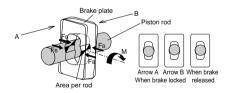
Series variation

Rodless cylinder with brake SRT series

Discontinue


Series variation

●: Standard, ⊚: Option, ■: Not available

														Mounti	ng style		Cus	hion		Opt	tion		
Variation	Model No.	Bore size (mm)			Stroke	length (r	mm)) Max. stroke length	Basic type	Axial foot type	Both sides cushion	R side cushion	L side cushion	No cushion	Floating joint	C mount bracket	Switch	Page
			200	300	400	500	600	700		800	900	1000		00	LB	В	R	L	N	Y	С		
		12, 16, 20	•	•	•	•	•	•	 	•	•	•	1000	•	•	•	•	•	•	Ø	0	0	1632
Double acting	SRT	25, 32, 40	•	•	•	•	•	•		•	•	•	1500	•	•	•	•	•	•	Ø	Ø	0	1632
		50, 63	•	•	•	•	•	•		•	•	•	2000	•	•	•	•	•	•	Ø	Ø	0	1632

Product introduction

• New brake mechanism used New slant plate method used brake mechanism provides high durability and powerful holding force (equivalent to cylinder thrust at 0.6MPa).

Applying torque M to the brake plate generates axial force FB that holds the piston rod. This secures high durability and powerful holding force.

- Easy brake release
 - For brake release, just return the tilt of brake plate to the original position by a minus headed screw driver etc.

- Piping hour reduced When supplying air to brake section, movable piping (cable bearer etc.) is not required, but just piping to the edge of flange.
- Simple structure

Very few number of brake section components, and simple structure.

• Switch can be installed. Other cylinder switches such as proximity and

reed types etc. are available.

M3V, M3H • Reed -2 wire MOV, MOH, M5V, M5H • 2 color proximity indicator light -2 wire M2WV • 2 color proximity indicator light -3 wire M3WV

• Proximity -2 wire

• Proximity -3 wire

M2V. M2H

Space saving

Low compact brake mechanism realizes space saving.

Pneumatic Components Safety Precautions

Always read before starting use

Refer to Intro 45 for general details on the cylinder, and to Intro 52 for details on the cylinder switch.

Rodless cylinder with brake SRT Series

A WARNING

Structure so that nothing directly touches the driven object or movable sections of the cylinder with brakes. Provide a protective cover so that no human-body directly touches the unit. If parts contact is possible, provide safety measures by placing a sensor to stop the cylinder or sound a warning to report danger.

2 Use a balance circuit considering cylinder protrusion.

When activating brakes at the specified position in the stroke, as with braking, or if pneumatic pressure is applied to only 1 side of the cylinder, the piston protrudes at high speed when brakes are released. This involves risk to personnel and equipment. Use a balance circuit, such as the recommended pneumatic pressure circuit, to prevent protrusion.

This brake cylinder has oilless specifications. Do not lubricate this cylinder. Otherwise, braking faults may occur.

Use pneumatics for the brake section when using the low hydraulic type middle bore size brake cylinder.

- Holding force (maximum static load) refers to performance to hold a static load without vibration or impact when brakes are activated in a no-load state. Take care when constantly using near the upper limit of the holding force.
- 4 During braking, kinetic energy is large and the braking distance is long. Thus, avoid using when brakes may be applied at the stroke limit.

Even if a cushion is provided, the back pressure is released and the cushions may not function.

If kinetic energy is large, overrun distance increases and stopping accuracy drops.

5 Do not apply loads with impact, strong vibration, or torque while brakes are activated.

If a load with impact, strong vibration, or torque is applied externally, holding force drops.

6 Consider stopping accuracy and overrun distance when braking.

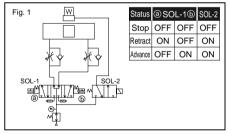
A mechanical lock is applied, so the cylinder does not stop instantly when the stop signal is issued, but stops with a timewise delay. The stroke at which the cylinder slides due to this delay is the overrun distance. The maximum and minimum width of overrun distance is stopping accuracy.

- To achieve the required stop position, move the limit switch forward by the overrun distance.
- The limit switch must have a detection length (dog length) equivalent to the overrun distance + α .
- When using the CKD cylinder switch, the working range is 7 to 16 mm, depending on the switch. If overrun distance exceeds this, provide self-holding of the contact at the switch load.

Design & Selection

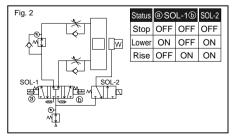
To improve stopping accuracy, minimize the time from stop signal output to brake stoppage.

Use a high-response DC control electricity circuit or solenoid valve, and set the solenoid valve as close to the cylinder as possible.


B Stopping accuracy is affected by changes in piston speed.

