

## **Features**

- A-scan waveform can be displayed for echo analysis and measurement of complex workpiece
- Compatible with many types of transducers, both single and dual element transducers
- •Users can set blanks to shield aftershocks or clutter
- •Echo-echo measures the true metal thickness while ignoring the thickness of coating layer.
- Thru-coat technology measures metal and nonmetallic coating thickness.
- •Signal auto-amplification function
- •Adjustable voltage variable pulse width square wave pulse generator
- •Single value B-scan display function
- •Fast measurement mode up to 20 times per second
- •Set upper and lower limits and alarm
- Data can be output to a removable MicroSD memory card. Can store up to 500,000 measured values and waveforms.



### **Standard Delivery**

| Main unit                       | • |
|---------------------------------|---|
| ●5MHz double element transducer | 1 |
| ●Couplant                       | 1 |
| <ul> <li>◆AA battery</li> </ul> | 3 |
| ●TIME certificate               | • |
| ●Warranty card                  | • |
| ●Instruction manual             | • |

## **Optional Accessory**

- Standard block
- Optional transducers (see next page)

## **Technical Specification**

| Toominour opoomoution |                                                                              |  |
|-----------------------|------------------------------------------------------------------------------|--|
| Measurement range     | 0.20~500mm                                                                   |  |
| Velocity range        | 508m/s~18699m/s                                                              |  |
| Display screen        | Color TFT LCD, 320x240 pixels                                                |  |
| Pulse generator       | Adjustable Square Wave Pulse<br>Generator                                    |  |
| Resolution            | 0.001mm or 0.01 or 0.1mm optional                                            |  |
| Emission voltage      | 60V, 110V, 150V, 200V optional                                               |  |
| Emission pulse width  | varies with transducer frequency                                             |  |
| Gain range            | 0-99dB, 1dB step                                                             |  |
| Frequency range       | 0.5 Mhz~20Mhz                                                                |  |
| Measurement rate      | standard (4Hz), fast (20Hz)                                                  |  |
| Transducer settings   | 10 sets of fixed transducer setting and 22 sets of custom transducer setting |  |
| Data Storage          | 500 data files, each capable of storing 1000 measurements and waveforms      |  |
| Working temperature   | 0°C~40°                                                                      |  |
| Power                 | three AA battery or NiMH batteries                                           |  |
| Dimensions (mm)       | 187mm×87 mm×43 mm                                                            |  |
| Weight (g)            | 360g                                                                         |  |
|                       |                                                                              |  |

## **Transducer Measurement Range**



| Transducer Type                                                 | Measuring Range(steel)                             | Indication Error                           | Using Mode                  |
|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|-----------------------------|
| 5MHz double element narrow pulse transducer DK537EE-5MHZ        | 1.2~225.0mm<br>3.0~100.0mm                         | H<10mm: ±0.05mm<br>H≥10mm: ±(0.01+0.5%H)mm | Standard Echo-Echo          |
| 5MHz single element contact transducer DEFM1-SE-5MHZ            | 5.0~225.00mm<br>5.0~100.00mm                       | H<10mm: ±0.05mm<br>H≥10mm: ±(0.01+0.5%H)mm | Standard Echo-Echo          |
| TSTU32 2MHz double element transducer TSTU32-2.0MHZ             | 3.0~300.00mm                                       | H<10mm: ±0.1mm<br>H≥10mm: ±(0.01+1%H)mm    | Standard                    |
| 1MHz single element contact transducer DEFM1-SE-1MHZ            | 10~500.00mm                                        | H<10mm: ±0.1mm<br>H≥10mm: ±(0.01+1%H)mm    | Standard                    |
| 15MHz single element delayblock<br>transducer<br>DEFM2-SE-15MHZ | 3.0mm~20.0mm<br>0.25m~10.0mm                       | H<10mm: ±0.05mm<br>H≥10mm: ±(0.01+0.5%H)mm | Interface-echo<br>Echo-echo |
| 2.5MHz double element transducer SZ2.5P-2.5MHZ                  | 2.0mm~300.0mm                                      | H<10mm: ±0.1mm<br>H≥10mm: ±(0.01+1%H)mm    | Standard                    |
| 7MHz double element transducer 7PD6-7.0MHZ                      | 0.75mm~75.0mm                                      | H<10mm: ±0.05mm<br>H≥10mm: ±(0.01+0.5%H)mm | Standard<br>Echo-echo       |
| 5MHz double element narrow pulse<br>transducer<br>5P8SJ-5.0MHZ  | 0.8mm~225.0mm<br>3.0m~50.0mm                       | H<10mm: ±0.05mm<br>H≥10mm: ±(0.01+0.5%H)mm | Standard<br>Echo-echo       |
| 5MHz high-temperature double element transducer ZW5P-5.0MHZ     | 1.2mm~225.0mm<br>4.0m~80.0mm<br>(high-temperature) | H<10mm: ±0.1mm<br>H≥10mm: ±(0.01+1%H)mm    | Standard                    |
| 1MHz double element transducer DC175-1.0MHZ                     | 3.0mm~500.0mm                                      | H<10mm: ±0.1mm<br>H≥10mm: ±(0.01+1%H)mm    | Standard                    |
| 15MHz single element pen type transducer DLK1225-15MHZ          | 3mm~8.0mm<br>0.2m~3.3mm                            | H<10mm: ±0.05mm                            | Interface-echo<br>Echo-echo |

