
	LH25AN	40	48	79	90.6	23	25 600	0	0	0	0	0	
	LH25BN	40	48	107	118.6	23	34 500	0	0	0	0	0	
	LH25FL	36	70	79	90.6	23	25 600	0	0	0	0	0	
	LH25HL	36	70	107	118.6	23	34 500	0	0	0	0	0	
	LH25EL,EM	36	70	79	90.6	23	25 600	0	0	0	0	0	
	LH25GL,GM	36	70	107	118.6	23	34 500	0	0	0	0	0	
LH	LH30AN	45	60	85.6	97.6	28	31 000	0	0	0	0	0	
	LH30BN	45	60	124.6	136.6	28	46 000	0	0	0	0	0	
	LH30FL	42	90	98.6	110.6	28	35 500		0	0	0	0	
	LH30HL	42	90	124.6	136.6	28	46 000		0	0	0	0	
	LH30EL,EM	42	90	98.6	110.6	28	35 500		0	0	0	0	
	LH30GL,GM	42	90	124.6	136.6	28	46 000	0	0	0	0	0	
	LH35AN	55	70	109	122	34	47 500	0			0	0	0
	LH35BN	55	70	143	156	34	61 500	0			0	0	0
	LH35FL	48	100	109	122	34	47 500				0	0	0
	LH35HL	48	100	143	156	34	61 500	0			0	0	0
	LH35EL,EM	48	100	109	122	34	47 500	0			0	0	0
	LH35GL,GM	48	100	143	156	34	61 500	0			0	0	0
	LH45AN	70	86	139	154	45	81 000	0			0	0	0
	LH45BN	70	86	171	186	45	99 000	0			0	0	0
	LH45FL	60	120	139	154	45	81 000	0			0	0	0
	LH45HL	60	120	171	186	45	99 000	0			0	0	0
	LH45EL,EM	60	120	139	154	45	81 000	0			0	0	0
	LH45GL,GM	60	120	171	186	45	99 000	0			0	0	0
	LH55AN	80	100	163	178	53	119 000	0			0	0	
	LH55BN	80	100	201	216	53	146 000	0			0	0	
	LH55FL	70	140	163	178	53	119 000	0			0	0	
	LH55HL	70	140	201	216	53	146 000	0			0	0	
	LH55EL,EM	70	140	163	178	53	119 000	0			0	0	
	LH55GL,GM	70	140	201	216	53	146 000	0			0	0	

LU-AR, LU-TR, LU-AL	LE-AR, LE-TR	LW-EL
		NSK JAPAN
	<u>L</u> <u> </u>	

SS				Dimension	ons (mm)			Su	itability for sp	pecial environ	ments (availabi	lity)
Series	Model No.	Height	Overall width	Ball slid	e length	Rail width	Dynamic load rating	01	.,		High-	0 "
Ň		Н	W	Standard	With NSK K1 seal	W ₁	(N)	Clean	Vacuum	Corrosive	temperature	Sanitary
	PU05TR	6	12	19.4	24.4	5	520	0				0
	PU07AR	8	17	23.4	29.4	7	1 090	0				0
PU	PU09TR	10	20	30	36.4	9	1 490	0				0
	PU12TR	13	27	35	42	12	2 830	0				0
	PU15AL	16	32	43	51.2	15	5 550	0				0
	PE05AR	6.5	17	24.1	28.9	10	690	0				0
	PE07TR	9	25	31.1	37.1	14	1 580	0				0
PE	PE09TR	12	30	39.8	46.8	18	3 000	0				0
	PE12AR	14	40	45	53	24	4 350	0				0
	PE15AR	16	60	56.6	66.2	42	7 600	0				0
	LU05TL	6	12	18	24.4	5	545	0				0
	LU07AL	8	17	20.4	29.4	7	1 090	0				0
	LU09AL	10	20	26.8	34.2	9	1 760	0	0	0	0	0
LU	LU09TL	10	20	26.8	34.2	9	1 760	0	0	0	0	0
	LU12AL	13	27	34	41	12	2 830	0	0	0	0	0
	LU12TL	13	27	34	41	12	2 830	0	0	0	0	0
	LU15AL	16	32	43.6	51.8	15	5 550	0	0	0	0	0
	LE09AL	12	30	39	46	18	3 000	0	0	0		0
	LE09T	12	30	39	46	18	3 000	0	0	0		0
LE	LE12A	14	40	44	52	24	4 350	0	0	0	0	0
	LE15AL	16	60	55	64.6	42	7 600	0	0	0	0	0
	LW17EL	17	60	51.4	61.6	33	5 600	0			0	0
	LW21EL	21	68	58.8	71.4	37	6 450	0			0	0
LW	LW27EL	27	80	74	86.6	42	12 800	0			0	0
	LW35EL	35	120	108	123	69	33 000	0				0
	LW50EL	50	162	140.6	155.6	90	61 500	0				0
	LS15CL	24	34	40.4	50	15	5 400	0	0	0	0	0
	LS15AL	24	34	56.8	66.4	15	8 350	0	0	0	0	0
	LS15KL	24	52	40.4	50	15	5 400	0	0	0	0	0
	LS15FL	24	52	56.8	66.4	15	8 350	0	0	0	0	0
	LS15EL,EM	24	52	56.8	66.4	15	8 350	0	0	0	0	0
	LS20CL	28	42	47.2	57.8	20	7 900	0	0	0	0	0
	LS20AL	28	42	65.2	75.8	20	11 700	0	0	0	0	0
	LS20KL	28	59	47.2	57.8	20	7 900	0	0	0	0	0
	LS20FL	28	59	65.2	75.8	20	11 700	0	0	0	0	0
	LS20EL,EM	28	59	65.2	75.8	20	11 700	0		0	0	0
	LS25CL	33	48	59.6	70.2	23	12 700	0	0	0	0	0
	LS25AL	33	48	81.6	92.2	23	18 800	0	0	0	0	0
LS	LS25KL	33	73	59.6	70.2	23	12 700	0	0	0	0	0
	LS25FL	33	73	81.6	92.2	23	18 800	0		0	0	0
	LS25EL,EM	33	73	81.6	92.2	23	18 800				0	0
	LS30CL	42	60	67.4	79.4	28	18 700	0	0	0	0	0
	LS30AL	42	60	96.4	108.4	28	28 800	0	0	0	0	0
	LS30KL	42	90	67.4	79.4	28	18 700	0	0	0	0	0
	LS30FL	42	90	96.4	108.4	28	28 800	0	0	0	0	0
	LS30EL,EM	42	90	96.4	108.4	28	28 800	0	0	0	0	0
	LS35CL	48	70	77	90	34	26 000	0				0
	LS35AL	48	70	108	121	34	40 000	0				0
	LS35KL	48	100	77	90	34	26 000	0				0
	LS35FL	48	100	108	121	34	40 000	0				0
	LS35EL,EM	48	100	108	121	34	40 000	0				0

ORush items (within one month)

ORush items (within one month)

SPACEA

1. Corrosion-resistant Ball Screws and NSK Linear Guides® (Fluoride Low-temperature Chrome Coating)

NSK linear guides and ball screws are used in various applications and environments, such as industrial machinery, semiconductor and LCD manufacturing equipment, and aerospace equipment. A major concern in these settings is preventing rust which may occur during wet processing in manufacturing equipment utilizing chemicals, particularly machines that use water, such as washing machines and machines used in various manufacturing stages of semiconductors and LCDs.

NSK applies, with successful results, a fluororesin coating as a surface treatment on electrolytic anti-rust black film (fluoride low-temperature chrome plating) as the optimal rust prevention coating for linear guides and ball screws in such machines and equipment.

Fluoride Low-temperature Chrome Plating Processing

Electrolytic rust-resistant black plating + fluororesin coating

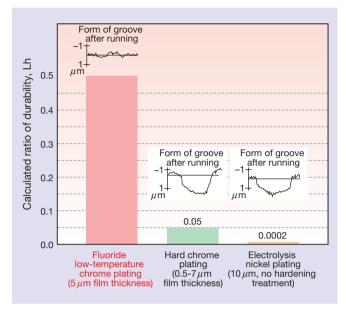
- Black plating: treated to form a stable thin film (1-2 μ m), which is a form of black chrome galvanization.
- Fluororesin coating is applied to this film to enhance corrosion resistance.
- The low-temperature treatment with no hydrogen brittleness enables stable, accurate control.
- The thin-film and high corrosion-resistance properties reduce factors that might adversely affect the accuracy of parts.

Rust condition A: No rust B: No rust, but slight discoloration C: Spot rust

84 **NSK**

- Outstanding durability on rolling surfaces, compared with other surface treatments.
- More economical than other surface-treated or stainless steel products.

Note: Avoid using organic solvents, which may degrade the treatment's rust prevention properties.


Test results of corrosion resistance to humidity

Ch	naracte	Sample	Fluoride low-temperature chrome plating	Hard chrome plating	Electrolysis nickel plating	SUS440C	Standard product
		Upper face	(Grinding) B	(Grinding) B	(Grinding) A	(Grinding) C	(Grinding) E
	Rust condition	Side face	(Grinding) A	(Grinding) A	(Grinding) A	(Grinding) C	(Grinding) E
	conc	Bottom face	(Grinding) A	(Grinding) A	(Grinding) A	(Grinding) C	(Grinding) E
	Sust	End face	(Cutting) A	(Cutting) C	(Cutting) A	(Cutting) C	(Cutting) E
	"	Chamfer, Grinding off	(Drawing) A	(Drawing) D	(Drawing) A	(Drawing) C	(Drawing) E
Rust prevention	• T	t conditions Testing machine: Dabaiespeck high- temperature and high- humidity vessel Temperature: 70°C Relative humidity: 95% Time: 96 hours			0		•
	c a R	To/From the setting ondition of temperature and humidity Rise time: 5 hours all time: 2 hours					
		Film thickness	5 <i>µ</i> m	0.5–7 μm	10 <i>µ</i> m	_	_

D: Slightly rusted

E: Completely rusted

 Surface treatment durability test results for linear guides

Comprehensive evaluation

	Available length	Rust- resistant capability	Quality stability	Durability	Cost
Fluoride low- temperature chrome plating	(4m)	0	0	0	Low
Hard chrome plating	△ (2m)	0	×	Δ	High
Electrolysis nickel plating	(4m)	0	Δ	×	High
SUS440C (3.5m)					
②: Superior△: No problem for use∴ Not as good∴: Problem—restricted use					

Test results of corrosion resistance to chemical exposure

Test conditions — Base material of rail: equivalent to SUS440C Concentration of chemical: 1 normal (1N)

Fluoride low-temperature chrome plating	Soaking/Vapor	Hard chrome plating	No surface treatment
	24-hour soaking Nitric acid	0	0
0	24-hour soaking Hydrofluoric acid	0	
	72-hour vapor Hydrochloric cleansing liquid HCI: H ₂ O ₂ : H ₂ O = 1:1:8		
0	Hydrochloric liquid (soaking)	0	A
0	Sulfuric acid (soaking)	0	×
0	Ammonia or sodium hydroxide	0	Δ

▲ : Damage to entire surface

X: Corrosion exists

E

Specifications, Operating Instructions, and Technical Data for SPACEA™ Series Ball Screws and NSK Linear Guides®

2. LG2/LGU Clean Greases

NSK LG2/LGU clean greases are recommended for products used in clean rooms, including products with low-dust specifications: NSK's linear guides, ball screws, monocarriers, robot modules, megathrust motors, and XY tables. LG2/LGU clean greases exhibit low-dust and corrosion-resistant properties among other outstanding characteristics, in contrast to fluorine greases conventionally used in clean rooms. They are highly regarded among manufacturers of semiconductor production equipment.

Features of NSK Clean Greases

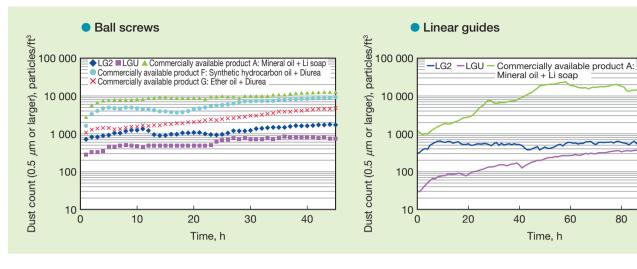
- Low-dust characteristics that outperform fluorine greases
- Low torque—less than 20% of that of fluorine greases
- Over ten times more durable than fluorine greases
- Superior rust prevention compared to fluorine greases

Note: LG2/LGU clean greases are for use in normal atmosphere only. Fluorine greases or other NSK greases are recommended for vacuum applications.

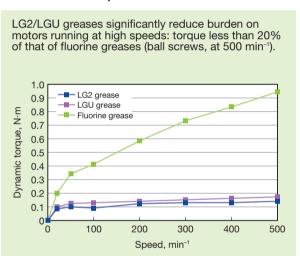
Properties of grease

Operating environment	For use in normal	From normal atmosphere up to vacuum	
Product	LG2 LGU		Commercially available fluorine grease K
Base oil	Mineral oil and synthetic hydrocarbon oil	Synthetic hydrocarbon oil	Fluorine oil
Thickener	Lithium soap	Diurea	PTFE
Kinematic viscosity (mm²/s, 40°C)	30	94.8	270
Consistency	207	209	280 ± 15
Maximum operating temperature, °C	up to 70	up to 120	up to 200

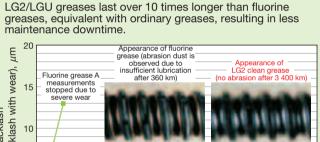
- LG2 and LGU are NSK-developed greases.
- LGU grease is free of metallic elements.

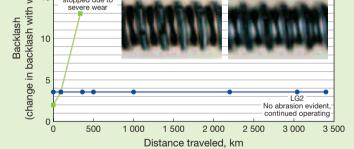

Comprehensive evaluation

Characteristics	LG2/LGU	Fluorine grease	Ordinary grease
Low partide emission	ow partide emission		△/×
Torque	0	×	0/△
Durability	0	△/×	0
Rust prevention	0	△/×	0


O: Excellent △: Poor X: Not recommended

Properties of grease


LG2/LGU greases offer stable low-dust characteristics over a longer period of time compared to fluorine greases.



Stable low-torque characteristics

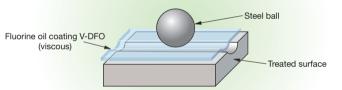
Long life

Superior rust prevention

NSK clean greases have high rust-prevention capability providing high reliability.

Rusting

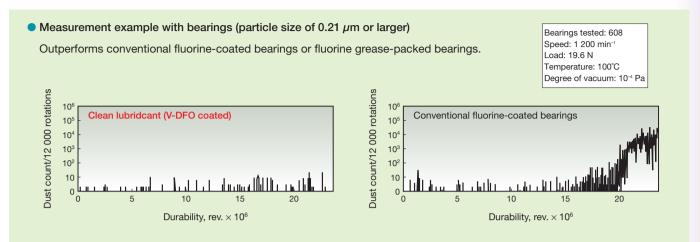
3. NSK Clean Lubricant V-DFO


NSK clean lubricant V-DFO forms a fluorine film directly on raceway surfaces of ball screws and linear guides and balls, resulting in low particle emissions and outgassing, and a longer life than that of fluororesin coating in normal atmosphere up to vacuum conditions. These properties make V-DFO optimal for clean environments.

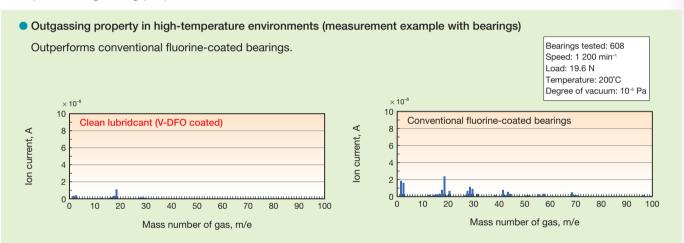
It is suitable for applications that must avoid contamination on wafers or lenses, such as semiconductor/LCD panel production machinery.

Features of NSK Clean Greases

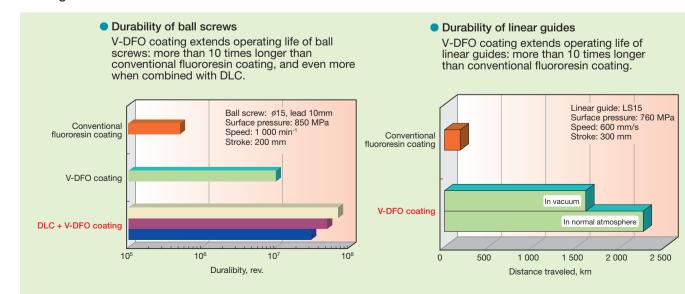
- Lower particle emissions and superior outgassing properties compared to conventional fluororesin-coated products
- Over 10 times more durable than fluororesin-coated products
- Structural illustration of V-DFO lubricant coating


Comprehensive evaluation

	Performance			Compatible operating environment			
Lubricant	Durability	Particle emissions	Outgassing	Operating environment	Bearings	Ball screws	Linear guides
V-DFO	0	0	0	Normal atmosphere, vacuum	•	•	•
Fluororesin	Δ	Δ	0	Normal atmosphere, vacuum	•	_	_
MoS ₂	0	△/○	0	Normal atmosphere, vacuum	•	•	•
Commercially available fluorine grease	0	0	Δ	Normal atmosphere, vacuum	•	•	•
②: Excellent ○: Good △: Satisfactory •: Applicable							


V-DFO coating: V-DFO coating is a clear, colorless, fluorine-based, semi-dry coating that is viscous on the surface.

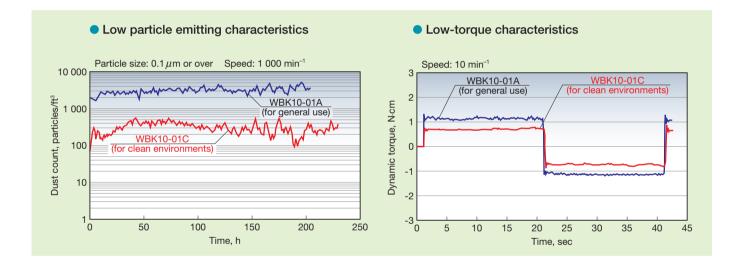
- 1. To open and handle the product: Open the package immediately before use in a clean space with the lowest possible humidity (less than 60%). Handle with gloves for clean rooms. Do not touch the product with bare hands.
- 2. To store: Store the product in a clean dry container such as a desiccator or vacuum chamber when not being used for a long period of time, or if not used immediately after opening. Do not use slushing oil or anti-tarnish paper on the product.
- 3. Do not clean: V-DFO coated products do not require cleaning. Do not clean or wipe the coating on the rolling surface—this will directly affect the lubricating function.
- 4. Do not apply new lubricant: V-DFO coated ball screws and linear guides do not require additional lubricant. Do not use NSK K1 lubrication unit, which will degrade V-DFO's lubricating property.