If piston speed changes due to load fluctuation or disturbance during cylinder reciprocation, stop position dispersion increases. Take measures to keep piston speed constant just before the stop position. Speed changes are large during the acceleration range, compared to during the cushion stroke and when starting operation, so dispersion in the stop position increases.

9 Precautions for basic circuit


· For horizontal load

Pipe as in Fig. 1. When using the rodless cylinder, the section area on both sides of the piston is equal, so the regulator for balancing is not required.

For vertical load

If the load is facing downward as in Fig. 2, the table moves in the direction of the load when brakes are released. Install a regulator with a check valve to reduce thrust in the load direction and balance the load.

(Note 1) If pressure may fluctuate due to other pneumatic components, install a dedicated regulator to stabilize operation.

WARNING

- Release brakes faster than cylinder operation. If the cylinder operates first, brakes may not be released.
- If back pressure is applied to the locking mechanism, the lock may be released. Use a discrete valve, or use an individual exhaust type manifold.

Design & Selection

- Use a 3-position PAB connection (bi-directional pressurization) valve for the cylinder drive to prevent the piston from protruding when starting.
- Use a regulator with a check valve on the side with large thrust to balance thrust, including load.

A CAUTION

- The cylinder cannot be used where welding spatter, etc., may come in contact
- 2 With the slit rodless cylinder, such as the SRL2, air leaks externally at a level that does not affect speed control.

3 Precautions in stopping accuracy

· Stop pitch and load ratio

Stopping accuracy differs with stop pitch and load ratio. The load ratio below is recommended for achieving specified stopping accuracy.

Stop pitch	Load ratio
50mm or less	20% of thrust
50mm to 100mm	40% of thrust
100mm over	60% of thrust

Selection of valve for brake

Stopping accuracy and overrun distance change with the responsiveness of the valve for braking. Use the valve listed in the Device Selection Guide. Couple the valve directly to the brake port to improve stopping accuracy.

Using a PLC

If a PLC is used as the electric control unit for the valve for brakes, stopping accuracy drops due to scan time (computing time). When using a PLC, do not assemble the valve for the brake into the PLC circuit.

- Design & Selection
 - Do not make major changes in load weight when stopped with brakes, or the stopping position may change.
 - 5 When the cable bearer slides, the protective tape may generate friction powder. Consider this when using in an environment having dust.

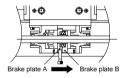
Pneumatic Components Safety Precautions

Always read before starting use

Refer to Intro 45 for general details on the cylinder, and to Intro 52 for details on the cylinder switch.

Rodless cylinder with brake SRT Series

A WARNING


Installation & Adjustment

If brakes are released when air is pressurized on only 1 side of the cylinder, the piston may protrude at high speed, causing a hazard.

Observe the points below when releasing brakes for adjustment, etc.

- Check that no one is in the movable range of the load and that no problem arises if the load moves when brakes are released.
- Take the following measures to prevent the load from dropping when brakes are released:
 - · Set the load at the lowering end
 - · Pressurize both sides
 - · Set a support column
- Confirm that air is not pressured on only one side of the cylinder when releasing brakes.

2 Manually releasing brakes

 When the cover is removed and a hexagon socket head cap screw, etc., is screwed into brake plate A and tilted in the direction of the arrow, brake plates A and B become parallel and the piston rod is freed.

If both brake plates are not tilted over completely, only one side will be released.

 When there is no air pressure, such as with vertical installation, braking force is lost when brakes are manually released. This may cause the table to move (lower) due to the weight of the load, etc.

For safety, take the following measures before manually releasing the lock:

- · Move the load to the lowest end.
- · Provide a stopper on the load.
- Supply air pressure to the rodless cylinder and balance the load.
- · During normal operation, remove the manual release bolt.

- Brakes are released manually or by pressurizing the brake release port. If brakes are left released in this state while a load is installed, the load may drop. return to the initial state after manually releasing brakes or stop the air supply to the brake release port, and confirm that brakes work before installing a load.
- 4 Do not apply brake holding force to the cylinder exceeding that indicated in the catalog.
- If there is any play, such as looseness, in the brake signal dog, stopping accuracy is affected. Securely fix to eliminate play, etc.
- If cylinder speed is fast, the detection dog must be long enough to match relay response time. If the dog is short, the stop signal is not output and operation does not stop.

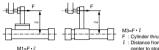
▲ CAUTION

Installation & Adjustment

- 1 Do not apply strong impact or excessive moment to the table.
- 2 When connecting to a load with external guide mechanism, align the center carefully.
 - . The longer the stroke, the greater the shaft center may deviate. Carefully consider connection (floating) so deviation is absorbed.

3 Adjust cylinder air balance.

With brakes released, place a load on the cylinder and balance the load by adjusting air pressure applied to the cylinder rod and head. Faults such as cylinder protrusion during brake release or improper brake release are prevented by accurately balancing the load.


