

#### **Standard Delivery**

| Main unit                      | 1 |
|--------------------------------|---|
| 5MHz double element transducer | 1 |
| Couplant                       | 1 |
| TIME certificate               | 1 |
| Warranty card                  | 1 |
| Instruction manual             | 1 |
|                                |   |

## **Optional Accessory**

- Standard block
- •Optional transducers (see next page)
- Software

## **Features**

- •A-scan waveform can be displayed for echo analysis and measurement of complex workpiece
- Compatible with many types of transducers, both single and dual element transducers
- •Users can set blanks to shield aftershocks or clutter
- •Echo-echo measures the true metal thickness while ignoring the thickness of coating layer.
- Thru-coat technology measures metal and nonmetallic coating thickness.
- •Signal auto-amplification function
- •Adjustable voltage variable pulse width square wave pulse generator
- •Single value B-scan display function
- •Fast measurement mode up to 20 times per second
- •Set upper and lower limits and alarm

TIME<sup>®</sup>2190<sup>NEW</sup>

**ULTRASONIC THICKNESS GAUGE** 

•Data can be output to a removable MicroSD memory card. Can store up to 500,000 measured values and waveforms.

# **Technical Specification**

| Measurement range    | 0.20~500mm (depend on probe)                                                       |
|----------------------|------------------------------------------------------------------------------------|
| Velocity range       | 508m/s~18699m/s                                                                    |
| Display screen       | Color TFT LCD, 320x240 pixels                                                      |
| Pulse generator      | Adjustable Square Wave Pulse<br>Generator                                          |
| Resolution           | 0.001mm or 0.01 or 0.1mm optional                                                  |
| Emission voltage     | 60V, 110V, 150V, 200V optional                                                     |
| Emission pulse width | varies with transducer frequency                                                   |
| Gain range           | 0-99dB, 1dB step                                                                   |
| Frequency range      | 0.5 Mhz~20Mhz                                                                      |
| Measurement rate     | standard (4Hz), fast (20Hz)                                                        |
| Transducer settings  | 10 sets of fixed transducer setting<br>and 22 sets of custom transducer<br>setting |
| Data Storage         | 500 data files, each capable of storing 1000 measurements and waveforms            |
| Working temperature  | 0°C~40°                                                                            |
| Power                | three AA battery or NiMH batteries                                                 |
| Dimensions (mm)      | 187mm×87 mm×43 mm                                                                  |
| Weight (g)           | 360g                                                                               |

## **Transducers of TIME2190**

| Transducer Type | Measuring Range<br>in Steel(mm) | Frequency                                   | Picture | Remark                                        |
|-----------------|---------------------------------|---------------------------------------------|---------|-----------------------------------------------|
| DK537EE         | 1-508                           | 5.MHz<br>Double element                     |         | Standard delivery                             |
| DC250           | 2.5-508                         | 2.25MHz<br>Double element                   | P       | Measure 225mm with coating                    |
| DLK1025         | 0.5- 12.7                       | 10Mhz<br>Single element with<br>delay block |         | Measure 0.8mm with coating                    |
| DCC110          | 7.62-508                        | 1MHz<br>Single element                      | Ò       | Measure FRP material                          |
| DLK1225         | 0.5-5.08                        | 15MHz<br>Single element                     |         | Measure very small workpiece                  |
| DHT-537         | 1-508                           | 5.MHz<br>Double element                     |         | High temperature up to 500 $^\circ$           |
| DC175           | 3.81-508                        | 1MHz<br>Double element                      | -       |                                               |
| DEFM2-SE        | 0.15-20                         | 15MHz<br>Single element                     |         | Measure thin workpiece                        |
| SZ2.5P          | 3-300                           | 2.5MHz<br>Double element                    | Ì       |                                               |
| TSTU32          | 5-40 (cast iron)                | 2MHz<br>Single element                      | Ô       | Cast iron                                     |
| ZW5P            | 4-80                            | 5MHz<br>Double element                      | O       | High temperature up to 300 $^\circ\mathrm{C}$ |

## **Detecting Modes**

•The standard echo detection mode measures the thickness based on the time interval between the excitation pulse and the first back wall echo. User can measure uncoated materials in this mode.

•Automatic echo-echo detection mode allows thickness measurement of materials with paint or coating because the time interval between two successive back-wall echoes eliminate paint or coating thickness.

- •Paint thickness measurement can simultaneously display layer thickness and substrate thickness.
- •The instrument includes three detection modes (Mode 1, Mode 2, and Mode 3)

Mode 1: Measures the time interval between the main pulse signal and the first back-wall echo with direct contact transducer. Mode 2: Measure the time interval between the interface echo (or delay line echo) and the first back-wall echo with a delay line or immersion transducer.

Mode 3: Measure the time interval between two successive back-wall echoes with a delay line or a immersion transducer.

| Measuring Mode                                                      | Echo 1                                                                                                                                                                                                                                                                             | Echo 2                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode 1 uses contact<br>transducer                                   | The back echo is usually the negativeelectrode.<br>However, in specialapplications where low<br>acousticimpedance materials bonded to<br>highacoustic impedance materials aremeasured<br>(eg, plastic or rubber isadhered to the metal),<br>the echoes appearto be phase inverted. | Not applicable                                                                                                                                                                                                                                                                                                         |
| Mode 2 uses a delay line<br>transducer or a immersion<br>transducer | When measuring materials with highimpedance<br>such as metals andceramics, the interface echo<br>is usuallypositive, while when measuring low-<br>impedance materials like most plastics, the echo<br>is negative.                                                                 | The back-wall echo is typicallythe negative<br>electrode unless it isfrom an interface between<br>a lowacoustic impedance material and a high<br>acoustic impedancematerial that are bonded<br>together.                                                                                                               |
| Mode 3 uses a delay line<br>transducer or a immersion<br>transducer | For high impedance materials, theinterface echo is usually positive.                                                                                                                                                                                                               | The back echo is usually thenegative electrode.<br>However, inspecial measurementapplications<br>for some irregulargeometry materials, the<br>bottomecho is set to the positiveelectrode due to<br>the phasedistortion causing the positiveelectrode<br>of the bottom echo tobe clearer than the<br>negativeelectrode. |

## **Applications**



Pipe



φ3 Thin Tube



Grey Cast Iron Material



Thinning of Stamping Parts



Casting Valve



Casting



LLDPE664



LPG tank



**Oil Pipeline** 







FRP Valve



FRP Oil Tank

51