Superior particle emitting characteristics

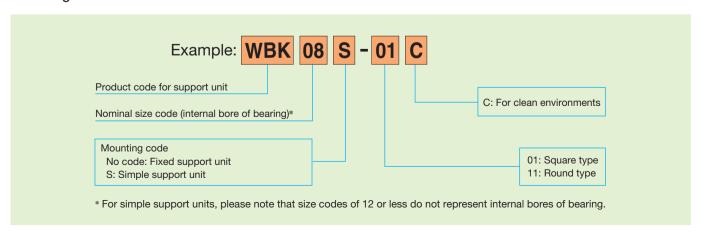
Superior outgassing properties

Long life

4. Support Units for Clean Environments

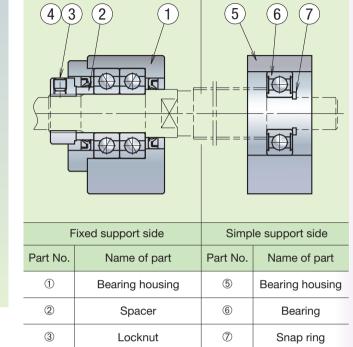

NSK has developed support units for ball screws used in clean environments.

They come equipped with all required parts, such as bearing locknuts to be mounted directly to NSK standard ball screws, of which shaft ends are machined. Please refer to the table of dimensions of standard screw shaft ends for NSK standard ball screws with blank shaft ends.


Specifications, Operating Instructions, and Technical Data for SPACEA™ Series Ball Screws and NSK Linear Guides®

Features of Clean Support Unit

- Extremely low particle emissionsUses LG2 clean grease, which has a proven feature of low particle emissions. Particle emissions are 1/10 of general support units.
- (50% lower than general support unit).
- High rust preventionFluoride low-temperature chrome coating and stainless steel are applied to components.


Coding of reference numbers

Structure

- Two types are available: the square floor-mounted type for surface mounting; and the round type inserted into a hole.
- While the square type consists of a fixed support side unit (motor side) for the ball screw shaft and the opposing simple support side, the round type has no simple support side housing.

Set screw

with set piece

• Bearing type, grease, housing surface treatment, and small parts material

Bearing, grease	Surface treatment	Set screw and snap ring material	
Special bearings, LG2	Fluoride low-temperature chrome coating	Stainless steel	

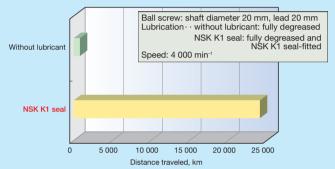
(4)

Specifications

	Fixed support side unit					e support side s	support unit
Axial direction		า	Maximum			Radial direction	
Reference No.	Basic dynamic	Load limit	Stiffness	starting torque	Reference No.	Bearing Reference No.	Basic dynamic
	load rating $C_a(N)$	(N)	(N/µm)	(N·cm)		nererence No.	load rating C (N)
WBK08-01C (square)	3 100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK08-11C (round)	3 100	1 100	30	30 0.52	WBR063-01C	00000	2 200
WBK10-01C (square)	4 250	1 364	50	1.1	WBK10S-01C	608VV	3 300
WBK10-11C (round)	4 230	1 304	30	1.1	WBK103-010	000 V	3 300
WBK12-01C (square)	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK12-11C (round)	4700	2 440	01	1.2	WBINIZOTO	00000	4 330
WBK15-01C (square)	5 100	2 757	63	1.3	WBK15S-01C	6002VV	5 600
WBK15-11C (round)	5 100	2101		1.5	WBI(150-010	0002 V V	3 300

5. Lubrication Unit "NSK K1™"

(1) Ball screws and linear guides, equipped with NSK K1[™] for general industry

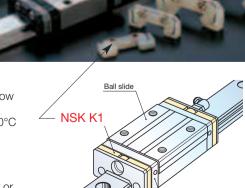

Specifications, Operating Instructions, and Technical Data for SPACEA™ Series Ball Screws and NSK Linear Guides®

NSK has developed the maintenance-free MF series linear guides and ball screws with the newly-developed NSK K1 lubrication unit. (NSK K1 lubrication unit for sanitary environments is also available. See pages 92-93.)

Features of MF Series Ball Screws

 Durability tests without lubricant
 The linear guide without lubricant was damaged after operating over a distance of 8.6 km, but the equipped with NSK K1 seal operated for more than 20 000 km.

Note: The range of operating temperatures and chemicals to avoid contact with are the same as for the aforementioned linear guides.


Features of NSK Linear Guides®

- NSK linear guides equipped with the NSK K1 lubrication unit enhances lubrication.
- The newly developed porous synthetic resin contains ample lubricant to ensure extended maintenance-free performance.
- Easy installation: mounts to the inside of the standard-end seal (rubber).

To maintain optimal performance of NSK K1 for extended use, please follow the instructions below:

- 1. Range of operating temperatures ·· Maximum operating temperature: 50°C Maximum instantaneous operating
 - temperature: 80°C
- 2. Chemicals to avoid contact with....Organic solvents with degreasing properties, such as hexane and immersion in white kerosene thinner or anti-corrosive oil (containing white kerosene)

End seal (rubber)

Performance of the NSK Linear Guides

Durability test without lubricant

The linear guide without lubricant was damaged after a short period of use, but the equipped with NSK K1 seal covered a distance exceeding 50 000 km.

Conditions

Linear guide: LH30AN (preload Z1)

Lubrication · · without lubricant: fully degreased NSK K1 seal: fully degreased and NSK K1 seal-fitted

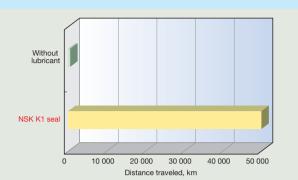
Water-immersion test

In a water-immersion test run once a week for 24 hour intervals, the ball groove of a linear guide fitted with standard double seals quickly showed wear and damage at 2 700 km. By comparison, the linear guide equipped with NSK K1 seal showed only 1/3 as much wear as the standard linear guides, confirming the seal's significant lubricating efficacy.

Linear guide: LS30 stainless steel (preload Z1)

Water immersion: Run once a week for 24 hours, fully immersed in water Lubrication: Full grease-packing for food processing machinery

Dust characteristics


The combination of NSK K1 seals and LG2/LGU clean greases (low particle emission grease) produces no more dust than conventional vacuum grease.


Conditions

Linear guide: LS20 Speed: 36 m/min

Notes: Compatibility of NSK K1 seals with oils and chemicals

The table at right shows the results of a test in which NSK K1 seals were immersed in chemicals and oils at 40°C. NSK K1 seals were found to be stable when in contact with grease and cutting lubricants, and use in combination with these substances presents no problems. However, exposure to chemicals with degreasing properties, such as white kerosene and hexane, quickly removed oil content from the surface of the seals, suggesting that the lubricating effect may deteriorate under these conditions.

Chemicals/Oil	Compatibility
Cutting lubricants (water-based, oil-based)	А
Grease (mineral oil-based, ester-based)	А
Rust preventives (without solvents)	А
Rust preventives (with solvents)	В
White kerosene	В
Hexane	С
A: Compatible B: Use sparingly, for brief periods only	C: Incompatible

5. Lubrication Unit "NSK K1™"

(2) Linear guides equipped with lubrication unit "NSK K1™" for food processing and medical equipment.

The NSK K1 lubrication unit for food processing and medical equipment is a phenomenal new material seal that is safe and secure. NSK K1 FDA-compliant material is used for the lubrication unit, so it is used without anxiety for food processing and medical equipment.

The newly developed porous synthetic resin contains abundant lubricant.

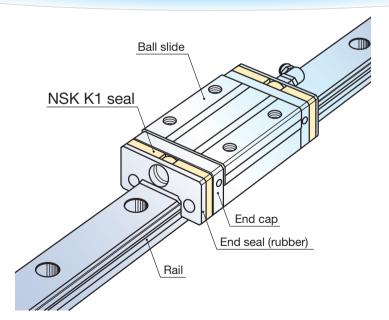
With the basic functions of highly praised NSK K1 for general industry (see pages 92-93), more sophisticated materials make it applicable in food and medical equipment.

It also offers easy installation, mounted inside the standard end seal (rubber).

Features of NSK K1™ Lubrication Unit for Sanitary Environments

Very safe to handle

Uses highly safe materials that are compliant with the US Food and Drug Administration's (FDA) hygiene standards for food additives

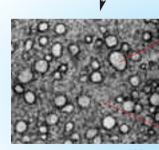

Environmentally sound

The newly developed porous synthetic resin provides a controlled supply of lubricant, preventing the dispersion of oil in sanitary environments

Resistant to harsh environments

It is durable not only under normal environments but also under harsh environments, such as machinery submersed in water

Applying the reliable NSK K1 FDA-compliant material


To maintain optimal performance of NSK K1 over a long time, please follow the instructions below:

1. Range of operating temperatures: Maximum operating temperature: 50°C

Maximum instantaneous operating temperature: 80°C

2. Chemicals to avoid contact with: Organic solvent with degreasing properties, such as hexane and thinner Immersion in white kerosene or anti-corrosive oil (with white kerosene ingredients)

100 µm

Portion containing high proportion of polyolefin

Polyolefin is used for packaging food in supermarkets, replacing dioxingenerating vinyl chloride.

Portion containing high proportion of lubricating oil

6. NSK High Performance Seals

Examples of water- and particle-contaminated environments include atmospheres where dry powders such as wood flour, rubber crumb, graphite powder, ceramic powder and welding spatter exist. In recent years, demand for dust-resistant performance has increased, partly because protective equipment for machinery is often eliminated for cost-

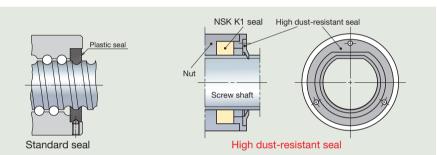
To meet this demand, NSK has developed a high-performance seal more resistant to dust than conventional standard seals. Wood chips

- Linear guide equipped with high-performance seal

 Applications: Woodworking machinery (photo shown at right), tire buffing machinery, welding lines, graphite processing machinery, laser machinery

Features of Ball Screws Equipped with High Performance Seal

• High dust-resistance · · · · · Forming the screw shaft into a special groove shape enhances sealing capacity


Specifications, Operating Instructions, and Technical Data

for SPACEA™ Series Ball Screws and NSK Linear Guides®

- Long life · · · · · · · · · · · NSK K1 lubrication unit was adopted to both enhance dust-resistance and increase durability
- Low torque design · · · · · · Designed to produce lower torque, the seal is formed into a lip shape and positioned close to the cross-section of the screw shaft

High dust-resistance

Note: Ball screws with high performance seals come standard with the NSK K1 lubrication unit, so the entire nut length is slightly longer than ball screws equipped with standard seals.

Performance of ball screws equipped with high-performance seals

High performance seal

Particle penetration through the high performance seal is less than 1/15 of the penetration through a standard seal. Ball screw: Shaft diameter 32 mm Lead 32 mm Speed: 3.2 m/min Penetration rate less than 1%

Standard seal


Powder finer than 30 µm in particle diameter, such as iron

powder, was mixed with grease pasted on the screw shaft.

After stroking the nut, particle penetration through the seal was

Long life

The durability of ball screws was tested by pasting a mixture of iron powder and a small amount of grease on the screw shaft at regular intervals. The ball screw equipped with the high performance seal functioned more than four times longer than ball screws equipped with standard seals.

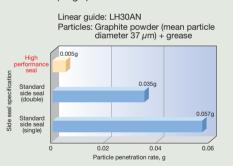
Features of Linear Guides Equipped with High Performance Seals

- High dust-resistance · · · · · Sealed with three flanges that extend from the main body of the seal
- Long life · · · · · · · · · Incorporates NSK K1 lubrication unit to enhance dust-resistance and durability

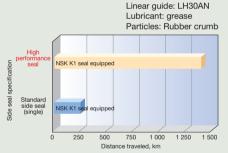
Improved dust-resistance extends the durability of high performance seals in

a fine wood flour atmosphere to more than twice that of standard side seals,

Note: Linear guides with extending seals also come standard with the NSK K1 lubrication unit, so the length of the ball slide is slightly longer than linear guides with standard seals. (See the table below for more details.)

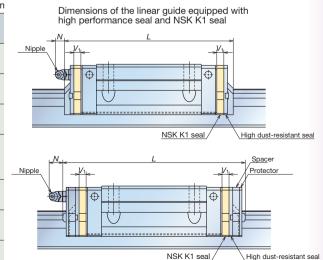

Long life

100 200 300 400 500 600


Performance of linear guides equipped with high-performance seals

High dust-resistance The particle penetration through high performance seals

is less than 1/10 of the penetration through a standard end seal (single)



Specifications of linear guides equipped with highperformance seals

роло	manoo ooalo		Offic. Hilli
	Model No.	Ball slide length L	Nipple extrusion N
VH15	AN/EL/FL/EM	70.6 (77)	1 (8.2)
VIIIO	BN/GL/HL/GM	89.6 (96)	1 (0.2)
VH20	AN/EL/FL/EM	87.4 (94.2)	11.1 (12.3)
VHZU	BN/GL/HL/GM	109.4 (116.2)	11.1 (12.3)
VH25	AL/AN/EL/FL/EM	97 (104.4)	0.6 (10.0)
V 23	BL/BN/GL/HL/GM	125 (132.4)	9.6 (12.9)
	AL/AN	104.4 (114.8)	
VH30	EL/FL/EM	117.4 (127.8)	11.4 (14.2)
	BL/BN/GL/HL/GM	143.4 (153.8)	
VH35	AL/AN/EL/FL/EM	128.8 (139.2)	10.9 (13.7)
งทออ	BL/BN/GL/HL/GM	162.8 (173.2)	10.9 (13.7)
VH45	AL/AN/EL/FL/EM	161.4 (174.2)	10 5 (14 1)
V F143	BL/BN/GL/HL/GM	193.4 (206.2)	12.5 (14.1)
VH55	AL/AN/EL/FL/EM	185.4 (198.2)	10 5 (14 1)
V F100	BL/BN/GL/HL/GM	223.4 (236.2)	12.5 (14.1)

Dimensions in parentheses are dimensions including the protector

7. Ball Screws and NSK Linear Guides® for **High-temperature Environments**

NSK has developed heat-resistant ball screws and linear guides for high-temperature environments requiring heat-resistant performance. In recent years, NSK linear guides and ball screws have been adopted in a variety of industries with such environments, including semiconductor/LCD-related plants, glassware plants and automobile assembly lines.

Features of High-temperature Linear Guides

• Maximum operating temperature: 150°C; maximum instantaneous operating temperature: approximately 200°C. (Standard series: 80°C; maximum instantaneous operating temperature:

approximately 100°C)

Heat-resistant bellows: When combined with special purpose heat-resistant bellows, the linear

guides can be used in environments where high-temperature particles, such

as welding spatter, are dispersed.

• All-stainless steel specification: The all-stainless steel products are excellent at resisting not only heat, but

corrosion and chemicals as well. They are also applicable in vacuum

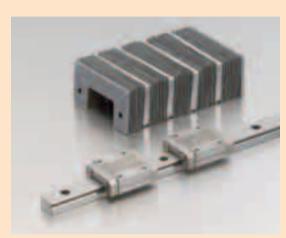
environments.

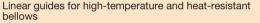
Applicable series and sizes of high-temperature linear guides

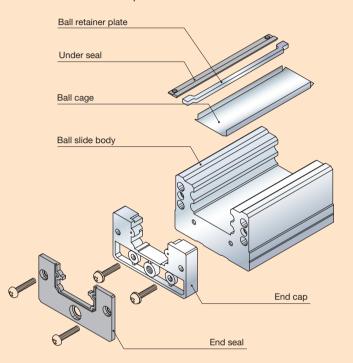
The scope of applications of NSK high-temperature linear guides is shown below.

Other series and model numbers not listed are also available upon request. Please contact NSK.

A II I- I	Size symbols*			
Applicable series	Standard material specification	All-stainless steel specification (except for seals)		
LH (high load capacity/aligning)	20, 25, 30, 35, 45, 55	20, 25, 30		
LS (compact low type)	15, 20, 25, 30	15, 20, 25, 30		
LW (broad type)	17, 21, 27	_		
LU (miniature)	09, 12, 15	09, 12, 15		
LE (miniature broad type)	-	09, 12, 15		


Note: *Example of a basic symbol LH 20


Series Size symbolIndicates the rail width or assembly height.

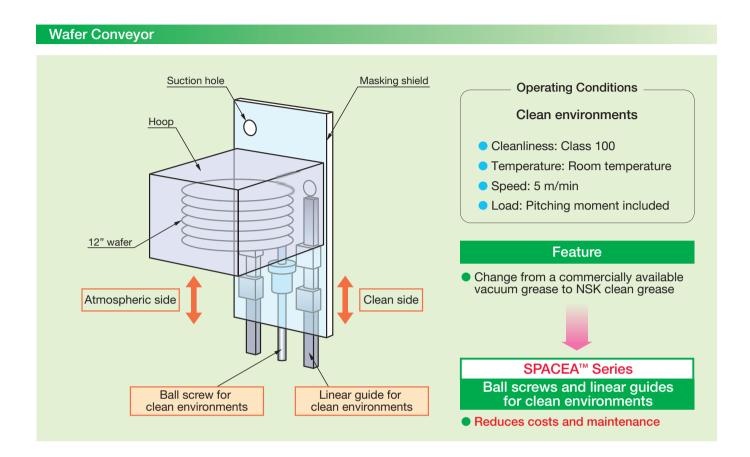

For details, see NSK Catalog, Precision Machine Components (CAT. No.E3161)

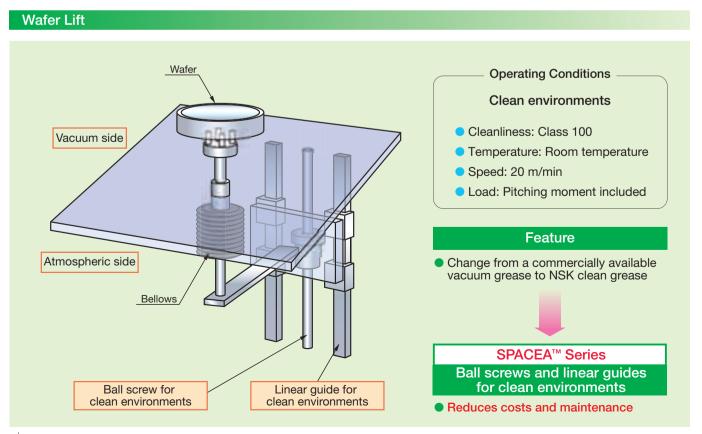
Structure of high-temperature linear guides

Special high-carbon steel with excellent rolling durability or martensite stainless steel featuring high cleanliness are adopted for rails, ball slides and balls. Fluororubber with excellent heat resistance and chemical resistance is used for the seal, and austenite stainless steel with excellent corrosion resistance is used for other components.