4 Check the installation position of detectors such as the cylinder switch.

When using braking, consider overrun distance for the required stopping position, and adjust the position of detectors such as the cylinder switch.

- 5 Load fluctuation during the cylinder reciprocation stroke leads to changes in the piston speed, which in turn increases dispersion in the stop position. Place and adjust so the load does not change just before stopping in the cylinder reciprocation stroke.
- 6 Speed changes are large during the acceleration range compared to during the cushion stroke and when starting operation, so dispersion in the stop position increases. Accuracy in specifications may therefore not be attained in step operation with a short stroke from the starting position to the next position.
- 7 If the cable bearer slides, protective tape may generate friction powder. Consider this when using in an environment vulnerable to dust.

8 Check that moment, including inertia generated when moving or stopping the load, does not exceed the allowable load, or damage may result.

- · If overhang is large and the cylinder is stopped at both ends with the piston, the bending moment functions due to load inertia even within internal cushion energy absorption. If kinetic energy is large and an external cushion, etc., is used, try contact with the workpiece center of gravity when possible.
- · When selecting an external stopper, consider the bending moment generated by cylinder thrust.
- · Moment that functions when stopping with external stopper

Cylinder thrust nter to stopper

- When an external guide is installed, if the centers are not aligned, movement is not smooth and resistance caused by twisting functions as moment. Configure connection so misalignment is absorbed.
- · Example of using guide

9 Using the SRT Series

- · Avoid electrical welding after installing the rodless cylinder. If the current flows into the cylinder and generates sparks between the dust-proof belt and cylinder tube, the dust-proof belt may be damaged.
- · If a unit with excessive inertia, etc., is moved, the cylinder may be damaged or faulty operation occur. Use within the allowable range
- · Do not scratch or dent the cylinder, or these may cause operation faults.
- · If negative pressure is generated in the cylinder due to external force or inertia force, etc., the seal belt may disengage and caused air to leak externally or operation faults to occur.

SCP * 2 CMK2 CMA2 SCM SCA2 SCS CKV2 CAV2 COV* CAT MDC2 MVC SMD2 MSD/ SSD SSD (large) FC * ULKP, ULK JSK2/ JSM2 JSC3 (medium ISC3 (large) JSB3 UCAC STS/ LCS LCY STR2 UCA2 STK USSD USC MFC GLC SHC CAC3 HCM HCA MRL2 SRL2 SRG SRM SRT SRB2 Rodless type Rodless cylinder with

1 brake

Discontinue Pneumatic Components

Safety Precautions

Refer to Intro 45 for general details on the cylinder, and to Intro 52 for details on the cylinder switch.

Rodless cylinder with brake SRT Series

A WARNING

During use & maintenance

- The brake section can be removed from the cylinder body. Do not disassemble or inspect brakes or hazards may result when brakes are used again.
- 2 The required grease is applied to brakes. Avoid applying extra grease and do not wipe grease off. Do not wipe off greases on the brake shaft, neither.

4 To prevent faults, use a dust cover during operation except when manually releasing brakes.

During use & maintenance

- If the air supply pipe is thin or long, stopping accuracy drops.
- Frictional resistance increases and causes the piston speed to change when the cylinder has been stopped for a long time, such as when using first thing in the morning or afternoon. This may impair stoppage accuracy. Conduct break-in operation to obtain stable stopping accuracy.

Discontinue Rodless cylinder with brake SRT series

• Bore size : 12, 16, 20, 25 mm 32, 40, 50, 63 mm bore

Specifications

Descriptio	ns				SF	RT							
Bore size	mm	12 dia.	16 dia.	20 dia.	25 dia.	32 dia.	40 dia.	50 dia.	63 dia.				
Actuation					Double	acting							
Working fluid					Compre	ssed air							
Max. working	pressure MPa		0.7										
Min. working	Cylinder section MPa	0.2 0.15											
pressure	Brake section MPa		0.3 (Note)										
Withstanding	pressure MPa		1.05										
Ambient temp	erature °C				5 to	60							
Port size	Cylinder section		M5	R	c1/8	1/4	Rc3	/8					
	Brake section		M5			Rc	1/8						
Stroke length	tolerance mm			+	-2.0 (to 1000),	+ ^{2.5} ₀ (to 2000)						
Working pisto	n speed mm/s				50 to	1000							
Cushion					Air cu	shion							
Lubrication		Not	required (when	lubrication, use	turbine oil Class	1 ISO VG32. C	ontinue to lubric	ate once lubrica	ied.)				
Stoppage acc	uracy mm	±1.5 (300mm/s at no load)											
Holding force	N	66	118 184 288 483 754 1178						1870				

Note: Min. working pressure of brake section is the value of well balanced load.