## **Detecting Modes**

- •The standard echo detection mode measures the thickness based on the time interval between the excitation pulse and the first back wall echo. User can measure uncoated materials in this mode.
- Automatic echo-echo detection mode allows thickness measurement of materials with paint or coating because the time interval between two successive back-wall echoes eliminate paint or coating thickness.
- •Paint thickness measurement can simultaneously display layer thickness and substrate thickness.
- •The instrument includes three detection modes (Mode 1, Mode 2, and Mode 3)
  - Mode 1: Measures the time interval between the main pulse signal and the first back-wall echo with direct contact transducer.
  - Mode 2: Measure the time interval between the interface echo (or delay line echo) and the first back-wall echo with a delay line or immersion transducer.
  - Mode 3: Measure the time interval between two successive back-wall echoes with a delay line or a immersion transducer.

| Measuring Mode                                                | Echo 1                                                                                                                                                                                                                                                                | Echo 2                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode 1 uses contact transducer                                | The back echo is usually the negativeelectrode. However, in specialapplications where low acousticimpedance materials bonded to highacoustic impedance materials are measured (eg, plastic or rubber isadhered to the metal), the echoes appear to be phase inverted. | Not applicable                                                                                                                                                                                                                                                                                       |
| Mode 2 uses a delay line transducer or a immersion transducer | When measuring materials with highimpedance such as metals and ceramics, the interface echo is usually positive, while when measuring low-impedance materials like most plastics, the echo is negative.                                                               | The back-wall echo is typicallythe negative electrode unless it isfrom an interface between a lowacoustic impedance material anda high acoustic impedancematerial that are bonded together.                                                                                                          |
| Mode 3 uses a delay line transducer or a immersion transducer | For high impedance materials, theinterface echo is usually positive.                                                                                                                                                                                                  | The back echo is usually thenegative electrode. However, inspecial measurementapplications for some irregulargeometry materials, the bottomecho is set to the positiveelectrode due to the phasedistortion causing the positiveelectrode of the bottom echo tobe clearer than the negativeelectrode. |



# **Ultrasonic Thickness Gauge**

# **TIME®2190**

#### **Features**

- » A-scan waveform can be displayed for echo analysis and measurement of complex workpiece;
- » Compatible with many types of transducers, single and dual element transducers are suitable;
- » With a variety of measurement methods, users can set blanks to shield aftershocks or clutter;
- » Echo-echo measures the true metal thickness with ignoring the thickness of coating layer.
  - Thru-coat technology measures metal and nonmetallic coating thickness.
- » Signal auto-amplification function (centered display of the detected echo);
- » The resolution is 0.001, 0.01, 0.1 mm optional in any mode (or 0.0001, 0.001, 0.01 inch optional)
- » Gain adjustment range 0-99dB;
- » Adjustable voltage variable pulse width square wave pulse generator;
- » Single value B-scan display function;
- » Users can turn on fast measurement mode up to 20 times per second;
- » Alarm function, user can set the upper and lower limits of the alarm;
- » Differential, maximum and minimum display mode;
- » Internal data storage, data can be output to a removable MicroSD memory card. Can store up to 500,000 measured values and waveforms;