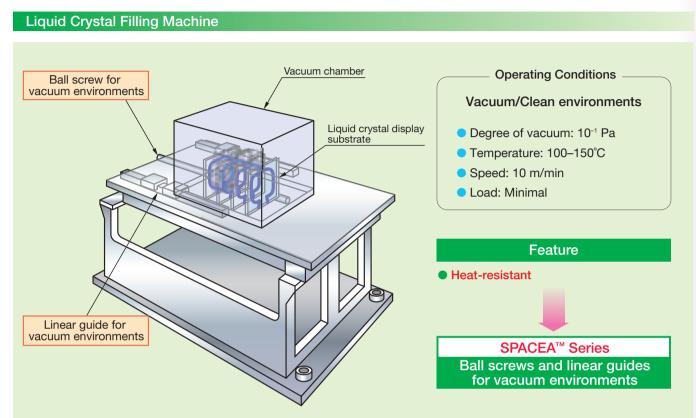
Materials used for components of linear guides for high temperatures

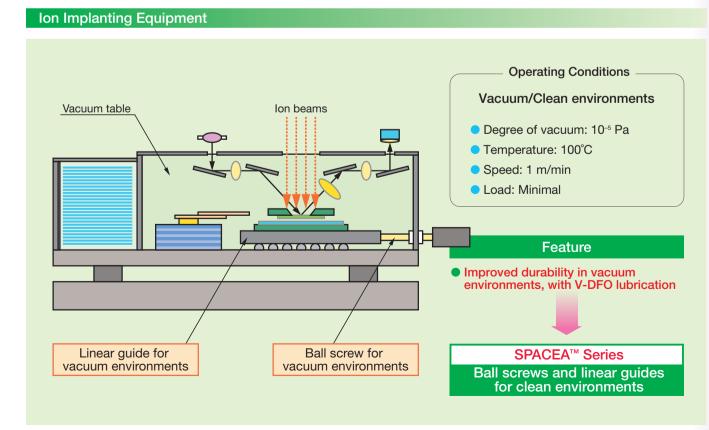
Linear guide component	Material specification
Rail, ball slide	Martensite stainless steel
Ball	SUS440C
End cap, recirculation components of cage, small screws	Austenite stainless steel
Seal component	Fluororubber, etc.


Features of High-temperature Ball Screws


Maximum operating temperature: 150°C; maximum instantaneous operating temperature: approximately 200°C

Materials used for components of ball screws for high temperatures


Ball screw component	Material specification
Shaft, nut Martensite stainless steel	
Ball SUS440C	
Recirculation components	Austenite stainless steel

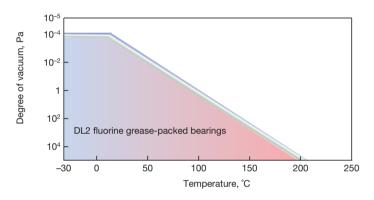

1. Semiconductor Manufacturing Equipment

2. LCD/Semiconductor Production Machinery

This section provides descriptions of the physical properties of lubricants and materials used in SPACEA™ Series bearings, ball screws and NSK Linear Guides®. Unit conversion tables listing general weight, length, and hardness are also included for your reference.

Please use the Specification Inquiry for SPACEA™ Series (at the back of the catalog) when contacting NSK about SPACEA™ Series products.

Α .		12	
Ap	peno	dices	


Physical Properties of Materials	, Unit Conversion Tables	·····P104–12
---	--------------------------	--------------

- 1. Properties of SPACEA™ Series Greases
- 2. Characteristics of Representative Solid Lubricants
- 3. Characteristics of Metallic Materials
- 4. Characteristics of Ceramic Materials
- 5. Physical Properties of Plastic Materials
- 6. Properties of Commercially Available Fluorine Greases (Krytox)
- 7. Properties of Commercially Available Fluorine Greases (Fomblin)
- 8. Properties of Commercially Available Fluorine Greases (Barrierta, Demnum)
- 9. Conversion from International System of Units (SI)
- 10. N-kgf Conversion Table
- 11. kg-lb Conversion Table
- 12. inch-mm Conversion Table
- 13. Viscosity Conversion Table
- 14. Hardness Conversion Table
- 15. Dimensions of Shoulder and Fillet
- 16. Tolerances for Shaft Diameters
- 17. Tolerances for Housing Bore Diameters

1. Properties of SPACEA™ Series Greases

Operating environment	Grease	Normal atmosphere, vacuum	Maximum operating temperature °C	Cleanliness (1)	Base oil	Thickener	Kinematic viscosity mm²/s, 40°C	Consistency
Normal atmosphere,	LG2	Normal atmosphere	70		Mineral oil and synthetic hydrocarbon oil	Lithium soap	30	207
clean	LGU		120	Class 100-1 000	Synthetic hydrocarbon oil	Diurea	94.8	209
From normal atmosphere up to vacuum, clean	DL2	See the Scope of DL2 Grease-Packe	f Applications of d Bearings below.		Fluorine oil	PTFE	200	280
Water	AS2	Normal	110	_	Mineral oil	Lithium soap	140	277
Normal atmosphere, high-temperature	KPM	atmosphere	230	_	Fluorine oil	PTFE	380	280
Cryogenic	D3L	_	-60 (Minimum operating temperature)	_	Silicone oil	Lithium soap	75	300
Radioactive	MRG	_	_	_	Synthetic hydrocarbon oil	Bentonite	120	130

Note (1) Cleanliness may vary depending on operating conditions, surrounding structures and other factors.

Scope of Applications of DL2 Fluorine Grease-Packed Bearings

2. Characteristics of Representative Solid Lubricants

2. Characteristi	2. Characteristics of Representative Solid Lubricants ©: Excellent O: Good A: Satisfactory												
	Relative	Molecular	Crystal	Electric	Maximum op temperatu	erating re °C	Coefficient	of friction	Particle				
Solid lubricant	density g/cm³	mass	structure	$\begin{array}{c} \text{resistance} \\ \Omega \cdot \text{cm} \end{array}$	Normal atmosphere	Vacuum	Normal atmosphere	Vacuum	emissions	Outgassing			
Molybdenum disulfide MoS ₂	4.8	160.07	Hexagonal crystal system	8.33 (-60°C)	350	650	0.006-0.25	0.001–0.2	Δ	0			
Tungsten disulfide WS ₂	7.4	248.02	Hexagonal crystal system	0.40 (92°C)	425	750	0.05-0.28	0.001–0.2	Δ	0			
Graphite C	2.24	12.011	Hexagonal crystal system	2.6 × 10⁻³	550	_	0.05-0.3	0.4–1.0	Δ	0			
Polytetrafluoroethylene PTFE	2.2	_	Long-chain	1014	260	260	0.04-0.2	0.04-0.2	0				
Polyimide	1.4	_	Long-chain	_	300	300	0.12	0.10	0				
Gold Au	19.3	196.97	Face-centered cubic	2.2 × 10 ⁻⁶	200	200	0.2-0.5	_	Δ	0			
Silver Ag	10.5	107.87	Face-centered cubic	1.6 × 10 ⁻⁶	_	600	_	0.2-0.3	Δ	0			
Lead Pb	11.3	207.2	Face-centered cubic	2.08 × 10 ⁻⁶	100	350	0.05-0.5	0.05-0.5	Δ	0			

3. Characteristics of Metallic Materials

_		
(\bigcirc)	E	١.
(U):	Excel	16

lent ○: Good △: Satisfactory X: Unsatisfactory

Application	Metallic material	Thermal expansion coefficient × 10-6 / °C	Young's modulus GPa	Hardness (¹) HV	Relative permeability	Corrosion resistance
General application Radiation-resistant		12.5	208	700–800		×
Corrosive,	High corrosion-resistant stainless steel ES1	10.8	206	650–750	Ferromagnetic	△/○
Clean, Vacuum.	Martensite stainless steel SUS440C	10.1	200	670		Δ
High-temperature,	Austenite stainless steel SUS304	16.3	193	160	1.04 or less	0
Low-temperature	Precipitation-hardened stainless steel SUS630	10.8	200	290–380	Ferromagnetic	0
Non-magnetic,	High corrosion-resistant, non- magnetic stainless steel ESA	16.0	193	800-1 000 (Hardened surface layer)	1.01 or less	0
Corrosive	Completely non-magnetic titanium alloy	9.0	90	450–500	1.001 or less	0
(Comparative	Non-magnetic stainless steel	17.0	195	450	1.01 or less	Δ
material)	Beryllium-copper alloy	16.3	135	320–400	1.001 or less	0

Note (1) Converted to HV (Vickers hardness) for comparison

4. Characteristics of Ceramic Materials

Item	Unit	Highly reliable silicon nitride ceramics (Si ₃ N ₄)	High corrosion-resistant carbide-based ceramics (SiC)	Low-cost oxide-based ceramics (ZrO ₂)	Bearing steel
Density	g/cm³	3.23	3.14	5.9	7.8
Young's modulus	GPa	330	390	210	208
Fracture toughness	MPa · m¹/2	6.0	2.5	7.5	18
Hardness (HV)	_	1 500	≥2 000	1 300	700
Thermal expansion coefficient	× 10 ⁻⁶ / °C	2.8	4.3	10.5	12.5
Thermal conductivity	W/m·k	31	60	3	50
Bending strength	MPa	900	600	1 100	≥2 500
Rotating capability in water immersion	_	0	Δ	0	×
Rotating capability in acid solvents	_	Δ	0	0	×
Cost	_	High	High	Standard	Low

5. Physical Properties of Plastic Materials

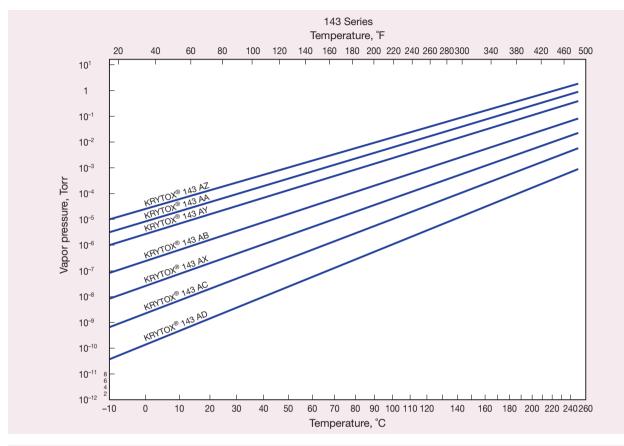
Plastic materials used for the cage materials of bearings for special environments are generally doped with reinforcement such as carbon fibers, solid lubricants such as MoS₂, and abrasion-resistant additives.

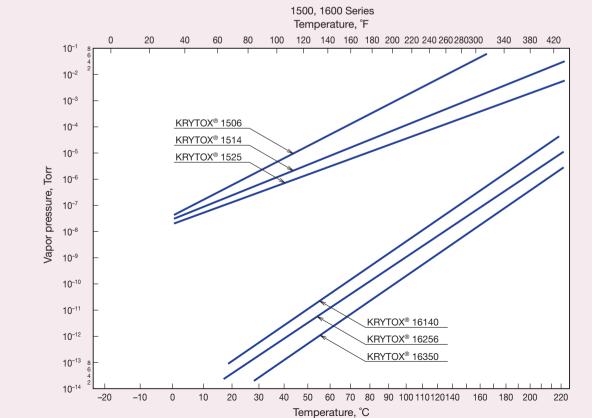
Operating environment	Plastic	Classification(1)	Elasticity coefficient GPa	Strength GPa	Density g/cm³	Tm(²)	Heat distortion temperature(3) °C
	Polyphenylene sulfide (PPS)	M, C	1.4	0.155	1.64	285	>260
High-	Polyetheretherketone (PEEK)	M, C	3.9	0.1	1.3	335	152
temperature,	Heat reversible polyimide (TPI)	M, C	2.94	0.092	1.33	388	238
Clean, Vacuum,	Tetrafluoroethylene-ethylene copolymer (ETFE)	M, C	0.88-1.37	0.04-0.046	1.7–1.76	260	74 (104)
Corrosive	Polyvinylidene fluoride (PVDF)	M, C	1.6	0.045	1.76	170	90 (150)
	Tetrafluoroethylene-ethylene copolymer (ETFE)	M, C	0.88-1.37	0.04-0.046	1.7–1.76	260	74 (104)
(Comparative	Polyamide (nylon 6-6)	M, C	3.0	0.08	1.14	264	60 (180)
material)	Nylon 4-6	M, C	3.14	0.1	1.18	295	220

Notes (¹) Classification M: Moldable C: Crystalline (²) Tm: Melting point

(3) Heat distortion temperature values in parentheses are at 454 kPa, all other values are at 181 MPa.

6. Properties of Commercially Available Fluorine Greases (Krytox)


Krytox oil (Dupont)

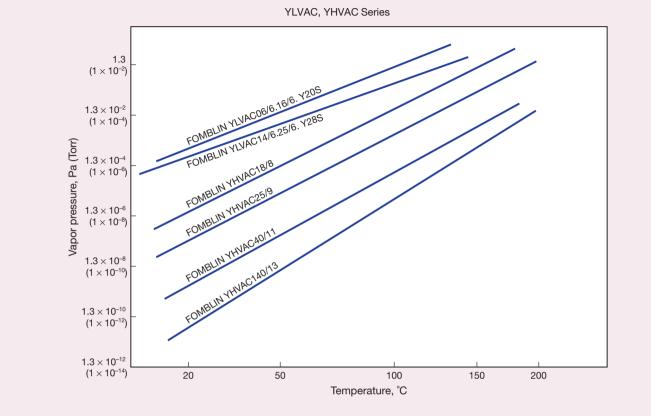

Prod	duct	Average molecular			tic visco nm²/s		Viscosity index	Pour point °C		(Knudser	oressure n number) a		Amount of evaporation, mass %	Density g/cm³	Range of operating
		weight	20°C	38°C	50°C	100°C			20°C	38°C	100°C	260°C	(Temperature, 22 hours)	(0°C)	temperatures
	AZ	1 850	40	18	-	3.3 (99°C)	29	-55	_	5 × 10 ⁻²	_	200	80 (204°C)	_	_
	AA	2 450	85	35	I	5.3 (99°C)	89	-50	_	1 × 10 ⁻²	_	100	40 (204°C)	_	_
	AY	3 000	150	55	ı	7.5 (99°C)	107	-45	_	5 × 10 ⁻³	_	20	20 (204°C)	_	_
143 Series	AB	3 700	230	85	_	10.3 (99°C)	113	-40	_	7 × 10 ⁻⁴	_	4	5 (204°C)	_	_
001100	AX	4 800	450	150		16.4 (99°C)	125	-35	_	1 × 10 ⁻⁴		1	2 (204°C)	_	_
	AC	6 250	800	270	1	26 (99°C)	134	-35	_	1 × 10 ⁻⁵	_	0.3	1 (204°C)	_	_
	AD	8 250	1 500	500	_	43 (99°C)	144	-30	_	8 × 10 ⁻⁷	_	4×10^{-2}	3 (260°C)	_	_
	1506	_	60	_	15	4	_	-45	7 × 10 ⁻⁵	_	0.1	_	_	_	_
1500 Series	1514	_	140	_	30	7	_	-40	7 × 10 ⁻⁵	_	3 × 10 ⁻²	_	_	_	_
OCITOS	1525	_	250	87	50	10	_	-35	7 × 10 ⁻⁵	_	7 × 10 ⁻³	_	_	_	_
	16140	_	1 400	450	250	40	_	-25	1 × 10 ⁻¹¹	_	4 × 10 ⁻⁷		-	_	_
1600 Series	16256	_	2 560	_	400	55	_	-15	7×10^{-12}	_	1 × 10 ⁻⁷	_	I	_	_
Selles	16350	_	3 500	_	600	85	_	-5	7×10^{-13}	_	2 × 10 ⁻⁸	_	_	_	_
	100	_	7	4	-	_	_	<-55	_	_	_	_	87 (121°C)	1.87	-55/65
	101	_	16	8	1	2	_	<-55	_	_		1	29 (121°C)	1.89	-50/100
	102	_	36	15	1	3	_	-50	_	_	_		20 (121°C)	1.91	-50/130
GPL	103	_	80	30	-	5	_	-40	_	_	_	_	7 (121°C)	1.92	-40/155
Series	104	_	180	60	-	9	_	-35	_	_	_	_	3 (121°C)	1.93	-35/180
	105	_	550	160	-	18	_	-30	_	_	_	_	<5 (204°C)	1.94	-30/205
	106	_	810	270	_	25	_	-25	_	_	_	_	<2 (204°C)	1.95	-25/260
	107	_	1 600	440	_	42	_	-20	_	_	_	_	<1 (204°C)	1.95	-20/288