Allowable energy absorption

Bore size	Cush	ioned	No cushion	With shock absorber (Initial set value)				
(mm)	Allowable energy absorption (J)	Cushion stroke length (mm)	Allowable energy absorption (J)	Absorbed energy (J)	Effective stroke length (mm)			
12 dia.	0.03	14.5	0.003	2.4	5.5			
16 dia.	0.22	19.2	0.007	2.4	5.5			
20 dia.	0.59	22.2	0.010	5.7	7			
25 dia.	1.40	20.9	0.015	10	9			
32 dia.	2.57	23.5	0.030	18	13			
40 dia.	4.27	23.9	0.050	50	16.5			
50 dia.	9.13	24.9	0.072	86	21			
63 dia.	17.4	29.6	0.138	86	21			

Stroke length

Bore size (mm)	Standard stroke length (mm)	Max. stroke length (mm)	Min. stroke length (mm)
12 dia.			
16 dia.			
20 dia.	200, 300, 400 500, 600, 700 800, 900, 1000	1000 (12, 16, 20 dia.)	
25 dia.		1500 (25, 32, 40 dia.)	202
32 dia.		2000 (50, 63 dia.)	200
40 dia.	800, 900, 1000	2000 (30, 03 ula.)	
50 dia.			
63 dia.	1		

Custom stroke length is available per 1 mm increment.

Note: Stroke length is limited according to load. Refer to page 1641.

SCP * 2

ULKP/ ULK

JSK2

STK

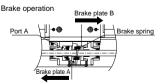
Switch specifications

One color/bi-color indicator/strong magnetic field

• One color/bi-color indic	ator/strong magnetic ne	alu				CMK2
Descriptions	Proxim	ity 2 wire	Proximi	ty 3 wire	Proximity 2 wire	CMA2
Descriptions	M2V, M2H	M2WV (2 color indicator)	M3V, M3H	M3WV (2 color indicator)	T2YD	SCM
Applications	Programma	ble controller	Programmable controller, relay	, IC circuit, small solenoid valve	Programmable controller	SCA2
Power voltage		-	DC4.5 to 28V	DC10 to 28V	-	_
Load voltage	DC10	to 30V	DC30V or less	DC30V or less	DC24V ±10%	SCS
Load current	5 to	30mA	200mA or less	150mA or less	5 to 20mA	CKV2
Light	LED (ON lighting)	Red/green LED (ON lighting)	LED (ON lighting)	Red/green LED (ON lighting)	Red/green LED (ON lighting)	CAV2/ COV * 2
						CAT

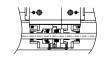
5			Reed 2 wire		MDC2				
Descriptions	MOV, N	ЮН	M5V,	M5H	MVC				
Applications	Programmable	controller, relay	Programmable controller, relay, IC circuit	(without indicator light), serial connection	SMD2				
Power voltage		-	-						
Light	DC12/24V	AC110V	DC5/12/24V or less	AC110V or less	MSD/ MSDG				
Load voltage	5 to 50mA	7 to 20mA	50mA or less	20mA or less	SSD				
Load current	LED (ON	l lighting)	Without ind	icator light	- SSD (large)				
Note 1: When load current range is within 7 to 20mA. M0 * switch can be used with AC24V, and AC48V.									

Note 1: When load current range is within 7 to 20mA, M0 * switch can be used with AC24V, and AC48V. Note 2: Please refer to Ending 1 about other switch specifications.

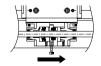

With preventive maintenance output

 VViti 	n preventive mai	ntenance output				JSM2
Doc	criptions	Proximity 3 wire	Proximity 4 wire	Proximity 3 wire	Proximity 4 wire	JSC3 (medium)
Dest	Inpuons	T2YFH/V	T3YFH/V	T2YFH/V	T3YFH/V	JSC3 (large)
Applic	Applications Programmable controller		Programmable controller, relay	Programmable controller, relay	JSB3	
ight	Installation position adjustment		Red/green LEI	D (ON lighting)		UCAC
Ĕ	Preventive maintenance output		-	Yellow LED	(ON lighting)	STS/
Ŧ	Current voltage	-	DC10 to 28V	-	DC10 to 28V	STL
utput	Load voltage	DC10 to 30V	DC30V or less	DC10 to 30V	DC30V or less	LCS
ō	Load current	DC5 to 20mA	DC50mA or less	DC5 to 20mA	DC50mA or less	LCY
wentive	Load voltage		DC30			STR2
Preve	Load voltage Load current DC20mA or less		DC50mA or less	DC5 to 20mA	DC50mA or less	UCA2