## **Standard Configuration**

Main unit 1

5MHz dual element wideband transducer DK537EE 1

Couplants 1

AA battery 3

User manual 1

## **Optional Configuration**

**Dataview Software** 

1 MHz single element contact transducer

TSTU32 2MHz Dual element transducer

5MHz Single element contact transducer

15MHz single element with delay lines transducer

ZW5P high temperature transducer



## **Transducer Measurement Range**

| Transducer Type                                 | Measuring Range<br>(steel)       | Indication Error                                     | Using Mode                  |
|-------------------------------------------------|----------------------------------|------------------------------------------------------|-----------------------------|
| 5MHz dual element narrow pulse transducer:      | 1.2 ~ 225.0mm<br>3.0 ~ 100.0mm   | H < 10mm , ±0.05mm ;<br>H≥10mm ,<br>±(0.01+0.5%H)mm  | Standard<br>Echo-Echo       |
| 5MHz single element contact transducer          | 5.0 ~ 225.00mm<br>5.0 ~ 100.00mm | H < 10mm , ±0.05 mm ;<br>H≥10mm ,<br>±(0.01+0.5%H)mm | Standard<br>Echo-Echo       |
| TSTU32 2MHz Double element transducer           | 3.0 ~ 300.00mm                   | H < 10mm , ±0.1 mm ;<br>H≥10mm ,<br>±(0.01+1%H) mm   | Standard                    |
| 1MHz single element contact transducer          | 10. ~ 500.00mm                   | H < 10mm , ±0.1 mm ;<br>H≥10mm ,<br>±(0.01+1%H) mm   | Standard                    |
| 15MHz Single element delay<br>block transducer: | 3.0mm ~ 20.0mm<br>0.25m ~ 10.0mm | H < 10mm ,±0.05 mm ;<br>H≥10mm ,<br>±(0.01+0.5%H)mm  | Interface-echo<br>Echo-echo |

#### **TECHNICAL PARAMETERS**

**Resolution:** 0.001mm or 0.01 or 0.1mm optional

Sound velocity adjustment

range:

508 m/s~18699m/s

Display screen: Color TFT LCD, 320x240 pixels

Pulse Generator: Adjustable Square Wave Pulse Generator

Emission voltage: 60V, 110V, 150V, 200V optional

Emission pulse width: varies with transducer frequency

Gain range: 0-99dB, 1dB step

Frequency range: 0.5 Mhz~20Mhz

Measurement rate: standard (4Hz), fast (20Hz)

Transducer settings: 10 sets of fixed transducer setting and 22 sets of custom transducer setting

**Data Storage:** 500 data files, each capable of storing 1000 measurements and waveforms

Working environment

temperature:

0°C∼40°C

## **POWER**

**Power:** three AA battery or NiMH batteries

Power consumption: Working current does not exceed 250mA

(WiFi is turned off, brightness is dark, 4.5V)

**Size:** 187mm×87 mm×43 mm

Weight: 360g

#### **STANDARDS**

Applicable standards and specifications:

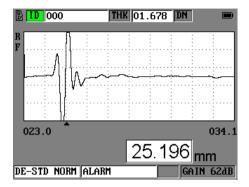
Q/HD SDF0001-2014 ultrasonic thickness gauge

JJF 1126-2004 Ultrasonic Thickness Gauge Calibration Specification

GB/T 6587 General specification for electronic measuring instruments



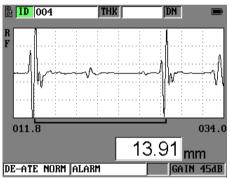




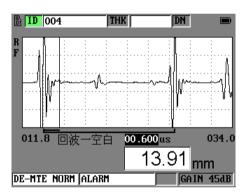








◆ The standard echo detection mode measures the thickness based on the time interval between the excitation pulse and the first back-wall echo. User can measure uncoated materials in this mode.