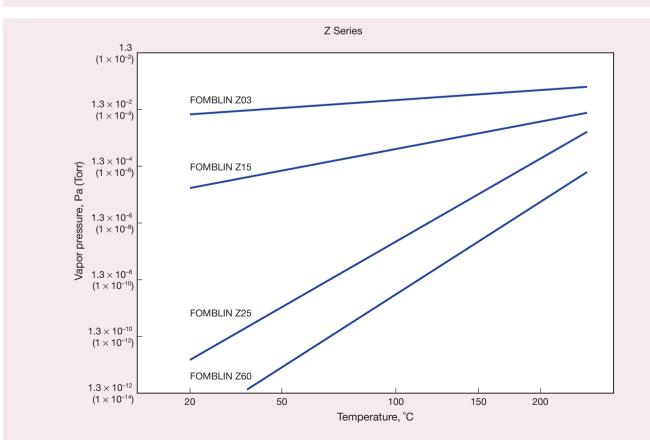
Krytox grease

Product	Base oil	Kinematic viscosity mm²/s	Thickener	Consistency NLGI No.		ressure number) Pa	Oil separation rate mass %	Amount of evaporation mass %	Density g/cm³	Additive
		(38°C)		NEGINO.	38°C	260°C	(204°C, 30h)	(204°C, 6.5h)	(25°C)	
240AZ	143AZ	18			5 × 10 ⁻²	200	15	60	1.89	None
240AA	143AA	35			1 × 10 ⁻²	100	15	30	1.91	None
240AB	143AB	85	PTFE	2	7 × 10 ⁻⁴	4	11	5	1.92	None
240AC	143AC	270			1 × 10 ⁻⁵	0.3	10	1	1.93	None
240AD	143AD	500			8 × 10 ⁻⁷	4 × 10 ⁻²	10	<1	1.93	None
250AC	143AC	270			1 × 10 ⁻⁵	0.3	11	1	2.02	MoS ₂ 5%
280AC	143AC	270			1 × 10 ⁻⁵	0.3	11	1	1.95	Anti-rust agent 1%
283AC	143AC	270	PTFE	2	1 × 10 ⁻⁵	0.3	11	1	1.97	Anti-rust agent 3%
280AD	143AD	500			8 × 10 ⁻⁷	4 × 10 ⁻²	_	<1	_	Anti-rust agent 1%
283AD	143AD	500			8 × 10 ⁻⁷	4 × 10 ⁻²	_	<1	_	Anti-rust agent 3%
LVP	16256	2 560	PTFE	2	1 × 10 ⁻¹¹	1 × 10⁻³	13.8	0.3 (204°C, 22h)	1.94	None
GPL204	GPL104	180 (20°C)			_	_	6 (99°C)	_	_	None
GPL224	GPL104	180 (20°C)	PTFE		_	_	6 (99°C)	_	_	Anti-rust agent
GPL207	GPL107	1 600 (20°C)	FIFE	_	_	_	10	_	_	None
GPL227	GPL107	1 600 (20°C)			_	_	10	_	_	Anti-rust agent

Vapor pressure of Krytox oil

7. Properties of Commercially Available Fluorine Greases (Fomblin)


Fomblin oil (Solvay Solexis)


Pro	duct	Average molecular		atic viscosi mm²/s	ty	Viscosity index	Pour point		ressure number) a	Amount of evaporation, mass %	Density g/cm³
		weight	20°C	40°C	100°C	IIIdox	J	20°C	100°C	(Temperature, 22 hours)	(20°C)
	Y04	1 500	38	15	3.2	60	-58	-	_	20 (120°C)	1.87
	Y06	1 800	60	22	3.9	70	-50	_	_	6 (120°C)	1.88
Y Series	Y25	3 200	250	81	10.4	108	-35	_	_	15 (204°C)	1.90
Selles	Y45	4 100	470	147	16.5	117	-30	_	_	1.7 (204°C)	1.91
	YR	6 250	1 200	345	33.0	135	-25	_	_	1.2 (204°C)	1.91
	06/6	_	62 ± 6	_	_	_	-50	≤5.2 × 10 ⁻⁴	≤9.1 × 10 ⁻¹	_	1.88
YLVAC	14/6	_	140 ± 20	_	_	_	-45	≤2.6 × 10 ⁻⁴	≤2.6 × 10 ⁻¹	_	1.89
Series	16/6	_	160 ± 15	_	_	_	-45	≤6.5 × 10 ⁻⁴	≤9.1 × 10 ⁻¹	_	1.90
	25/6	_	270 ± 20	_	_	_	-35	≤2.6 × 10 ⁻⁴	≤2.6 × 10 ⁻¹	_	1.90
	18/8	_	180 ± 20	_	_	_	-42	≤2.6 × 10 ⁻⁶	≤2.6 × 10 ⁻²	_	1.89
YHVAC	25/9	_	270 ± 20	_	_	_	-35	≤2.6 × 10 ⁻⁷	≤2.6 × 10 ⁻³	_	1.90
Series	40/11	_	450 ± 50	_	_	_	-32	≤2.6 × 10 ⁻⁹	≤6.5 × 10⁻⁵	_	1.91
	140/13	_	1 400 ± 200	_	_	_	-23	\leq 6.5 \times 10 ⁻¹¹	≤6.5 × 10 ⁻⁶	_	1.92
	Z03	4 000	30	18	5.6	317	-90	_	_	6.0 (149°C)	1.82
Z	Z15	8 000	160	92	28	334	-80	_	_	1.2 (204°C)	1.84
Series	Z25	9 500	260	159	49	358	-75	_	_	0.4 (204°C)	1.85
001.55	Z60	13 000	600	355	98	360	-63	_	_	0.2 (204°C)	1.85

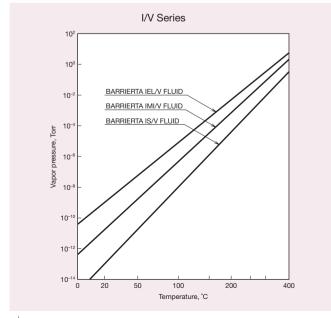
Fomblin grease

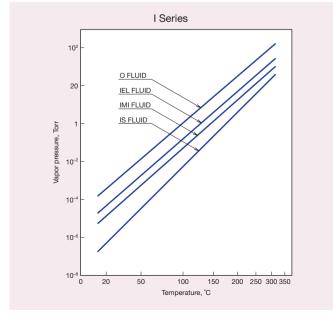
Product	Base oil	Thickener	Consistency NLGI No.	Oil separation rate mass % (204°C, 30h)	Amount of evaporation mass % (204°C, 6.5h)	Density g/cm³ (25°C)	Additive	Range of operating temperatures
OT20	Y Series		2	_	_	1.91	None	-70/120
UT18	Y Series	PTFE	2	_	_	1.94	None	-30/250
RT15	Y Series		2	7.7	0.5	1.95	None	-25/250
YRT/2	Y Series	PTFE	2	7.9	0.9	1.95	Anti-rust agent (solid)	-20/170
AR883	Y Series	PTFE	2	8.0	1.5	1.95	Anti-rust agent (liquid)	-20/170
AR855	Y Series	PIFE	2	8.0	1.5	1.95	Anti-rust agent (liquid)	-20/250
YVAC1	HVAC140/13		1	8.6	0.3	1.98	None	-25/250
YVAC2	HVAC140/13	PTFE	2	8.0		1.98	None	-25/250
YVAC3	HVAC140/13		3	8.0	0.3	2.00	None	-25/250
ZLHT	Z Series	DTEE	2	6.6	2.8	1.95	None	-80/200
ZNF	Z Series	PTFE	3	8.0	0.2	1.98	None	-60/220

Vapor pressure of Fomblin oil

Appendices

8. Properties of Commercially Available Fluorine Greases (Barrierta, Demnum)

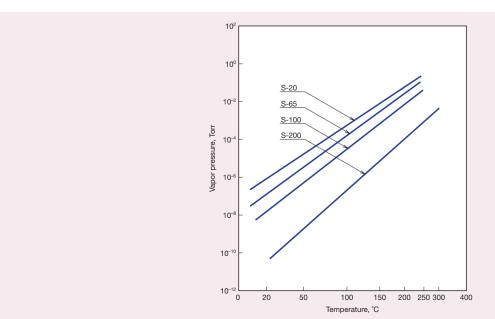

Barrierta oil (NOK Clüber)


I Series	I/V Series	Average molecular	Kinematic mm		Viscosity index	Pour point °C	Vapor pressure (Knudsen number) Pa	Density g/cm³
		weight	20°C	40°C	IIIGOX	Ŭ	(20°C)	(20°C)
0		2 100	65	25	72	-60	_	1.88
	IEL/V	_	140	65	200	-70	1 × 10 ⁻⁷	1.87
IEL		3 500	280	95	130	-45	-	1.90
IMI		4 500	550	180	138	-40	_	1.90
	IMI/V	_	500	180	130	-37.5	2 × 10 ⁻⁹	1.90
IS		7 500	1 400	390	140	-32	_	1.90
	IS/V	_	1 400	390	140	-30	1 × 10 ⁻¹¹	1.90

Barrierta grease

Product	Base oil	Kinematic viscosity mm²/s (40°C)	Thickener	Consistency NLGI No.	Vapor pressure (Knudsen number) (20°C)	Oil separation rate mass% (204°C, 24h)	Amount of evaporation mass% (204°C, 22h)	Density g/cm³ (25°C)	Additive
ISL/OX	0	25		2	_	_	_	1.95	Anti-rust agent
IEL	IEL	95	DTEE	2	4 × 10 ⁻⁵	_	_	1.95	Anti-rust agent
IMI	IMI	180	PTFE	2	7 × 10 ⁻⁶	_	_	1.95	Anti-rust agent
IS	IS	390		2	3 × 10 ⁻⁷	_	_	1.95	Anti-rust agent
L25/DL	IEL	95	DTEE	2	_	_	_	1.95	Anti-rust agent
L55/2	IS	390	PTFE	2	3 × 10 ⁻⁷	_	_	1.95	Anti-rust agent
IEL/V	IEL/V	65		2	9 × 10 ⁻⁷	7.0	0.2	1.95	Anti-rust agent
IMI/V	IMI/V	180	PTFE	2	2 × 10 ⁻⁸	7.0	0.2	1.95	Anti-rust agent
IS/V	IS/V	390		2	1 × 10 ⁻¹¹	7.0	0.1	1.95	None

Vapor pressure of Barrierta oil


Demnum oil (Daikin)

Product	Average molecular weight	К	inematic viscosi mm²/s	ity	Viscosity index	Pour point	Density g/cm³
	molecular weight	20°C	40°C	60°C		°C	(20°C)
S-20	2 700	53	25	14	150	- 75	1.86
S-65	4 500	150	65	33	180	-65	1.86
S-100	5 600	250	100	50	200	-60	1.88
S-200	8 400	500	200	95	210	-53	1.89

Demnum grease

Product	Base oil	Kinematic viscosity mm²/s (40°C)	Thickener	Consistency NLGI No.	Oil separation rate mass % (200°C, 30h)	Amount of evaporation mass % (200°C, 22h)	Additive
L65	S-65	65	PTFE	2	<12	<1	None
L100	S-100	100	PTFE	2	<11	<1	None
L200	S-200	200	PTFE	2	<10	<0.1	None

Vapor pressure of Demnum oil

9. Conversion from International System of Units (SI)

• Conversion Table of SI, CGS, and engineering system of units

Sy	Quantity ystem of units	Length	Mass	Time	Temperature	Acceleration	Force	Stress	Pressure	Energy	Power
	SI	m	kg	S	K, ℃	m/s²	N	Pa	Pa	J	W
	CGS	cm	g	S	°C	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s
	Engineering	m	kgf·s²/m	s	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf∙m	kgf·m/s

Conversion rate from SI units

Conversion example: 1N = 1/9.80665 kgf

	SI unit		Units other than SI		
Quantity	Name of unit	Symbol	Name of unit	Symbol	Conversion rate from SI unit
			Degree	۰	180/π
Angle	Radian	rad	Minute	,	10 800/π
			Second	"	648 000/π
			Micron	μ	106
Length	Meter	m	Angstrom	Α	1010
Araa	Cause motor	m²	Are	а	10 ⁻²
Area	Square meter	1115	Hectare	ha	10⁻⁴
Values	Cubic mateu	3	Liter	I, L	10³
Volume	Cubic meter	m³	Deciliter	dl, dL	10⁴
			Minute	min	1/60
Time	Second	S	Hour	h	1/3 600
			Day	d	1/86 400
Number of vibrations, Frequency	Hertz	Hz	Cycle	S ⁻¹	1
Number of revolutions	Revolution per second	S ⁻¹	Revolutions per minute	rpm	60
Crand	Matarinaria	/a	Kilometer per hour	km/h	3 600/1 000
Speed	Meter per second	m/s	Knot	kn	3 600/1 852
Acceleration	Matau nau anand?	m/s²	Gal	Gal	10²
Acceleration	Meter per second ²	111/5	G	G	1/9.80665
Mass	Kilogram	kg	Ton	t	10 ⁻³
			Kilogram force	kgf	1/9.80665
Force	Newton	N	Kilogram-ton	tf	1/(9.80665×10³)
			Dyne	dyn	10³
Torque and moment of force	Newton-meter	N·m	Kilogram-force-meter	kgf⋅m	1/9.80665
Strongth	Pascal	Pa	Kilogram per square centimeter	kgf/cm²	1/(9.80665×10 ⁴)
Strength	(Newton per square meter)	(N/m²)	Kilogram per square millimeter	kgf/mm²	1/(9.80665×10°)

Prefixes of SI units

Exponential	Pre	efix	Exponential	Pre	efix
notation	Name Symbol		notation	Name	Symbol
1018	Exa	E	10-1	Deci	d
1015	Peta	Р	10-2	Centi	С
1012	Tera	Т	10-3	Milli	m
10 ⁹	Giga	G	10⁻⁵	Micro	μ
106	Mega	М	10 ⁻⁹	Nano	n
10³	Kilo	k	10-12	Pico	р
10 ²	Hecto	h	10-15	Femto	f
10¹	Deca	da	10-18	Atto	а

Conversion rate from SI units (continued)

0	SI unit		Units other than SI		Conversion rate from Clumit	
Quantity	Name of unit	Symbol	Name of unit	Symbol	Conversion rate from SI unit	
			Kilogram-force per square meter	kgf/m²	1/9.80665	
			Meter water column	mH_2O	1/(9.80665 × 10 ³)	
Pressure	Pascal	Pa	Millimeter mercury	mmHg	760/(1.01325 × 10 ⁵)	
	(Newton per square meter)	(N/m²)	Torr	Torr	760/(1.01325 × 10 ⁵)	
			Bar	bar	10⁻⁵	
			Atmospheric pressure	atm	1/(1.01325 × 10⁵)	
			Erg	erg	10 ⁷	
			Calorie (international)	cal _{IT}	1/4.1868	
Energy	Joule (Newton-meter)	J (N·m)	Kilogram-force-meter	kgf⋅m	1/9.80665	
	(Nowton motor)	(14111)	kilowatt-hour	kW∙h	1/(3.6 × 10°)	
			Metric horsepower-hour	PS⋅h	= 3.77672 × 10 ⁻⁷	
			Kilogram-force per meter per second	kgf/m/s	1/9.80665	
Power	Watt (Joule per second)	(J/s)	Kilocalorie per second	kcal/h	1/1.163	
	(oddio per deceria)	(0/0)	Metric horsepower	PS	= 1/735.4988	
Viscosity, Viscosity index	Pascal-second	Pa⋅s	Poise	Р	10	
Kinematic viscosity	Square meter per second	m²/s	Stokes	St	10⁴	
,	Square motor per second	11175	Centi-Stokes	cSt	10 ⁶	
Temperature, Temperature difference	Kelvin, Celsius	K, ℃	Degree	°C	(See Note) (¹)	
Electric current, Magnetomotive force	Ampere	Α	Ampere	А	1	
Electrical voltage, Electromotive force	Volt	V	(Watt per ampere)	(W/A)	1	
Magnetic field strength	Ampere per meter	A/m	Oersted	Oe	4π/10³	
Magnetic floor density	Toolo		Gauss	Gs	10 ⁴	
Magnetic flux density	Tesla	Т	Gamma	γ	10°	
Electric resistance	Ohm	Ω	(Volt per ampere)	(V/A)	1	

Note (1) To convert TK to θ C, $\theta = T$ -273.15. In the case of temperature difference, $\Delta T = \Delta \theta$, with ΔT and $\Delta \theta$ indicating temperature differences measured in degrees Kelvin and Celsius, respectively.

Remarks Definitions of units and symbols are in parentheses.

SPACEA

10. N-kgf Conversion Table

Example: To convert 10N to kgf, go to 10 in the central column of the first block, then locate the corresponding figure in the kgf column on the right. You will see that 10N = 1.0197 kgf. To convert 10 kgf to N, find the number in the N column on the left that corresponds to 10, and you will see that 10 kgf = 98.066N.