Cvlinder mass


Cylinder mass				Unit: kg	
Cymraer mass				Unit: Kg	USSD
		Mass when 0 mm strol		Additional mass	USC
Bore size (mm)	Basic type (00)	Foot type (LB)	Mass per switch (Including bracket)	per St =100mm	MFC
12 dia.	0.83	0.25		0.18	GLC
16 dia.	0.95	0.33		0.21	SHC
20 dia.	1.17	0.54		0.26	CAC3
25 dia.	2.24	1.1	0.02	0.45	НСМ
32 dia.	3.8	3.9	0.02	0.57	HCA
40 dia.	5.0	5.1		0.74	
50 dia.	7.5	7.6		0.99	MRL2
63 dia.	12.5	12.8		1.52	SRL2

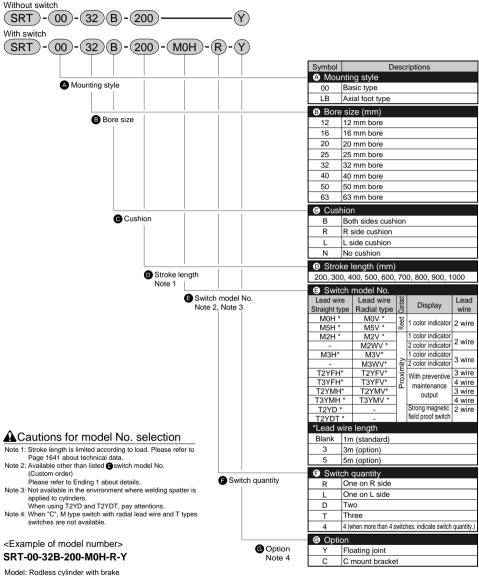
Operational principle


When air is exhausted air from port [A], the brake plate [A], [B] is pushed by the spring force, then the brake plate [A], [B] tilts to the arrow direction with using each fulcrum. This boosts the brake force by cylinder thrust, then the position of piston ród is held.

Brake release

When air is supplied from port [A], the brake plate [A], [B] is pushed by the release piston, then the brake plate [A], [B] tilts at right angle to the piston rod. A clearance is created between them, and the rod can be moved freely.

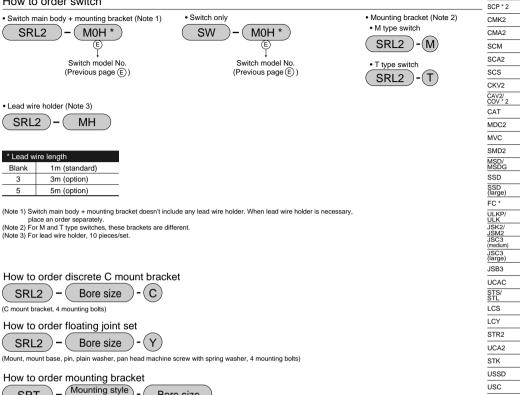
Manual brake release


Remove the cover, screw a hexagon socket head cap screw etc. into the brake plate [A], then tilt the plate to the arrow direction. This makes brake plate [A] and [B] in parallel, then releases the piston rod as freely moved. (Brake is also released when the brake plate is returned to the original slant by a minus headed screw driver etc.)

SRG SRM

SRT

SRT Series


How to order

- Mounting style : Basic type
- Bore size : 32 mm
- Cushion : Both sides cushion
- Stroke length : 200 mm
- Switch model No. : Reed switch M0H
- Switch quantity : One on R side
- G Option : Floating joint

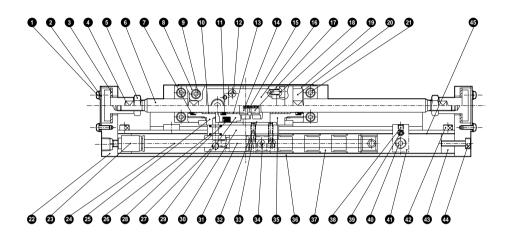
How to order switch

Bore size

SRT (LB)

(Two brackets, 4 mounting bolts)

Note: Switch bracket, C mount bracket, floating joint is common to SRL2.


1 brake

Rodless type Rodless cylinder with

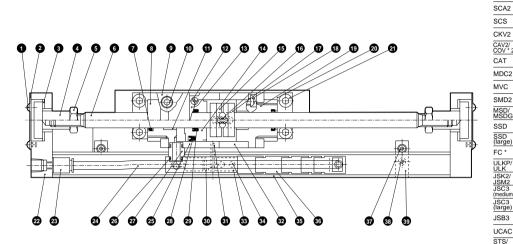
MFC

GLC SHC CAC3 HCM HCA MRL2 SRL2 SRG SRM SRT SRB2

Internal structure drawing and parts list (12 to 25 mm bore)