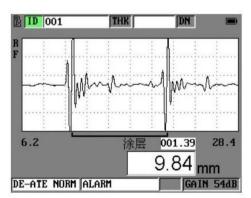



Measure in standard echo detection mode

♦ Automatic echo-echo detection mode allows thickness measurement of materials with paint or coating because the time interval between two successive back-wall echoes eliminate paint or coating thickness



Measurement in automatic E-E detection mode




Measurement in manual E-E detection mode

Paint thickness measurement can simultaneously display layer thickness and substrate thickness.



THRU-COAT mode showing the thickness of a coating and steel (waveform not activated)



THRU-COAT mode with optional waveform

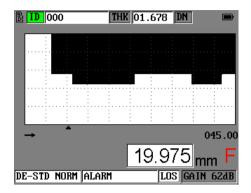
### ◆ The instrument includes three detection modes (Mode 1, Mode 2, and Mode 3):

- Mode 1: Measures the time interval between the main pulse signal and the first back-wall echo with direct contact transducer.
- Mode 2: Measure the time interval between the interface echo (or delay line echo) and the first back-wall echo with a delay line or immersion transducer.
- Mode 3: Measure the time interval between two successive back-wall echoes with a delay line or a immersion transducer.








Mode 1

Mode 3

### **Measuring Mode**

| Measuring Mode                                                     | Echo 1                                                                                                                                                                                                                                                                     | Echo 2                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode 1 Us<br>contact transducer                                    | The back echo is usually the negative electrode. However, in special applications where low acoustic impedance materials bonded to high acoustic impedance materials are measured (eg, plastic or rubber is adhered to the metal), the echoes appear to be phase inverted. | Not applicable                                                                                                                                                                                                                                                                                                 |
| Mode 2 Use a delay line transducer or a immersion transducer       | When measuring materials with high impedance such as metals and ceramics, the interface echo is usually positive, while when measuring lowimpedance materials like most plastics, the echo is negative.                                                                    | The back-wall echo is typically the negative electrode unless it is from an interface between a low acoustic impedance material and a high acoustic impedance material that are bonded together.                                                                                                               |
| Mode 3<br>Use a delay line transducer or<br>a immersion transducer | For high impedance materials, the interface echo is usually positive.                                                                                                                                                                                                      | The back echo is usually the negative electrode. However, in special measurement applications for some irregular geometry materials, the bottom echo is set to the positive electrode due to the phase distortion causing the positive electrode of the bottom echo to be clearer than the negative electrode. |

### The instrument is capable of acquiring and displaying B-scan data;



The TIME®2190 gage B-scan feature convers live thickness reading into cross-sectional images drawn on the display. This standard feature is very helpful in viewing the changes in thickness measurements over a distance. The B-scan is activated as soon as the transducer makes contact with the surface of the material.

#### ◆ The ZW5P transducer can be used to measure the thickness of steel with a surface temperature of up to 300 °C.

For every 100 °C increase in steel temperature, the sound velocity of the material drops by about 1%, so the measured value should be corrected.

Example: H0 is defined as the actual thickness value of the material, and H1 is defined as the measured value of the measurement.

so: 100°C, H0 H1×0.99 200°C, H0 H1×0.98 300°C, H0 H1×0.97

In the high temperature measurement, the two-point calibration method can also be used to eliminate the measurement error generated during high temperature measurement.

## Sound velocity of various materials

| Material       | Sound velocity(m/s) |
|----------------|---------------------|
| Aluminum       | 6470                |
| Zinc           | 4170                |
| Silver         | 3600                |
| Gold           | 3240                |
| Tin            | 2960                |
| Steel          | 5920                |
| Brass          | 4399                |
| Copper         | 4700                |
| Sus            | 5970                |
| Acrylic Resin  | 2726                |
| Chrome Steel   | 5684                |
| Water (20 ° C) | 1480                |
| Glycerin       | 1920                |
| Water Glass    | 2350                |