1N = 0.1019716 kgf 1 kgf = 9.80665N

58.840 6 0.6118 382.46 39 3.9769 706.08 72 7.3420 68.647 7 0.7138 392.27 40 4.0789 715.89 73 7.4439 78.453 8 0.8158 402.07 41 4.1808 725.69 74 7.5459 88.260 9 0.9177 411.88 42 4.2828 735.50 75 7.6479 98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 156.91										
19.613 2 0.2039 343.23 35 3.5690 666.85 68 6.9341 29.420 3 0.3059 353.04 36 3.6710 676.66 69 7.0360 39.227 4 0.4079 362.85 37 3.7729 686.47 70 7.1380 49.033 5 0.5099 372.65 38 3.8749 696.27 71 7.2400 58.840 6 0.6118 382.46 39 3.9769 706.08 72 7.3420 68.647 7 0.7138 392.27 40 4.0789 715.89 73 7.4439 78.453 8 0.8158 402.07 41 4.1808 725.69 74 7.5459 88.260 9 0.9177 411.88 42 4.2828 735.50 75 7.6479 98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87	N		kgf	N		kgf		N		kgf
29.420 3 0.3059 353.04 36 3.6710 676.66 69 7.0360 39.227 4 0.4079 362.85 37 3.7729 686.47 70 7.1380 49.033 5 0.5099 372.65 38 3.8749 696.27 71 7.2400 58.840 6 0.6118 382.46 39 3.9769 706.08 72 7.3420 68.647 7 0.7138 392.27 40 4.0789 715.89 73 7.4439 78.453 8 0.8158 402.07 41 4.1808 725.69 74 7.5459 88.260 9 0.9177 411.88 42 4.2828 735.50 75 7.6479 98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 127.49 <td< td=""><td>9.8066</td><td>1</td><td>0.1020</td><td>333.43</td><td>34</td><td>3.4670</td><td>-</td><td>657.05</td><td>67</td><td>6.8321</td></td<>	9.8066	1	0.1020	333.43	34	3.4670	-	657.05	67	6.8321
39.227 4 0.4079 362.85 37 3.7729 686.47 70 7.1380 49.033 5 0.5099 372.65 38 3.8749 696.27 71 7.2400 58.840 6 0.6118 382.46 39 3.9769 706.08 72 7.3420 68.647 7 0.7138 392.27 40 4.0789 715.89 73 7.4439 78.453 8 0.8158 402.07 41 4.1808 725.69 74 7.5459 88.260 9 0.9177 411.88 42 4.2828 735.50 75 7.6479 98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 <t< td=""><td>19.613</td><td>2</td><td>0.2039</td><td>343.23</td><td>35</td><td>3.5690</td><td></td><td>666.85</td><td>68</td><td>6.9341</td></t<>	19.613	2	0.2039	343.23	35	3.5690		666.85	68	6.9341
49.033 5 0.5099 372.65 38 3.8749 696.27 71 7.2400 58.840 6 0.6118 382.46 39 3.9769 706.08 72 7.3420 68.647 7 0.7138 392.27 40 4.0789 715.89 73 7.4439 78.453 8 0.8158 402.07 41 4.1808 725.69 74 7.5459 88.260 9 0.9177 411.88 42 4.2828 735.50 75 7.6479 98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 <	29.420	3	0.3059	353.04	36	3.6710		676.66	69	7.0360
58.840 6 0.6118 382.46 39 3.9769 706.08 72 7.3420 68.647 7 0.7138 392.27 40 4.0789 715.89 73 7.4439 78.453 8 0.8158 402.07 41 4.1808 725.69 74 7.5459 88.260 9 0.9177 411.88 42 4.2828 735.50 75 7.6479 98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 147.10	39.227	4	0.4079	362.85	37	3.7729		686.47	70	7.1380
68.647 7 0.7138 392.27 40 4.0789 715.89 73 7.4439 78.453 8 0.8158 402.07 41 4.1808 725.69 74 7.5459 88.260 9 0.9177 411.88 42 4.2828 735.50 75 7.6479 98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 147.10 15 1.5296 470.72 48 4.8946 794.34 81 8.2597 156.91	49.033	5	0.5099	372.65	38	3.8749		696.27	71	7.2400
78.453 8 0.8158 402.07 41 4.1808 725.69 74 7.5459 88.260 9 0.9177 411.88 42 4.2828 735.50 75 7.6479 98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 147.10 15 1.5296 470.72 48 4.8946 794.34 81 8.2597 156.91 16 1.6315 480.53 49 4.9966 804.15 82 8.3617 166.71	58.840	6	0.6118	382.46	39	3.9769		706.08	72	7.3420
88.260 9 0.9177 411.88 42 4.2828 735.50 75 7.6479 98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 147.10 15 1.5296 470.72 48 4.8946 794.34 81 8.2597 156.91 16 1.6315 480.53 49 4.9966 804.15 82 8.3617 166.71 17 1.7335 490.33 50 5.0986 813.95 83 8.4636 176.52	68.647	7	0.7138	392.27	40	4.0789		715.89	73	7.4439
98.066 10 1.0197 421.69 43 4.3848 745.31 76 7.7498 107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 147.10 15 1.5296 470.72 48 4.8946 794.34 81 8.2597 156.91 16 1.6315 480.53 49 4.9966 804.15 82 8.3617 166.71 17 1.7335 490.33 50 5.0986 813.95 83 8.4636 176.52 18 1.8355 500.14 51 5.2006 823.76 84 8.5656 186.33	78.453	8	0.8158	402.07	41	4.1808		725.69	74	7.5459
107.87 11 1.1217 431.49 44 4.4868 755.11 77 7.8518 117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 147.10 15 1.5296 470.72 48 4.8946 794.34 81 8.2597 156.91 16 1.6315 480.53 49 4.9966 804.15 82 8.3617 166.71 17 1.7335 490.33 50 5.0986 813.95 83 8.4636 176.52 18 1.8355 500.14 51 5.2006 823.76 84 8.5656 186.33 19 1.9375 509.95 52 5.3025 833.57 85 8.6676 196.13	88.260	9	0.9177	411.88	42	4.2828		735.50	75	7.6479
117.68 12 1.1237 441.30 45 4.5887 764.92 78 7.9538 127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 147.10 15 1.5296 470.72 48 4.8946 794.34 81 8.2597 156.91 16 1.6315 480.53 49 4.9966 804.15 82 8.3617 166.71 17 1.7335 490.33 50 5.0986 813.95 83 8.4636 176.52 18 1.8355 500.14 51 5.2006 823.76 84 8.5656 186.33 19 1.9375 509.95 52 5.3025 833.57 85 8.6676 196.13 20 2.0394 519.75 53 5.4045 834.37 86 8.7696 205.94	98.066	10	1.0197	421.69	43	4.3848		745.31	76	7.7498
127.49 13 1.3256 451.11 46 4.6907 774.73 79 8.0558 137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 147.10 15 1.5296 470.72 48 4.8946 794.34 81 8.2597 156.91 16 1.6315 480.53 49 4.9966 804.15 82 8.3617 166.71 17 1.7335 490.33 50 5.0986 813.95 83 8.4636 176.52 18 1.8355 500.14 51 5.2006 823.76 84 8.5656 186.33 19 1.9375 509.95 52 5.3025 833.57 85 8.6676 196.13 20 2.0394 519.75 53 5.4045 834.37 86 8.7696 205.94 21 2.1414 529.56 54 5.5065 853.18 87 8.8715 215.75	107.87	11	1.1217	431.49	44	4.4868		755.11	77	7.8518
137.29 14 1.4276 460.91 47 4.7927 784.53 80 8.1577 147.10 15 1.5296 470.72 48 4.8946 794.34 81 8.2597 156.91 16 1.6315 480.53 49 4.9966 804.15 82 8.3617 166.71 17 1.7335 490.33 50 5.0986 813.95 83 8.4636 176.52 18 1.8355 500.14 51 5.2006 823.76 84 8.5656 186.33 19 1.9375 509.95 52 5.3025 833.57 85 8.6676 196.13 20 2.0394 519.75 53 5.4045 834.37 86 8.7696 205.94 21 2.1414 529.56 54 5.5065 853.18 87 8.8715 215.75 22 2.2434 539.37 55 5.6084 862.99 88 8.9735 225.55	117.68	12	1.1237	441.30	45	4.5887		764.92	78	7.9538
147.10 15 1.5296 470.72 48 4.8946 794.34 81 8.2597 156.91 16 1.6315 480.53 49 4.9966 804.15 82 8.3617 166.71 17 1.7335 490.33 50 5.0986 813.95 83 8.4636 176.52 18 1.8355 500.14 51 5.2006 823.76 84 8.5656 186.33 19 1.9375 509.95 52 5.3025 833.57 85 8.6676 196.13 20 2.0394 519.75 53 5.4045 834.37 86 8.7696 205.94 21 2.1414 529.56 54 5.5065 853.18 87 8.8715 215.75 22 2.2434 539.37 55 5.6084 862.99 88 8.9735 225.55 23 2.3453 549.17 56 5.7104 872.79 89 8.0755 235.36	127.49	13	1.3256	451.11	46	4.6907		774.73	79	8.0558
156.91 16 1.6315 480.53 49 4.9966 804.15 82 8.3617 166.71 17 1.7335 490.33 50 5.0986 813.95 83 8.4636 176.52 18 1.8355 500.14 51 5.2006 823.76 84 8.5656 186.33 19 1.9375 509.95 52 5.3025 833.57 85 8.6676 196.13 20 2.0394 519.75 53 5.4045 834.37 86 8.7696 205.94 21 2.1414 529.56 54 5.5065 853.18 87 8.8715 215.75 22 2.2434 539.37 55 5.6084 862.99 88 8.9735 225.55 23 2.3453 549.17 56 5.7104 872.79 89 8.0755 235.36 24 2.4473 558.98 57 5.8124 882.60 90 9.1774	137.29	14	1.4276	460.91	47	4.7927		784.53	80	8.1577
166.71 17 1.7335 490.33 50 5.0986 813.95 83 8.4636 176.52 18 1.8355 500.14 51 5.2006 823.76 84 8.5656 186.33 19 1.9375 509.95 52 5.3025 833.57 85 8.6676 196.13 20 2.0394 519.75 53 5.4045 834.37 86 8.7696 205.94 21 2.1414 529.56 54 5.5065 853.18 87 8.8715 215.75 22 2.2434 539.37 55 5.6084 862.99 88 8.9735 225.55 23 2.3453 549.17 56 5.7104 872.79 89 8.0755 235.36 24 2.4473 558.98 57 5.8124 882.60 90 9.1774	147.10	15	1.5296	470.72	48	4.8946		794.34	81	8.2597
176.52 18 1.8355 500.14 51 5.2006 823.76 84 8.5656 186.33 19 1.9375 509.95 52 5.3025 833.57 85 8.6676 196.13 20 2.0394 519.75 53 5.4045 834.37 86 8.7696 205.94 21 2.1414 529.56 54 5.5065 853.18 87 8.8715 215.75 22 2.2434 539.37 55 5.6084 862.99 88 8.9735 225.55 23 2.3453 549.17 56 5.7104 872.79 89 8.0755 235.36 24 2.4473 558.98 57 5.8124 882.60 90 9.1774	156.91	16	1.6315	480.53	49	4.9966		804.15	82	8.3617
186.33 19 1.9375 509.95 52 5.3025 833.57 85 8.6676 196.13 20 2.0394 519.75 53 5.4045 834.37 86 8.7696 205.94 21 2.1414 529.56 54 5.5065 853.18 87 8.8715 215.75 22 2.2434 539.37 55 5.6084 862.99 88 8.9735 225.55 23 2.3453 549.17 56 5.7104 872.79 89 8.0755 235.36 24 2.4473 558.98 57 5.8124 882.60 90 9.1774	166.71	17	1.7335	490.33	50	5.0986		813.95	83	8.4636
196.13 20 2.0394 519.75 53 5.4045 834.37 86 8.7696 205.94 21 2.1414 529.56 54 5.5065 853.18 87 8.8715 215.75 22 2.2434 539.37 55 5.6084 862.99 88 8.9735 225.55 23 2.3453 549.17 56 5.7104 872.79 89 8.0755 235.36 24 2.4473 558.98 57 5.8124 882.60 90 9.1774	176.52	18	1.8355	500.14	51	5.2006		823.76	84	8.5656
205.94 21 2.1414 529.56 54 5.5065 853.18 87 8.8715 215.75 22 2.2434 539.37 55 5.6084 862.99 88 8.9735 225.55 23 2.3453 549.17 56 5.7104 872.79 89 8.0755 235.36 24 2.4473 558.98 57 5.8124 882.60 90 9.1774	186.33	19	1.9375	509.95	52	5.3025		833.57	85	8.6676
215.75 22 2.2434 539.37 55 5.6084 862.99 88 8.9735 225.55 23 2.3453 549.17 56 5.7104 872.79 89 8.0755 235.36 24 2.4473 558.98 57 5.8124 882.60 90 9.1774	196.13	20	2.0394	519.75	53	5.4045		834.37	86	8.7696
225.55 23 2.3453 549.17 56 5.7104 872.79 89 8.0755 235.36 24 2.4473 558.98 57 5.8124 882.60 90 9.1774	205.94	21	2.1414	529.56	54	5.5065		853.18	87	8.8715
235.36 24 2.4473 558.98 57 5.8124 882.60 90 9.1774	215.75	22	2.2434	539.37	55	5.6084		862.99	88	8.9735
	225.55	23	2.3453	549.17	56	5.7104		872.79	89	8.0755
245.17 25 2.5493 568.79 58 5.9144 892.41 91 9.2794	235.36	24	2.4473	558.98	57	5.8124		882.60	90	9.1774
	245.17	25	2.5493	568.79	58	5.9144		892.41	91	9.2794
254.97 26 2.6513 578.59 59 6.0163 902.21 92 9.3814	254.97	26	2.6513	578.59	59	6.0163		902.21	92	9.3814
264.78 27 2.7532 588.40 60 6.1183 912.02 93 9.4834	264.78	27	2.7532	588.40	60	6.1183		912.02	93	9.4834
274.59 28 2.8552 598.21 61 6.2203 921.83 94 9.5853	274.59	28	2.8552	598.21	61	6.2203		921.83	94	9.5853
284.39 29 2.9572 608.01 62 6.3222 931.63 95 9.6873	284.39	29	2.9572	608.01	62	6.3222		931.63	95	9.6873
294.20 30 3.0591 617.82 63 6.4242 941.44 96 9.7893	294.20	30	3.0591	617.82	63	6.4242		941.44	96	9.7893
304.01 31 3.1611 627.63 64 6.5262 951.25 97 9.8912	304.01	31	3.1611	627.63	64	6.5262		951.25	97	9.8912
313.81 32 3.2631 637.43 65 6.6282 961.05 98 9.9932	313.81	32	3.2631	637.43	65	6.6282		961.05	98	9.9932
323.62 33 3.3651 647.24 66 6.7301 970.86 99 10.095	323.62	33	3.3651	647.24	66	6.7301	_	970.86	99	10.095

11. kg-lb Conversion Table

Example: To convert 10 kg to lbs., go to 10 in the central column of the first block and find the corresponding number in the lb column on the right. You will see that 10 kg = 22.046 lb. To convert 10 lb. to kg, find the number in the kg column on the left corresponding to 10, and you will see that 10 lb. = 4.536 kg

1 kg = 2.2046226 lb 1 lb = 0.45359237 kg

kg		lb		kg		lb		kg		lb
0.454	1	2.205		15.422	34	74.957	-	30.391	67	147.71
0.907	2	24.409		15.876	35	77.162		30.844	68	149.91
1.361	3	6.614		16.329	36	79.366		31.298	69	152.12
1.811	4	8.818		16.783	37	81.571		31.751	70	154.32
2.268	5	11.023		17.237	38	83.776		32.205	71	156.53
2.722	6	13.228		17.690	39	85.980		32.659	72	158.73
3.175	7	15.432		18.144	40	88.185		33.112	73	160.94
3.629	8	17.637		18.597	41	90.390		33.566	74	163.14
4.082	9	19.842		19.051	42	92.594		34.019	75	165.36
4.536	10	22.046		19.504	43	94.799		34.473	76	167.55
4.990	11	24.251		19.958	44	97.003		34.927	77	169.76
5.443	12	26.455		20.412	45	99.208		35.380	78	171.96
5.897	13	28.660		20.865	46	101.41		35.834	79	174.17
6.350	14	30.865		21.319	47	103.62		36.287	80	176.37
6.804	15	33.069		21.772	48	105.82		36.741	81	178.57
7.257	16	35.274		22.226	49	108.03		37.195	82	180.78
7.711	17	37.479		22.680	50	110.23		37.648	83	182.98
8.165	18	39.683		23.133	51	112.44		38.102	84	185.19
8.618	19	41.888		23.587	52	114.64		38.555	85	187.39
9.072	20	44.092		24.040	53	116.84		39.009	86	189.60
9.525	21	46.297		24.494	54	119.05		39.463	87	191.80
9.979	22	48.502		24.948	55	121.25		39.916	88	194.01
10.433	23	50.706		25.401	56	123.46		40.370	89	196.21
10.886	24	52.911		25.855	57	125.66		40.823	90	198.42
11.340	25	55.116		26.308	58	127.87		41.277	91	200.62
11.793	26	57.320		26.762	59	130.07		41.730	92	202.83
12.247	27	59.525		27.216	60	132.28		42.184	93	205.03
12.701	28	61.729		27.669	61	134.48		42.638	94	207.23
13.154	29	63.934		28.123	62	136.69		43.091	95	209.44
13.608	30	66.139		28.576	63	138.89		43.545	96	211.64
14.061	31	68.343		29.03	64	141.10		43.998	97	213.85
14.515	32	70.548		29.484	65	143.30		44.452	98	216.05
14.969	33	72.753	_	29.937	66	145.51	_	44.906	99	218.26