Parts list

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Pan head machine screw	Steel	Galvanizing	23	Push in joint		
2	Joint part cover	Aluminum alloy	Black alumite	24	Tube	Urethane rubber	
3	Slide plate	Dry bearing		25	Main body A	Aluminum alloy	
4	Floating joint	Steel	Phosphoric acid mangan	26	Gasket	Nitrile rubber	
5	Nut	Carbon steel	Galvanizing	27	Adaptor	Aluminum alloy	Black alumite
6	Brake shaft	Steel	Plated shaft	28	Release piston packing seal	Nitrile rubber	
7	Rod packing seal	Nitrile rubber		29	Release piston	Aluminum alloy	Colorless alumite
8	Brake mounting base	Aluminum alloy		30	Spacer	Aluminum alloy	Colorless alumite
9	Cap bolt with hexagon head hole	Steel	Blackening	31	Push in joint		
10	Bearing bush	Dry bearing		32	Cap bolt with hexagon head hole	Steel	Blackening
11	Release rod packing seal	Nitrile rubber		33	Main body B	Aluminum alloy	
12	Pan head machine screw	Steel	Galvanizing	34	Pan head machine screw	Steel	Galvanizing
13	Release rod bushing	Dry bearing		35	Brake end cover	Aluminum alloy	
14	Brake plate A	Cast iron	Phosphoric acid mangan	36	Cable holder	Aluminum alloy	Colorless alumite
15	Brake spring	Steel	Blackening	37	Cable bearer	Special plastic	
16	Cover	Aluminum alloy		38	Hexagon socket head set screw	Steel	Blackening
17	Brake plate B	Cast iron	Phosphoric acid mangan	39	Hexagon socket head set screw	Steel	Blackening
18	Button bolt with hexagon head hole	Steel	Blackening	40	Button bolt with hexagon head hole	Steel	Blackening
19	Brake foot bracket	Steel	Galvanizing	41	Cable holder receiving plate	Steel	Galvanizing
20	Lock nut	Steel	Galvanizing	42	Cap bolt with hexagon head hole (Note 1)	Steel	Blackening
21	Cap bolt with hexagon head hole	Steel	Blackening	43	Cable holder holding block	Aluminum alloy	Alumite
22	Edge flange	Aluminum alloy	Black alumite	44	Cap bolt with hexagon head hole	Steel	Blackening
				45	Protection tape	Silicon glass cross	

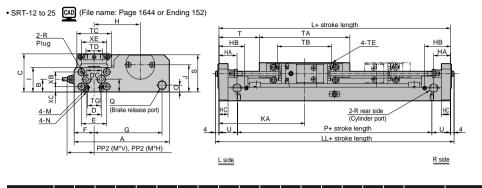

Note 1: ④ Cap bolt with hexagon head hole is not available for 12, 16, 20 mm bore.

SRT Series

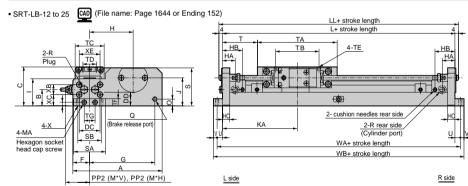
SCP * 2 CMK2 CMA2 SCM

Internal structure and parts list

Internal structure and parts list (32 to 63 mm bore)



Parts list


	13 1131							050
No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks	MF
1	Pan head machine screw	Steel	Galvanizing	21	Cap bolt with hexagon head hole	Steel	Blackening	GLO
2	Joint part cover	Aluminum alloy	Black alumite	22	Edge flange	Aluminum alloy	Black alumite	
3	Slide plate	Dry bearing		23	Push in joint			
4	Floating joint	Steel	Phosphoric acid mangan	24	Tube	Urethane rubber		CA
5	Nut	Steel	Galvanizing	25	Main body A	Aluminum alloy	Colorless alumite	HC
6	Brake shaft	Steel	Plated shaft	26	Gasket	Nitrile rubber		HC
7	Rod packing seal	Nitrile rubber		27	Spacer	Aluminum alloy		MR
8	Lock nut	Steel	Galvanizing	28	Release piston packing seal	Nitrile rubber		SRI
9	Brake mounting base	Aluminum alloy	Colorless alumite	29	Release rod packing seal	Nitrile rubber		SR
10	Cap bolt with hexagon head hole	Steel	Blackening	30	Push in joint			— SR
11	Bearing bush	Dry bearing		31	Cap bolt with hexagon head hole	Steel	Blackening	-
12	Pan head machine screw	Steel	Galvanizing	32	Main body B	Aluminum alloy	Colorless alumite	SR
13	Cover	Aluminum alloy	Colorless alumite	33	Adaptor	Aluminum alloy	Black alumite	SR
14	Release piston	Cast iron		34	Pan head machine screw	Steel	Galvanizing	7
15	Brake plate A	Cast iron	Phosphoric acid mangan	35	Cable holder	Aluminum alloy	Colorless alumite	Rodless
16	Brake spring	Steel	Blackening	36	Cable bearer	Special plastic		ess
17	Brake plate B	Cast iron	Phosphoric acid mangan	37	Button bolt with hexagon head hole	Steel	Blackening	
18	Button bolt with hexagon head hole	Steel	Blackening	38	Cable holder receiving plate	Steel	Galvanizing	lin
19	Brake end cover	Aluminum alloy	Colorless alumite	39	Pan head machine screw	Steel	Galvanizing	cylinder
20	Brake foot bracket	Steel	Galvanizing					r with

Dimensions (12 to 25 mm bore)

SRT Series

Symbol Bore size (mm)	А	В	С	D	DC	E	F	G	н	HA	ΗВ	нс	Т	J	KA	L	LL	M	И	١	١
12 dia.	94.5	16.5	39	16	11	19.5	16.5	70	46	14	22	8	27	27.5	76	152	160	M3 de	epth 5	M3 de	epth 5
16 dia.	98.5	18	43	20	12	23	18.5	72	48	14	22	8	30	31	82.5	165	173	M3 de	epth 5	M3 de	epth 5
20 dia.	105	14	42	16	16	28	22	75	51	18.5	28.5	10	27	30	94.5	189	197	M4 de	pth 6.5	M4 de	pth 6.5
25 dia.	114.5	17	53	20	26	38	26.5	80	55	19.5	5 32 12 37 37.5 107 214 22		222	M6 depth 9		oth 9 -					
Symbol	0	P	G	R	s	т	ТА	тв	тс	тр	т	те 1		U	хв	хс	XE	PF	P2 (wit	n swite	ch)
Bore size (mm)	Ŭ	F	Q		3	'	14				'		ΤG	U				M * V	M * H	T * V	Т*Н
12 dia.	7.5	144	M5	M5	38.5	35.5	81	42	29	13	M3 de	epth 5	8	4	10	11.5	19.5	24.5	26	31	28
16 dia.	7.5	157	M5	M5	42	38.5	88	48	32	15	M3 de	epth 5	12	4	11	12.5	23	26.5	28	33	30
20 dia.	7.5	148	Rc1/8	Rc1/8	41	44.5	100	60	38	18	M4 de	epth 6	14	20.5	16	6	28	29.5	31	36	33
25 dia.	9	162	Rc1/8	Rc1/8	52	46	122	70	48	20	M5 de	epth 8	-	26	23	5.5	40	34.5	36	41	38

Symbol Bore size (mm)	A	в	с	DC	DD	Е	F	G	н	HA	ΗВ	нс	I	J	KA	L	LL	0	Q	R	s	т	ТА
12 dia.	94.5	16.5	39	11	16.5	19.5	16.5	70	46	14	22	8	27	27.5	76	152	160	7.5	M5	M5	38.5	35.5	81
16 dia.	98.5	18	43	12	18	23	18.5	72	48	14	22	8	30	31	82.5	165	173	7.5	M5	M5	42	38.5	88
20 dia.	105	14	42	16	14	28	22	75	51	18.5	28.5	10	27	30	94.5	189	197	7.5	Rc1/8	Rc1/8	41	44.5	100
25 dia.	114.5	17	53	26	19	38	26.5	80	55	19.5	32	12	37	37.5	107	214	222	9	Rc1/8	Rc1/8	52	46	122
Symbol	тв	тс	TD	т	E	TG	хв	хс	XE	Р	P2 (witl	h switcł	ו)				Inst	allatio	n meth	od			
Bore size (mm)	ТР	10	טו		C	16	_∧D	VC.		11 + 1/													14/10
Dore Size (min)										M * V	M * V	T * V	T*H	SA	SB	TF	U	V	N	IA	Х	WA	WB
12 dia.	42	29	13	M3 de	epth 5	8	10	11.5		24.5	м•v 26	T*V 31	T*H 28	SA 32	SB 24	TF 8	0 6	V 4		IA X 10	X 3.4	WA 164	WВ 172
	42 48	29 32	13 15	M3 de M3 de	1	8 12	10 11	11.5 12.5				T*V 31 33		((-		_		M3				
12 dia.					epth 5	-			19.5	24.5	26		28	32	24	8	6	4	M3 M3	X 10	3.4	164	172

Series Double acting

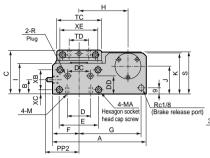
R side

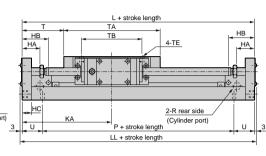
SCP * 2

CMK2 CMA2 SCM

SCA2

SCS


CKV2


SRT

Dimensions (32 to 63mm bore)

(File name: Page 1644 or Ending 152)