12. Inch-mm Conversion Table

1" = 25.4 mm

Inches	0	1	2	3	4	5	6	7	8	9	= 25.4 mi
on Decimal number	U	1	2	3	4	mm	0	1	O	9	10
	0.000	05.400	E0 000	70,000	101 000	1	150 400	177 000	000.000	000.000	054.000
0.000000 4 0.015625	0.000 0.397	25.400 25.797	50.800 51.197	76.200 76.597	101.600 101.997	127.000 127.397	1 52.400 152.797	177.800 178.197	203.200 203.597	228.600 228.997	254.00 0 254.397
2 0.031250	0.397	26.194	51.197	76.994	101.997	127.397	153.094	178.594	203.597	220.997	254.397
1 0.046875	1.191	26.591	51.991	77.391	102.394	128.191	153.591	178.991	203.994	229.791	255.191
6 0.062500	1.588	26.988	52.388	77.788	103.183	128.588	153.988	179.388	204.788	230.188	255.588
4 0.078125	1.984	27.384	52.784	78.184	103.584	128.984	154.384	179.784	205.184	230.584	255.984
2 0.093750	2.381	27.781	53.181	78.581	103.981	129.381	154.781	180.181	205.581	230.981	256.38
4 0.109375	2.778	28.178	53.578	78.978	104.378	129.778	155.178	180.578	205.978	231.378	256.778
0.125000	3.175	28.575	53.975	79.376	104.775	130.175	155.575	180.975	206.375	231.776	257.17
1 0.140625	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772	232.172	257.57
2 0.156250	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169	232.569	257.96
64 0.171875	4.366	29.766	55.168	80.566	105.966	131.366	156.766	182.166	207.566	232.966	258.36
0.187500	4.762	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962	233.362	258.76
64 0.203125	5.159	30.559	55.959	81.359	106.759	132.159	157.559	182.959	208.359	233.459	259.15
2 0.218750	5.556	30.956	56.356	81.756	107.156	132.556	157.956	183.356	208.756	234.156	259.55
64 0.234375	5.953	31.353	56.753	82.153	107.553	132.953	158.353	183.753	209.153	234.553	259.95
0.250000	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550	234.950	260.35
64 0.265625	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947	235.347	260.74
2 0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344	235.744	261.14
0.296875	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741	236.141	261.54
0.312500 64 0.328125	7.938	33.338	58.738 59.134	84.138	109.538	134.938	160.338	185.738	211.138	236.538	261.93
32 0.343750	8.334 8.731	33.734 34.131	59.134 59.531	84.534 84.931	109.934 110.331	135.334 135.731	160.734 161.131	186.134 186.531	211.534 211.931	236.934 237.331	262.33 262.73
64 0.359375	9.128	34.528	59.928	85.328	110.331	136.128	161.131	186.928	211.931	237.331	263.12
0.375000	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725	238.125	263.52
64 0.390625	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122	238.522	263.92
32 0.406250	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519	238.919	264.31
64 0.421875	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916	239.316	264.71
0.437500	11.112	36.512	61.912	87.312	112.712	138.112	163.512	188.912	214.312	239.712	265.11
64 0.453125	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709	240.109	265.50
32 0.468750	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106	240.506	265.90
64 0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503	240.903	266.30
0.500000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900	241.300	266.70
64 0.515625	13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297	241.697	267.09
32 0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694	242.094	267.49
64 0.546875	13.891	39.291	64.691	90.091	115.491	140.891	166.291	191.691	217.091	242.491	267.89
0.562500	14.288	39.688	65.088	90.488	115.888	141.288	166.688	192.088	217.488	242.888	268.28
64 0.578125	14.684	40.084	65.484	90.884	116.284	141.684	167.084	192.484	217.884	243.284	268.68
32 0.593750	15.081	40.481	65.881	91.281	116.681	142.081	167.481	192.881	218.281	243.681	269.08
0.625000	15.478 15.875	40.878	66.278 66.675	91.678 92.075	117.078 117.475	142.478 142.875	167.878 168.275	193.278 193.675	218.678 219.076	244.078 244.475	269.47 269.87
0.625000	16.272	41.672	67.072	92.075	117.475	143.272	168.672	193.075	219.076	244.475	270.27
32 0.656250	16.669	42.069	67.469	92.869	118.269	143.669	169.069	194.469	219.472	245.269	270.27
64 0.671875	17.066	42.466	67.866	93.266	118.666	144.066	169.466	194.866	220.266	245.666	271.06
16 0.687500	17.482	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662	246.162	271.46
64 0.703125	17.859	43.259	68.659	94.059	119.459	144.859	170.259	195.659	221.059	246.459	271.85
32 0.718750	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456	246.856	372.25
64 0.734375	18.653	44.053	69.453	94.853	120.253	145.653	171.053	196.453	221.853	247.253	272.65
0.750000	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250	247.650	273.05
64 0.765625	19.447	44.847	70.247	95.647	121.047	146.447	171.847	197.247	222.647	248.047	273.44
32 0.781250	19.844	45.244	70.644	96.044	121.444	146.844	172.244	197.644	223.044	248.444	273.84
64 0.796875	20.241	45.641	71.014	96.441	121.641	147.241	172.641	198.041	223.441	248.841	274.24
16 0.812500	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838	249.238	274.63
64 0.828125	24.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234	249.634	275.03
32 0.843750	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631	250.031	275.43
0.859375	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028	250.428	275.82
0.875000	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425	250.825	276.22
0.890625	22.622	48.022	73.422	98.822	124.222	149.622	175.022	200.022	225.822	251.222	276.62
32 0.906250	23.019	48.419	73.819	99.219	124.619	150.019	175.419	200.819	226.219	251.619	277.01
64 0.921875	23.416	48.816	74.216	99.616	125.016	150.416	175.816	201.216	226.616	252.016	277.41
16 0.937500	23.812 24.209	49.212	74.612	100.012 100.409	125.412	150.812	176.212	201.612	227.012	252.412	277.81
64 0.953125 82 0.968750		49.609 50.006	75.009 75.406		125.809	151.209	176.609	202.009	227.409	252.809	278.20 278.60
											279.00
32 0.968750 64 0.984375	24.606 25.003	50.006 50.403	75.406 75.803	100.806 101.203	126.206 126.603	151.606 152.003	177.006 177.403	202.406 202.803	227.806 228.203	253.206 253.603	

1" = 25.4 mm

	Inches	11	12	13	14	15	16	17	18	19	20
Fraction	Decimal number					mm					
0	0.0000	279.400	304.800	330.200	355.600	381.000	406.400	431.800	457.200	482.600	508.000
1/16	0.0625	280.988	306.388	331.788	357.188	382.588	407.988	433.388	458.788	484.188	509.588
1/8	0.1250	282.575	307.975	333.375	358.775	384.175	409.575	434.975	460.375	485.775	511.175
3/16	0.1875	284.162	309.562	334.962	360.362	385.762	411.162	436.562	461.962	487.362	512.762
1/4	0.2500	285.750	311.150	336.550	361.950	387.350	412.750	438.150	463.550	488.950	514.350
5/16	0.3125	287.338	312.738	338.138	363.538	388.938	414.338	439.738	465.138	490.538	515.938
3/8	0.3750	288.925	314.325	339.725	365.125	390.525	415.925	441.325	466.725	492.125	517.525
7/16	0.4375	290.512	315.912	341.312	366.712	392.112	417.512	442.912	468.312	493.712	519.112
1/2	0.5000	292.100	317.500	342.900	368.300	393.700	419.100	444.500	469.900	495.300	520.700
9/16	0.5625	293.688	319.088	344.488	369.888	395.288	420.688	446.088	471.488	496.888	522.288
5/8	0.6250	295.275	320.675	346.075	371.475	396.875	422.275	447.675	473.075	498.475	523.875
11/16	0.6875	296.864	322.262	347.662	373.062	398.462	423.862	449.262	474.662	500.062	525.462
3/4	0.7500	298.450	323.850	349.250	374.650	400.050	425.450	450.850	476.250	501.650	527.050
13/16	0.8125	300.038	325.438	350.838	376.238	401.638	427.038	452.438	477.838	503.238	528.638
7/8	0.8750	301.625	327.025	352.425	377.825	403.225	428.625	454.025	479.425	504.825	530.225
15/16	0.9375	303.212	328.612	354.012	379.412	404.812	430.212	455.612	481.012	506.412	531.812

1" = 25.4 mm

Ir	nches	21	22	23	24	25	26	27	28	29	30
Fraction I	Decimal number					mm					
0	0.0000	533.400	558.800	584.200	609.600	635.000	660.400	685.800	711.200	736.600	762.000
1/16	0.0625	534.988	560.388	585.788	611.188	636.588	661.988	687.388	712.788	738.188	763.588
1/8	0.1250	536.575	561.975	587.375	612.775	638.175	663.575	688.975	714.375	739.775	765.175
3/16	0.1875	538.162	563.562	588.962	614.362	639.762	665.162	690.562	715.962	741.362	766.762
1/4	0.2500	539.750	565.150	590.550	615.950	641.350	666.750	692.150	717.550	742.950	768.350
5/16	0.3125	541.338	566.738	592.138	617.538	642.938	668.338	693.738	719.138	744.538	769.938
3/8	0.3750	542.925	568.325	593.725	619.125	644.525	669.925	695.325	720.725	746.125	771.525
7/16	0.4375	544.512	569.912	595.312	620.712	646.112	671.512	696.912	722.312	747.712	773.112
1/2	0.5000	546.100	571.500	596.900	622.300	647.700	673.100	698.500	723.900	749.300	774.700
9/16	0.5625	547.688	573.088	598.488	623.488	649.288	674.688	700.088	725.488	750.888	776.288
5/8	0.6250	549.275	574.675	600.075	625.475	650.875	676.275	701.675	727.075	752.475	777.875
11/16	0.6875	550.862	576.262	601.662	627.062	652.462	677.862	703.262	728.662	754.062	779.462
3/4	0.7500	552.450	577.850	603.250	628.650	654.050	679.450	704.850	730.250	755.650	781.050
13/16	0.8125	554.038	579.438	604.838	630.238	655.638	681.038	706.438	731.838	757.238	782.638
7/8	0.8750	555.625	581.025	606.425	631.825	657.225	682.625	708.025	733.425	758.825	784.225
15/16	0.9375	557.212	582.612	608.012	633.412	658.812	684.212	709.612	735.012	760.412	785.812

1" = 25.4 mm

1	Inches	31	32	33	34	35	36	37	38	39	40
Fraction	Decimal number					mm					
0	0.0000	787.400	812.800	838.200	863.600	889.000	914.400	939.800	965.200	990.600	1016.000
1/16	0.0625	788.988	814.388	839.788	865.188	890.588	915.988	941.388	966.788	992.188	1017.588
1/8	0.1250	790.575	815.975	841.375	866.775	892.175	917.575	942.975	968.375	993.775	1019.175
3/16	0.1875	792.162	817.562	842.962	868.362	893.762	919.162	944.562	969.962	995.362	1020.762
1/4	0.2500	793.750	819.150	844.550	869.950	895.350	920.750	946.150	971.550	996.950	1022.350
5/16	0.3125	795.338	820.738	846.138	871.538	896.938	922.338	947.738	973.138	998.538	1023.938
3/8	0.3750	796.925	822.325	847.725	873.125	898.525	923.925	949.325	974.725	1000.125	1025.525
7/16	0.4375	798.512	823.912	849.312	874.712	900.112	925.512	950.912	976.312	1001.712	1027.112
1/2	0.5000	800.100	825.500	850.900	876.300	901.700	927.100	952.100	977.900	1003.300	1028.700
9/16	0.5625	801.688	827.088	852.488	877.888	903.288	928.688	954.088	979.488	1004.888	1030.288
5/8	0.6250	803.275	828.675	854.075	879.475	904.875	930.275	955.675	981.075	1006.475	1031.875
11/16	0.6875	804.862	830.262	855.662	881.062	906.462	931.862	957.262	982.662	1008.062	1033.462
3/4	0.7500	806.450	831.850	857.250	882.650	908.050	933.450	958.850	984.250	1009.650	1035.050
13/16	0.8125	808.038	833.438	858.838	884.238	909.638	935.038	960.438	985.838	1011.238	1036.638
7/8	0.8750	809.625	835.025	860.425	885.825	911.225	936.625	962.025	987.425	1012.825	1038.225
15/16	0.9375	811.212	836.612	862.012	887.412	912.812	938.212	963.621	989.012	1014.412	1039.812

116 **NSK**

Redwood

1 second

Engler

viscosity

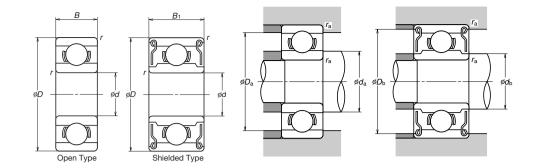
Saybolt

universal second

Kinematic

Kinematic viscosity	universa	/bolt al second econds)	1 se	wood cond conds)	Engler viscosity E
mm²/s	100°F	210°F	50°C	100°C	(degrees)
35	163	164	144	147	4.70
36	168	170	148	151	4.83
37	172	173	153	155	4.96
38	177	178	156	159	5.08
39	181	183	160	164	5.21
40	186	187	164	168	5.34
41	190	192	168	172	5.47
42	195	196	172	176	5.59
43	199	201	176	180	5.72
44	204	205	180	185	5.85
45	208	210	184	189	5.98
46	213	215	188	193	6.11
47	218	219	193	197	6.24
48	222	224	197	202	6.37
49	227	228	201	206	6.50
50	231	233	205	210	6.63
55	254	256	225	231	7.24
60	277	279	245	252	7.90
65	300	302	266	273	8.55
70	323	326	286	294	9.21
75	346	349	306	315	9.89
80	371	373	326	336	10.5
85	394	397	347	357	11.2
90	417	420	367	378	11.8
95	440	443	387	399	12.5
100	464	467	408	420	13.2
120	556	560	490	504	15.8
140	649	653	571	588	18.4
160	742	747	653	672	21.1
180	834	840	734	757	23.7
200	927	933	816	841	26.3
250	1 159	1 167	1 020	1 051	32.9
300	1 391	1 400	1 224	1 241	39.5

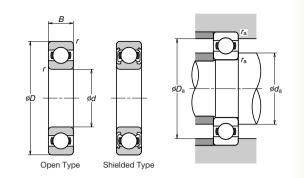
Remark: 1 mm²/s = 1 cSt


14. Hardness Conversion Table

(): Reference

Pookwoll				Rockwell	hardness	
Rockwell C scale		Brinell h	ardness	A scale	B scale	
hardness (1 471N) (150 kgf)	Vickers hardness	Standard ball	Tungsten carbide ball	Load 588N (60 kgf) Brale indenter	Load 980.7N (100 kgf) 1.588 mm Ball (1/16 in)	Shore hardness
68	940	_	_	85.6	_	97
67	900	_	_	85.0	_	95
66	865	_	_	84.5	_	92
65	832	_	739	83.9	_	91
64	800	_	722	83.4	_	88
63	772	_	705	82.8	_	87
62	746	_	688	82.3	_	85
61	720	_	670	81.8	-	83
60	697	_	654	81.2	-	81
59	674	_	634	80.7	_	80
58	653	_	615	80.1	_	78
57	633	_	595	79.6	_	76
56	613	_	577	79.0	_	75
55	595	_	560	78.5	_	74
54	577	_	543	78.0	_	72
53	560	-	525	77.4	_	71
52	544	500	512	76.8	_	69
51	528	487	496	76.3	_	68
50	513	475	481	75.9	_	67
49	498	464	469	75.2	_	66
48	484	451	455	74.7	_	64
47	471	442	443	74.1	_	63
46	458	432	432	73.6	_	62
45	446	421	421	73.1	_	60
44	434	409	409	72.5	_	58
43	423	400	400	72.0	_	57
42	412	390	390	71.5	_	56
41	402	381	381	70.9	_	55
40	392	371	371	70.4	_	54
39	382	362	362	69.9	_	52

	372 363 354 345 336 327 318	Standard ball 353 344 336 327 319 311	Tungsten carbide ball 353 344 336 327 319	A scale Load 588N (60 kgf) Brale indenter 69.4 68.9 68.4 67.9	B scale Load 980.7N (100 kgf) 1.588 mm Ball (1/16 in) - (109.0) (108.5)	Shore hardness 51 50 49
38 37 36 35 34	372 363 354 345 336 327	353 344 336 327 319	353 344 336 327 319	(60 kgf) Brale indenter 69.4 68.9 68.4 67.9	(100 kgf) 1.588 mm Ball (1/16 in) — (109.0)	51 50
37 36 35 34 33	363 354 345 336 327	344 336 327 319	344 336 327 319	68.9 68.4 67.9		50
36 35 34 33	354 345 336 327	336 327 319	336 327 319	68.4 67.9		
35 34 33	345 336 327	327 319	327 319	67.9		49
34	336 327	319	319		(108.5)	
33	327			07.4	1	48
		311		67.4	(108.0)	47
20	318		311	66.8	(107.5)	46
32		301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	_	96.7	33
(16)	222	212	212	_	95.5	32
(14)	213	203	203	_	93.9	31
(12)	204	194	194	_	92.3	29
(10)	196	187	187	_	90.7	28
(9)	188	179	179	_	89.5	27
(6)	180	171	171	-	87.1	26
(4)	173	165	165	-	85.5	25
(2)	166	158	158	-	83.5	24
(0)	160	152	152	-	81.7	24


15. Dimensions of Shoulder and Fillet

Extra-Small Ball Bearings

Bore diameter	Outside diameter	Wie		Chamfer dimension	Basic	Load rating	S	houlder and	d fillet dime	ensions (mr	n)
d	D	Open Type B	Shielded Type B ₁	(minimum) <i>r</i>	bearing number	C _H (reference value)	d _a	d _b	Da	D_{b}	r _a
(mm)	(mm)	(mm)	(mm)	(mm)	Humber	(N)	Minimum	Maximum	Maximum	Minimum	Maximum
	9	2.5	4	0.1	684	545	4.8	5.2	8.2	8.1	0.1
	11	4	4	0.15	694	815	5.2	5.6	9.8	9.9	0.15
4	12	4	4	0.2	604	815	5.6	5.6	10.4	9.9	0.2
	13	5	5	0.2	624	1 110	5.6	6.0	11.4	11.3	0.2
	16	5	5	0.3	634	1 470	6.0	7.5	14.0	13.8	0.3
	11	3	5	0.15	685	610	6.2	6.2	9.8	9.9	0.15
	13	4	4	0.2	695	915	6.6	6.6	11.4	11.2	0.2
5	14	5	5	0.2	605	1 130	6.6	6.9	12.4	12.2	0.2
	16	5	5	0.3	625	1 470	7.0	7.5	14.0	13.8	0.3
	19	6	6	0.3	635	2 220	7.0	8.5	17.0	16.5	0.3
	13	3.5	5	0.15	686	920	7.2	7.4	11.8	11.7	0.15
	15	5	5	0.2	696	1 470	7.6	7.9	13.4	13.3	0.2
6	17	6	6	0.3	606	1 920	8.0	8.2	15.0	14.8	0.3
	19	6	6	0.3	626	2 220	8.0	8.5	17.0	16.5	0.3
	22	7	7	0.3	636	2 800	8.0	10.5	20.0	19.0	0.3
	14	3.5	5	0.15	687	1 000	8.2	8.5	12.8	12.7	0.15
	17	5	5	0.3	697	1 370	9.0	10.2	15.0	14.8	0.3
7	19	6	6	0.3	607	2 220	9.0	9.1	17.0	16.5	0.3
	22	7	7	0.3	627	2 800	9.0	10.5	20.0	19.0	0.3
	26	9	9	0.3	637	3 900	9.0	12.8	24.0	22.8	0.3
	16	4	5	0.2	688	1 370	9.6	10.2	14.4	14.2	0.2
	19	6	6	0.3	698	1 900	10.0	10.0	17.0	16.5	0.3
8	22	7	7	0.3	608	2 800	10.0	10.5	20.0	19.0	0.3
	24	8	8	0.3	628	2 850	10.0	12.0	22.0	20.5	0.3
	28	9	9	0.3	638	3 900	10.0	12.8	26.0	22.8	0.3
	17	4	5	0.2	689	1 130	10.6	11.5	15.4	15.2	0.2
	20	6	6	0.3	699	1 460	11.0	12.0	18.0	17.2	0.3
9	24	7	7	0.3	609	2 850	11.0	12.0	22.8	20.5	0.3
	26	8	8	0.6	629	3 900	11.0	12.8	24.0	22.8	0.3
	30	10	10	0.6	639	4 350	13.0	16.1	26.0	25.6	0.6
9.525	22.225	5.558	7.142	0.4	R6	2 830	12.6	11.9	19.2	20.0	0.4

Standard Bearings

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$r_{\rm a}$
19 5 0.3 6800 1 460 12 12 17 22 6 0.3 6900 2 290 12 12.5 20 26 8 0.3 6000 3 900 12 13 24 30 9 0.6 6200 4 350 14 16 26 35 11 0.6 6300 6 900 14 16.5 31 21 5 0.3 6801 1 630 14 14 19 24 6 0.3 6901 2 460 14 14.5 22 28 8 0.3 6001 4 350 14 15.5 26 32 10 0.6 6201 5 800 16 17 28 37 12 1 6301 8 250 17 18 32 24 5 0.3 6802 1 760 17 17 22 28 7 0.3 6802 1 760 17 17 26 15 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 24	
10 22 6 0.3 6900 2 290 12 12.5 20 26 8 0.3 6000 3 900 12 13 24 30 9 0.6 6200 4 350 14 16 26 35 11 0.6 6300 6 900 14 16.5 31 21 5 0.3 6801 1 630 14 14 19 24 6 0.3 6901 2 460 14 14.5 22 28 8 0.3 6001 4 350 14 15.5 26 32 10 0.6 6201 5 800 16 17 28 37 12 1 6301 8 250 17 18 32 24 5 0.3 6802 1 760 17 17 22 28 7 0.3 6902 3 700 17 17 26 15 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302	aximum
10	0.3
30 9 0.6 6200 4 350 14 16 26 35 11 0.6 6300 6 900 14 16.5 31 21 5 0.3 6801 1 630 14 14 19 24 6 0.3 6901 2 460 14 14.5 22 28 8 0.3 6001 4 350 14 15.5 26 32 10 0.6 6201 5 800 16 17 28 37 12 1 6301 8 250 17 18 32 24 5 0.3 6802 1 760 17 17 22 28 7 0.3 6902 3 700 17 17 26 15 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 24	0.3
35 11 0.6 6300 6 900 14 16.5 31 21 5 0.3 6801 1 630 14 14 19 24 6 0.3 6901 2 460 14 14.5 22 28 8 0.3 6001 4 350 14 15.5 26 32 10 0.6 6201 5 800 16 17 28 37 12 1 6301 8 250 17 18 32 24 5 0.3 6802 1 760 17 17 22 28 7 0.3 6902 3 700 17 17 26 15 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 19 24	0.3
12 5 0.3 6801 1 630 14 14 19 24 6 0.3 6901 2 460 14 14.5 22 28 8 0.3 6001 4 350 14 15.5 26 32 10 0.6 6201 5 800 16 17 28 37 12 1 6301 8 250 17 18 32 24 5 0.3 6802 1 760 17 17 22 28 7 0.3 6902 3 700 17 17 26 15 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 19 24	0.6
12 24 6 0.3 6901 2 460 14 14.5 22 28 8 0.3 6001 4 350 14 15.5 26 32 10 0.6 6201 5 800 16 17 28 37 12 1 6301 8 250 17 18 32 24 5 0.3 6802 1 760 17 17 22 28 7 0.3 6902 3 700 17 17 26 15 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 19 24	0.6
12 28 8 0.3 6001 4 350 14 15.5 26 32 10 0.6 6201 5 800 16 17 28 37 12 1 6301 8 250 17 18 32 24 5 0.3 6802 1 760 17 17 22 28 7 0.3 6902 3 700 17 17 26 15 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 24	0.3
32 10 0.6 6201 5800 16 17 28 37 12 1 6301 8 250 17 18 32 24 5 0.3 6802 1 760 17 17 22 28 7 0.3 6902 3 700 17 17 26 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 19 24	0.3
37 12 1 6301 8 250 17 18 32 24 5 0.3 6802 1 760 17 17 22 28 7 0.3 6902 3 700 17 17 26 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 24	0.3
24 5 0.3 6802 1760 17 17 22 28 7 0.3 6902 3700 17 17 26 32 9 0.3 6002 4750 17 19 30 35 11 0.6 6202 6500 19 20.5 31 42 13 1 6302 9700 20 22.5 37 26 5 0.3 6803 2 240 19 19 24	0.6
28 7 0.3 6902 3 700 17 17 26 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 24	1
15 32 9 0.3 6002 4 750 17 19 30 35 11 0.6 6202 6 500 19 20.5 31 42 13 1 6302 9 700 20 22.5 37 26 5 0.3 6803 2 240 19 19 24	0.3
35 11 0.6 6202 6500 19 20.5 31 42 13 1 6302 9700 20 22.5 37 26 5 0.3 6803 2 240 19 19 24	0.3
42 13 1 6302 9700 20 22.5 37 26 5 0.3 6803 2 240 19 19 24	0.3
26 5 0.3 6803 2 240 19 19 24	0.6
	1
30 7 0.3 6903 3 900 19 19.5 28	0.3
	0.3
17 35 10 0.3 6003 5 100 19 21.5 33	0.3
40 12 0.6 6203 8 150 21 23.5 36	0.6
47 14 1 6303 11 600 22 25.5 42	1
32 7 0.3 6804 3 400 22 22 30	0.3
37 9 0.3 6904 5 400 22 24 35	0.3
20 42 12 0.6 6004 7 950 24 25.5 38	0.6
47 14 1 6204 10 900 25 26.5 42	1
52 15 1.1 6304 13 500 26.5 28 45.5	1
37 7 0.3 6805 3 800 27 27 35	0.3
42 9 0.3 6905 5 950 27 28.5 40	0.3
25 47 12 0.6 6005 8 550 29 30 43	0.6
52 15 1 6205 11 900 30 32 47	1
55 13 1 6006 11 300 35 36.5 50	1
30 62 16 1 6206 16 500 35 38.5 57	1
62 14 1 6007 13 600 40 41.5 57	1
35 72 17 1.1 6207 21 800 41.5 44.5 65.5	1
68 15 1 6008 14 200 45 47.5 63	1
40 80 18 1.1 6208 24 800 46.5 50.5 73.5	
45 75 16 1 6009 17 800 50 53.5 70	1

Remarks Load rating C_H —load ratings of stainless steel bearings. Used to calculate an limiting load P of SPACEATM bearing from P/ C_H . This value cannot be applied to calculation of rolling fatigue life of bearings with solid lubrication and coated bearings.

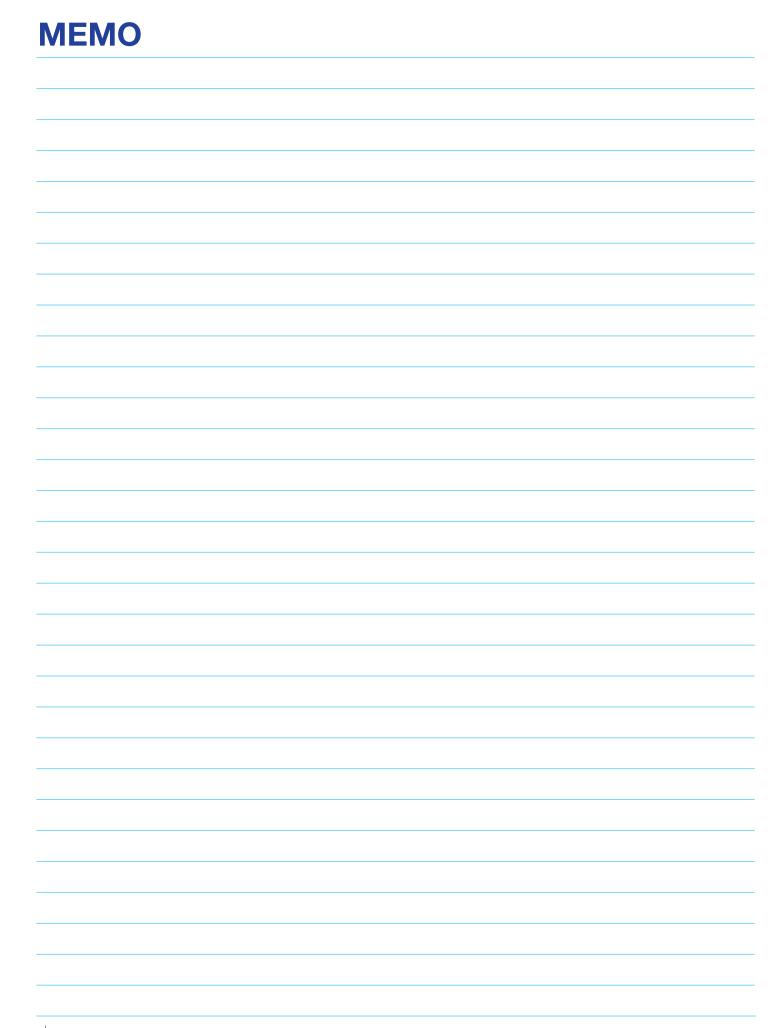
Remarks Load rating C_H—load ratings of stainless steel bearings. Used to calculate an limiting load P of SPACEA™ bearing from P/C_H. This value cannot be applied to calculation of rolling fatigue life of bearings with solid lubrication and coated bearings. $\ensuremath{\bigstar}$ Some open type SPACEA bearings have the same standard width as shielded type bearings

SPACEA

16. Tolerances for Shaft Diameters

Unit:	иm
OTHE.	μ IIII

classif	neter fication nm)	Single-plane mean-bore diameter deviation	d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
over	incl	(Class 0) ⊿dmp													
3	6	0 - 8	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 - 12	0 - 5	0 - 8	0 - 12	0 - 18	0 - 30	0 - 48	± 2.5	± 4
6	10	0 - 8	- 40 - 49	- 25 - 34	- 13 - 22	- 5 -11	- 5 - 14	0 - 6	0 – 9	0 - 15	0 - 22	0 - 36	0 - 58	± 3	± 4.5
10	18	0 - 8	- 50 - 61	- 32 - 43	- 16 - 27	- 6 -14	- 6 - 17	0 - 8	0 –11	0 - 18	0 - 27	0 - 43	0 - 70	± 4	± 5.5
18	30	0 - 10	- 65 - 78	- 40 - 53	- 20 - 33	- 7 -16	- 7 - 20	0 - 9	0 –13	0 - 21	0 - 33	0 - 52	0 - 84	± 4.5	± 6.5
30	50	0 - 12	- 80 - 96	- 50 - 66	- 25 - 41	- 9 -20	- 9 - 25	0 -11	0 –16	0 - 25	0 - 39	0 - 62	0 –100	± 5.5	± 8
50	80	0 - 15	-100 -119	- 60 - 79	- 30 - 49	-10 -23	- 10 - 29	0 -13	0 –19	0 - 30	0 - 46	0 - 74	0 -120	± 6.5	± 9.5
80	120	0 - 20	-120 -142	- 72 - 94	- 36 - 58	-12 -27	- 12 - 34	0 -15	0 –22	0 - 35	0 - 54	0 - 87	0 –140	± 7.5	±11
120	180	0 - 25	–145 –170	- 85 -110	- 43 - 68	-14 -32	- 14 - 39	0 -18	0 –25	0 - 40	0 - 63	0 -100	0 –160	± 9	±12.5
180	250	0 - 30	–170 –199	-100 -129	- 50 - 79	-15 -35	- 15 - 44	0 -20	0 –29	0 - 46	0 - 72	0 –115	0 –185	±10	±14.5
250	315	0 - 35	-190 -222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 - 52	0 - 81	0 -130	0 –210	±11.5	±16
315	400	0 - 40	-210 -246	-125 -161	- 62 - 98	-18 -43	- 18 - 54	0 -25	0 -36	0 - 57	0 - 89	0 –140	0 -230	±12.5	±18
400	500	0 - 45	-230 -270	-135 -175	- 68 -108	-20 -47	- 20 - 60	0 -27	0 –40	0 - 63	0 - 97	0 –155	0 -250	±13.5	±20
500	630	0 - 50	-260 -304	-145 -189	- 76 -120	_	- 22 - 66	_	0 –44	0 - 70	0 –110	0 –175	0 –280	_	±22
630	800	0 - 75	-290 -340	-160 -210	- 80 -130	-	- 24 - 74	-	0 –50	0 - 80	0 –125	0 –200	0 -320	_	±25
800	1 000	0 -100	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 –56	0 - 90	0 -140	0 –230	0 -360	-	±28
1 000	1 250	0 -125	-350 -416	-195 -261	- 98 -164	_	- 28 - 94	_	0 –66	0 -105	0 -165	0 –260	0 -420	-	±33
1 250	1 600	0 –160	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 –195	0 -310	0 -500	_	±39
1 600	2 000	0 -200	-430 -522	-240 -332	-120 -212	-	- 32 -124	-	0 -92	0 –150	0 –230	0 –370	0 -600	-	±46


														Offic. μ iff
	j5	j6	j7	k5	k6	k7	m5	m6	n6	p6	r6	r7	classi	neter fication nm)
													over	incl
	+ 3 - 2	+ 6 - 2	+ 8 - 4	+ 6 + 1	+ 9 + 1	+ 13 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 15	3	6
	+ 4 - 2	+ 7 - 2	+10 - 5	+ 7 + 1	+ 10 + 1	+ 16 + 1	+12 + 6	+ 15 + 6	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 34 + 19	6	10
	+ 5 - 3	+ 8 - 3	+12 - 6	+ 9 + 1	+ 12 + 1	+ 19 + 1	+15 + 7	+ 18 + 7	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 41 + 23	10	18
	+ 5 - 4	+ 9 - 4	+13 - 8	+11 + 2	+ 15 + 2	+ 23 + 2	+17 + 8	+ 21 + 8	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 49 + 28	18	30
	+ 6 - 5	+11 - 5	+15 -10	+13 + 2	+ 18 + 2	+ 27 + 2	+20 + 9	+ 25 + 9	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50
	+ 6	+12	+18	+15	+ 21	+ 32	+24	+ 30	+ 39	+ 51	+ 60 + 41	+ 71 + 41	50	65
	- 7	- 7	-12	+ 2	+ 2	+ 2	+11	+ 11	+ 20	+ 32	+ 62 + 43	+ 73 + 43	65	80
	+ 6	+13	+20	+18	+ 25	+ 38	+28	+ 35	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100
	- 9	- 9	-15	+ 3	+ 3	+ 3	+13	+ 13	+ 23	+ 37	+ 76 + 54	+ 89 + 54	100	120
											+ 88 + 63	+103 + 63	120	140
	+ 7 –11	+14 -11	+22 -18	+21 + 3	+ 28 + 3	+ 43 + 3	+33 +15	+ 40 + 15	+ 52 + 27	+ 68 + 43	+ 90 + 65	+105 + 65	140	160
											+ 93 + 68	+108 + 68	160	180
											+106 + 77	+123 + 77	180	200
	+ 7 –13	+16 -13	+25 - 21	+24 + 4	+ 33 + 4	+ 50 + 4	+37 +17	+ 46 + 17	+ 60 + 31	+ 79 + 50	+109 + 80	+126 + 80	200	225
	10	10								. 33	+113	+130 + 84	225	250
	+ 7	±16	±26	+27	+ 36	+ 56	+43	+ 52	+ 66	+ 88	+126 + 94	+146 + 94	250	280
	–16	±10	±20	+ 4	+ 4	+ 4	+20	+ 20	+ 34	+ 56	+130 + 98	+150 + 98	280	315
	+ 7	±18	+29	+29	+ 40	+ 61	+46	+ 57	+ 73	+ 98	+144 +108	+165 +108	315	355
	– 18	110	-28	+ 4	+ 4	+ 4	+21	+ 21	+ 37	+ 62	+150 +114	+171 +114	355	400
	+ 7	±20	+31	+32	+ 45	+ 68	+50	+ 63	+ 80	+108	+166 +126	+189 +126	400	450
	– 20		-32	+ 5	+ 5	+ 5	+23	+ 23	+ 40	+ 68	+172 +132	+195 +132	450	500
	_	_	_	_	+ 44	+ 70	_	+ 70	+ 88	+122	+194 +150	+220 +150	500	560
					0	0		+ 26	+ 44	+ 78	+199 +155	+225 +155	560	630
	_	_	_	_	+ 50	+ 80	_	+ 80	+100	+138	+225 +175	+255 +175	630	710
					0	0		+ 30	+ 50	+ 88	+235 +185	+265 +185	710	800
	_	_	_	_	+ 56	+ 90	_	+ 90	+112	+156	+266 +210	+300 +210	800	900
_					0	0		+ 34	+ 56	+100	+276 +220	+310 +220	900	1 000
	_	_	_	_	+ 66	+105	_	+106	+132	+186	+316 +250	+355 +250	1 000	1 120
					0	0		+ 40	+ 66	+120	+326 +260	+365 +260	1 120	1 250
	_	_	_	_	+ 78	+125	_	+126	+156	+218	+378 +300	+425 +300	1 250	1 400
_				_	0	0		+ 48	+ 78	+140	+408 +330	+455 +330	1 400	1 600
	_				+ 92	+150	_	+150	+184	+262	+462 +370	+520 +370	1 600	1 800
	_		_	_	0	0		+ 58	+ 92	+170	+492 +400	+550 +400	1 800	2 000

SPACEA

17. Tolerances for Housing Bore Diameters

classif	meter fication nm)	Single-plane mean-outside diameter deviation	E6	F6	F7	G6	G7	H6	H7	H8	J6	J7	JS6	JS7
over	incl	(Class 0)				0.0	G					0.		
10	18	0 - 8	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18	+ 27	+ 6 - 5	+10 - 8	± 5.5	± 9
18	30	0 - 9	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13	+ 21	+ 33	+ 8 - 5	+12 - 9	± 6.5	±10.5
30	50	0 - 11	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16	+ 25 0	+ 39	+10 - 6	+14 -11	± 8	±12.5
50	80	0 - 13	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19	+ 30	+ 46	+13 - 6	+18 -12	± 9.5	±15
80	120	0 - 15	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22 0	+ 35 0	+ 54 0	+16 - 6	+22 -13	± 11	±17.5
120 150	150 180	0 - 18 0 - 25	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40	+ 63 0	+18 - 7	+26 ⁻ 14	± 12.5	±20
180	250	0 - 30	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29	+ 46 0	+ 72	+22 - 7	+30 –16	± 14.5	±23
250	315	0 - 35	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52 0	+ 81	+25 - 7	+36 -16	± 16	±26
315	400	0 - 40	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36	+ 57 0	+ 89	+29 - 7	+39 –18	± 18	±28.5
400	500	0 - 45	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63 0	+ 97 0	+33	+43 -20	± 20	±31.5
500	630	0 - 50	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70 0	+110 0	_	-	± 22	±35
630	800	0 - 75	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50 0	+ 80	+125 0	_	-	± 25	±40
800	1 000	0 -100	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56 0	+ 90	+140 0	_	_	± 28	±45
1 000	1 250	0 -125	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66	+105 0	+165 0	_	-	± 33	±52.5
1 250	1 600	0 -160	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78 0	+125 0	+195 0	_	_	± 39	±62.5
1 600	2 000	0 –200	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92	+150 0	+230	_	-	± 46	±75
2 000	2 500	0 –250	+370 +260	+240 +130	+305 +130	+144 + 34	+209 + 34	+110 0	+175 0	+280	_	_	± 55	±87.5

												Unit: μ m
K5	K6	K7	M5	M6	M7	N5	N6	N7	P6	P7		meter ation (mm)
											over	incl
+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18
+ 1 - 8	+ 2 - 11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30
+ 2 - 9	+ 3 - 13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50
+ 3 -10	+ 4 - 15	+ 9 - 21	- 6 -19	- 5 - 24	0 - 30	-15 -28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80
+ 2 -13	+ 4 - 18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	-18 -33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120
+ 3	+ 4	+ 12	- 9	- 8	0	-21	- 20	- 12	- 36	- 28	120	180
– 15	- 21	- 28	–27	- 33	- 40	-39	- 45	- 52	- 61	- 68		
+ 2 -18	+ 5 - 24	+ 13 - 33	-11 -31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250
+ 3 -20	+ 5 - 27	+ 16 - 36	-13 -36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	316
+ 3	+ 7	+ 17	-14	- 10	0	-30	- 26	- 16	- 51	- 41	015	400
- 22	- 29	- 40	-39	- 46	- 57	- 55	- 62	- 73	- 87	- 98	315	400
+ 2 -25	+ 8 - 32	+ 18 - 45	-16 -43	- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 -108	400	500
	0	0		- 26	- 26		- 44	- 44	- 78	- 78	500	630
	- 44	- 70	_	- 70	- 96	_	- 88	-114	-122	-148	500	630
-	0 - 50	0 - 80	-	- 30 - 80	- 30 -110	_	- 50 -100	- 50 -130	- 88 -138	- 88 -168	630	800
	0	0		- 34	- 34		- 56	- 56	-100	-100		
	- 56	- 90	_	- 90	-124	_	-112	-146	-156	-190	800	1 000
-	0 - 66	0 -105	_	- 40 -106	- 40 -145	_	- 66 -132	- 66 -171	-120 -186	-120 -225	1 000	1 250
	0	0		- 48	- 48		- 78	- 78	-140	-140		
	- 78	-125	_	-126	-173	_	-156	-203	-218	-265	1 250	1 600
-	0 - 92	0 –150	_	- 58 -150	- 58 -208	_	- 92 -184	- 92 -242	-170 -262	–170 –320	1 600	2 000
_	0 –110	0 -175	_	- 68 -178	- 68 -243	_	–110 –220	–110 –285	–195 –305	–195 –370	2 000	2 500
	110	110		170	240		220	200	000	010		

Specification Inquiry for SPACEA™ Series

To request a specification inquiry, please fill out the following form and contact the nearest NSK office.

Name of company	Name	
Department	Phone	

Nominal bearing number, Dimensions	NSK bearing N	No.									
	Other company model No.	r's									
	Dimensions	Bore diameter ×	Outside diamete	$er \times Width$	$(\phi$	$\times \phi$	×	mm)			
	Type of machine (example: liquid crystal cleaning equipment, coating equipment for semiconductor, etc.)										
Application											
	New design 2. Experience in use with similar equipment 3. Maintenance										
Problems/ Issues	Current	Name of manufactur	rer: (), Mode	el: ()		
	bearing	2. Unknown									
	Specifications	1. Material									
		2. Lubricant									
	Bearing durability	(hours or months	 Poor lubrica Contaminati Fracture 	on with fo		ticles	outgassing, 5. Lubrica 9. Poor ro	int leakage			
	Required operating life	() hours or months									
	Details of problems/ issues										
Operating environment	Normal atmosphere, vacuum	mosphere, 2. From normal atmosphere up to vacuum (degree of vacuum = Pa)									
	Corrosion resistance	1. Water environment	1. High-humid 4. De-ionized v		Water-s _l Other (oray	3. Water-i	mmersed			
		2. Corrosive liquids	Acid () Al	lkali () Other	()		
		3. Corrosive gases	F-based (Br-based (I-based (ther (()			
	Cleanliness		Particle emissions (Class:) 2. Outgassing (Grease-free 4. No grease leakage 5. Other ()			
	High temperature	Bearing temperature (earing temperature (°C) Ambient temperature (°C)			
	Non- magnetism	Non-magnetic (relative permeability 1.01 or less) Completely non-magnetic (relative permeability 1.001 or less)									
Operating conditions	Speed	Normal () rpm	Max () rpm				
	Bearing load	Radial (Other load information	N) (Axial (N))			
Comments											

```
NSK LTD.-HEADQUARTERS, TOKYO, JAPAN www.nsk.com
Nissai Bida.. 1-6-3, OHSAKI SHINAGAWA-KU, TOKYO 141-8560, JAPAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          France:
NSK FRANCE S.A.S
    NSK LID.-HEADQUAHTEHS, TOKYOU JAPAN www.ns.
Insee Bidg., 1-6-3, OHSAKI SHINAGAWA-KU, TOKY
ASIA BUSINESS STRATEGIC DIVISION-HEADQUARTERS
20-3-779-7145 F: 03-3779-7433 C: 813
INDUSTRIAL MACHINERY BEARINGS DIVISION-HEADQUARTERS
20-3-779-7644 C: 813
AUTOMOTIVE DIVISION-HEADQUARTERS
20-3-779-7644 C: 813
AUTOMOTIVE DIVISION-HEADQUARTERS
20-3-779-7917 C: 813
NEEDLE ROLLER BEARINGS STRATEGIC DIVISION-HEADQUARTERS
20-3-779-7917 C: 81
PRECISION MACHINERY & PARTS DIVISION-HEADQUARTERS
20-3-3-779-7644 C: 813
PRECISION MACHINERY & PARTS DIVISION-HEADQUARTERS
20-3-3-779-7644 C: 813
PRECISION MACHINERY & PARTS DIVISION-HEADQUARTERS
20-3-3-779-7644 C: 813
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Quartier de l'Europe, 2 Rue Georges Guynemer, 78283 Guyancourt Cedex, France
P: 01-30-57-39-39 F: 01-30-57-00-01 C: 33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Africa
South Africa:
NSK SOUTH AFRICA (PTY) LTD.
JOHANNESBURG
26 Galaxy Avenue, Linbro Business Park, Sandton, Gauteng, P.O. Box 1157, Kelvin, 2054 South Afric
P: 011-458-3600 F: 011-458-3608 C: 27
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        P: 02102-481-0 F: 02102-481-2290 C: 49

NSK STEERING SYSTEMS EUROPE LTD.

STUTTGART Sleininger Strasse 65 D-70771 Leinfelden-Echterdingen, Germany P: 0771-79082-277 F: 0771-79082-289 C: 49

NELWEG FERTIGUNG GMBH CORPORATE Eninger Strasse 5, D-89597 Munderkingen, Germany P: 07393-540 F: 07393-5414 C: 49
      Australia:
NSK AUSTRALIA PTY. LTD.
MELBOURNE
11 Dalmore Dri
                                                                                                                          | Italy:
| NSK | ITALIA | S.p. A. |
| NILANO | Via Garibaldi, 215, I-20024 Garbagnate Milanese (MI), Italy |
| P: 02-99-519-1 | F: 02-990-25-778, 02-990-28-373 |
| C: 39 | INDUSTRIA CUSCINETTI | S.p. A. |
| TORINO PLANT | Via Giotto 4, 10080, S. Benigno C. se, Torino, Italy |
| P: 011982481 | F: 0119880284 | C: 39 |
| C: 39 | CENTRE B.V.
        SYDNEY
      BRISBANE
        PERTH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Netherlands:
NSK EUROPEAN DISTRIBUTION CENTRE B.V.
De Kroonstraat 38, 5048 AP Tilburg, Nederland
P: 013-4647647 F: 013-4647648 C: 31
      CHINA:
NSK HONG KONG LTD.
HONG KONG
Room 512, Wing On Plaza, Tsim Sha Tsui East, Kowloon, Hong Kong
P: 2739-9933
F: 2739-9323
C: 852
KUNSHAN NSK
CO., LTD.
KUNSHAN PLANT
Z$8 South Huang Pu Jiang Rd., Kunshan Economic & Tachnoloov Devalorment Zone. House Co.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Poland:
NSK EUROPE LTD. WARSAW LIAISON OFFICE
WARSAW LIAISON Warszawie, ul. Migdalowa 4 lok. 73, 02-796 Warsaw, Poland
Prioz-645-1525, 1526 F: 022-645-1529 C: 46
                                                                                                                                                                                                                          ang Rd., Kunshan Economic & Technology Development Zone, Jiang Su, China (215335)
54 F: 0512-5771-5689 C: 86
    | 258 South relating training 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     P: 0853-3521722 C: 68

NSK STEERING SYSTEMS DONGGUAN CO., LTD.

DONGGUAN PLANT
High-tech Park, Shilong Road, Guanlong Section, Dongguan, Guanlong, China (523119)
P: 0769-262-0910 C: 86

ZHANGJIAGANO
ZHANGSU PLANT
JANGSU PLANT
TO STATE GRANG THE G
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Turkey:
NSK BEARINGS MIDDLE EAST TRADING CO., LTD.
ISTANBUL
Fevzi Cakmak Caddesi, No. 11/4, Maltepe 34844, Istanbul, Turkey
P: 0216-442-7106 F: 0216-305-5505 C: 90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     United Kingdom:
NSK BEARINGS SUROPE LTD.
PETERLEE POINT PETERLEE POINT P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Northern Road, Newark, Nottinghamshire, NG24 2JF U.K. P: 01636-605123 F: 01636-643050 C: 44
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        P: 01636-605123 F: 01636-643050 C: 44

NSK PRECISION UK LTD.

NewARK

Northern Road, Newark, Nottinghamshire, NG24 2JF, U.K.
P: 01636-605123 F: 01636-613559 C: 44

NSK STEERING SYSTEMS EUROPE LTD.

CORPORATE

OFFICE

P: 024-76-588588 Fr: 024-76-588599 C: 44

P: 024-76-588588 Fr: 024-76-588599 C: 44

P: 07-588599 C: 44

P: 07-588599 C: 44

P: 07-588599 C: 44

P: 091-518-6400 F: 0191-518-6440 C: 44
         RANE NSK STEERING SYSTEMS LTD.
      CHENNAI 14, Rajagopalan Salai, Vallancherry, Guduvancherry, Pin-603 202, India P:044-274-66002 F:044-274-66001 C:91

NSK LTD. INDIA BRANCH OFFICE
CHENNAI Gingula Enclave, 56, First Avenue, Shastri Nagar, Chennai 600 020, India Pindonesia:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          North and South America
NSK AMERICAS, INC. (AMERICAN HEADQUARTERS)
ANN ARBOR
4200 Goss Road, Ann Arbor, Michigan 48105-2779, U.S.A.
P: 734-913-7500 F: 734-913-7511 C: 1
        Indonesia:
PT. NSK BEARINGS MANUFACTURING INDONESIA
JAKARTA PLANT
Blok M-4, Kawasan Berikat, MM2100, Industrial Town, Cikarrang Barat, Bekasi 17520, Jawa Barat, Indonesia
PT. NSK INDONESIA
JAKARTA
Summitmes W. C. F. 201-898-0156, 021-898-0183
C: 62

C: 62

C: 044-2446-6861 C:91

INDONESIA
JAKARTA
Summitmes W. C. F. 201-898-0156, 021-898-0183
C: 62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Argentina:
NSK ARGENTINA SRL
BUENOS AIRES
Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina
P: 11-4704-5100
F: 11-4704-0033
C: 54

        Brazil:

        NSK BRASIL LTDA.
        www.br.nsk.com

        SAO PAULO
        Rua 13 de Maio 1633-14* Andar-Bela Vista-CEP 01327-905 Sao Paulo, SP, Brazil P: 011-3289-4720

        C: 55
        C: 55

        SUZANO PLANT
        P. 011-4781-4786
        F: 011-4781-4785

        PELO HORIZONTE
        P. 011-4781-4909
        F: 011-4741-4748-2555
        C: 55

        AV. Vereador Joao Batista Fitipaldi, 66. CEP 08685-000, Vila Maluf, Suzano, SP, Brazil P: 011-4741-4909
        F: 011-4741-498-255
        C: 55

        BELO HORIZONTE
        Rua Ceara 1431-4° andar-sala 405-Funcionarios Belo Horizonte-MG, Brazil 30150-311
        P: 031-3227-4449
        C: 55

        JOINVILLE
        P. 031-3227-4449
        C: 55
        Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250
        P: 047-422-5445/433-3627
        F: 047-422-2817
        C: 55

        PORTO ALEGRE
        P. 051-3222-1024/3346-786
        F: 051-3222-2899
        C: 55
        Av. Consolidation Aguata, 278-6* and conj. 004-60a Viagem Recife-PE, Brazil 51020-020

        P. 011-326-3781
        F: 081-3326-5047
        C: 55
        Av. Consolidation Aguata, 278-6* and conj. 004-60a Viagem Recife-PE, Brazil 51020-020

                                                                                                                            Summitmas II 6th Fl., Jl. Jend. Sudirman Kav. 61-62, Jakarta 12190 Indonesia
P: 021-252-3458 F: 021-252-3223 C: 62
        NSK KOREA CO., LTD. www.kr.nsk.com
SEOUL 9F (West Wing) Posco Center 82. Deachi 4 Dong Kangnam-Ku, Seoul, Korea
P-02-3287-0300 F: 02-3287-0345, 0445 C: 82
60, Seongsan-Dong, Changwon, Kyungsangnam-Do, Korea
P-LANT P: 055-287-6001 F: 055-285-9982 C: 82
| CHANGWON PLANT | Pt. 055-287-6001 | F: 055-267-6001 | F: 055-267
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     P: 081-322-073.

Canada:
NSK CANADA INC. www.ca.nsk.com
HEAD OFFICE
HEAD OFFICE
MONTREAL
TORONTO
S14-633-1220 F: 514-633-8164 C: 1
TORONTO
S190-890-0516 F: 514-633-8164 C: 1
ANCOUVER
VANCOUVER
VANCOUVER
VST S190-890-1938 S190-1938 S190-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NSK NEW ZEALAND LTD. www.nsk-rhp.co.nz
AUCKLAND 3 Te Apunga Place Mt. Wellington, Auckland, New Zealand
P: 09-276-4992 F: 09-276-4092 C: 64
      P: 09-279-05-2

Philippines:
NSK REPRESENTATIVE OFFICE
MANILA

Mit 910 Philippine AXA Life Centre, 1286 Seno Gil Puyat Avenue,
Makati City 1200, Metro Manila, Philippines
P: 02-759-6246
P: 02-759-6249
C: 63
      Singapore:
NSK INTERNATIONAL (SINGAPORE) PTE LTD.
SINGAPORE 2 Toh Guan Road East #02-02 Singapore 608837
P: 6278-1711
P: 6278-1711
SINGAPORE 2 Toh Guan Road East #02-03 Singapore 608837
P: 6278-1711
SINGAPORE 2 Toh Guan Road East #02-03 Singapore 608837
P: 6278-1711
T-5-14-20-1
    Taiwan:
TAIWAN NSK PRECISION CO., LTD.
TAIPEI 11F., 87, Song Jiang Rd. Taipei 104 Taiwan R.O.C
P. 02-2509-3305 F. 02-2509-1393 C. 886
TAICHUNG 107-6. SEC. 3. Wenning Rd. Taichung, Taiwan R.O.C.
P. 04-2509-3505 F. 06-589-2719 C. 886
TAINAN R.O.C. P. 06-589-2703 F. 06-589-2719 C. 886
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       [PLANTS]
ANN ARBOR
        NSK BEARINGS (THAILAND) CO., LTD.
BANGKOK 25th Fl. RS Tower. 121/76-77 Rac
      NSK BEARINGS (THAILAND) CO., LTD.
BANGKOK 25th Fl. R5 Tower, 12176-77 Rachadaphisek Road, Dindaeng, Bangkok 10400, Thailand
P: 02-6412-150 F: 02-6412-161 C: 66

NSK BEARINGS MANUFACTURING (THAILAND) CO., LTD.
CHONBURI 700430 Moo 7, Amata Nakom Industrial Estate T. Donhualor, A. Muangchonburi, Chonburi 20000 Thailand
                                                                                                                                                                                                                                                                                                                                                                                                                   angchonburi, Chonburi 20000 Thaila
C: 66
                                                                                                                                                                                                                                                                                                                      te 1. Donhualor, A. Mu
454017, 454020
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          P: 038-454010-454016 F: 038-4
SIAM NSK STEERING SYSTEMS CO., LTD.
CHACHOENGSAO 90 Moo 9. Wellgrow lockustral Easter
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NSK STEERING SYSTEMS AMERICA, INC.
CORPORATE
110 Shields Drive, Bennington, Vermont 05201-8309, U.S.A.
OFFICE/PLANT
ANN ARBOR
4200 Goss Road, Ann Arbor, Michigan 48105-2799, U.S.A.
P. 734-913-7502
F. 734-91
      Bunnakong, Chach neergasa 24180, Thailand
Parkong Chach n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        P. 734-913-7500 F: 734-913-7102 C: 1

NSK-WARNER U.S. A., INC.
CORPORATE 3001 West Big Beaver Road, Suite 412 Troy, Michigan 48084-3101, U.S.A.
OFFICE/PLANT 248-822-888 F: 248-822-111 C: 1

NSK LATIN AMERICA, INC www.la.nsk.com

MIAMI 2500 NW 107th Avenue, Suite 300, Miami, Florida, 33172-5924, U.S.A.
P: 305-477-0605 F: 305-477-0377 C: 1
      Vietnam:
NSK REPRESENTATIVE OFFICE
Unit 802 8th Floor, Hanoi Tung Shing Square, No. 2 Ngo Quyen, Hoan Kiem District, Hanoi, Vietnam
P: 04-935-1269 F: 04-935-1268 C: 84
        Europe
NSK EUROPE LTD. (EUROPEAN HEADQUARTERS)
MAIDENHEAD, U.K. Belmont Place, Belmont Road, Maidenhead, Be
P: 01628-509800 F: 01628-509808 C: 44
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             P: Phone F: Fax T: Telex C: Country Code
```

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