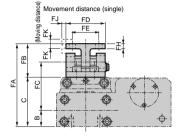


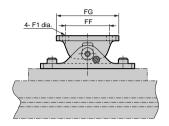
L side

Symbol Bore size (mm)	А	в	С	D	DC	DD	Е	F	G	н	HA	НВ	нс	Т	J	к	KA	L	LL	М
32 dia.	129	18.5	57	32	27	21	48	33	86	66	24	37.5	14	39	39	56	127	254	260	M6 depth 9
40 dia.	144	22	67	36	35	28	60	40	93	74	29	42	16	47	44	65	138	276	282	M8 depth 12
50 dia.	177	28	82	45	35	35	74	48	101	89	33	51	18	57	52	77	147	294	300	M8 depth 12
63 dia.	209	35	95	50	39	42	96	59	112	105	35	52	20	68	58	93	168	336	342	M10 depth 15
Symbol	МА	Р	R	s	т	ТА	тв	тс	TD	т	_	U	ХВ	хс	XE	PP	2 (wit	h swite	ch)	
Bore size (mm)	IVIA	F	r.	3	'						-	0	70	~0	^_	M*V	M*H	T*V	T*H	
32 dia.	M5	196	Rc1/4	56	60	134	80	56	20	M6 de	epth 9	29	25	6	47	41.5	43	48	45	
40 dia.	M6	210	Rc1/4	65	64	148	90	68	30	M6 de	pth 11	33	30	7	58	48.5	50	55	52	
50 dia.	M8	212	Rc3/8	77	71	152	100	80	30	M8 de	pth 13	41	36	10	70	56.5	58	68	60	
63 dia.	M8	258	Rc3/8	93	84	168	110	102	40	M8 de	pth 13	39	42	14	90	67.5	69	74	71	

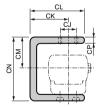
• SRT-LB-32 to 63 CAD (File name: Page 1644 or Ending 152)

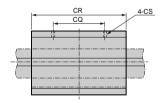
																							0
Symbol Bore size (mm)	А	в	с	DC	DD	Е	F	G	н	HA	ΗВ	нс	I	J	к	KA	L	LL	R	s	т	ТА	100
32 dia.	129	18.5	57	27	21	48	33	86	66	24	37.5	14	39	39	56	127	254	260	Rc1/4	56	60	134	cal
40 dia.	144	22	67	35	28	60	40	93	74	29	42	16	47	44	65	138	276	282	Rc1/4	65	64	148	0
50 dia.	177	28	82	35	35	74	48	101	89	33	51	18	57	52	77	147	294	300	Rc3/8	77	71	152	Ŷ
63 dia.	209	35	95	39	42	96	59	112	105	35	52	20	68	58	93	168	336	342	Rc3/8	93	84	168	
Symbol	тв	тс	TD	П	-	хв	хс	XE	PP	2 (wit	h swit	ch)				Insta	Illatior	n meth	nod				i v
Bore size (mm)	ю		טו		-	ΛD	70	~	M * V	M*H	Τ'V	T*H	SA	SB	TF	U	V	WA	Х	Х	F	MA	-
32 dia.	80	56	20	M6 de	epth 9	25	6	47	41.5	43	48	45	64	32	12	9	11	272	7			M5	2
40 dia.	90	68	30	M6 de	pth 11	30	7	58	48.5	50	55	52	80	36	15	11	9	298	9	14 spot fac	e depth 8.6	M6	ave
50 dia.	100	80	30	M8 de	pth 13	36	10	70	56.5	58	68	60	94	45	20	11	9	316	9	14 spot fac	e depth 8.6	M8	
63 dia.	110	102	40	M8 de	pth 13	42	14	90	67.5	69	74	71	116	50	25	13	12	362	11	17.5 spot fac	e depth 10.8	M8	


CAV2/ COV * CAT MDC2 MVC SMD2 MSD/ SSD SSD (large) FC * ULKP/ ULK JSK2/ JSM2 JSC3 ediun JSC3 (large) JSB3 UCAC STS/ LCS LCY STR2 UCA2 STK USSD USC MFC GLC SHC CAC3 HCM HCA MRL2 SRL2 SRG SRM SRT SRB2 Rodless type Rodless cylinder with brake



Dimensions: Option


• Floating joint CAD (File name: Page 1644 or Ending 152)



Symbol Bore size (mm)	FA	FB	FC	FD	FE	FF	FG	FH	FI	FJ	FK	В	с
12 dia.	54	21	31.5	24	16	30	40	3	3.4	3	3	10.5	33
16 dia.	58	21	34	24	16	30	40	3	3.4	3	3	12	37
20 dia.	67	25	39	30	20	40	56	4	4.5	3	3	14	42
25 dia.	78	25	47	30	20	40	56	4	6	3	3	17	53
32 dia.	95	38	55.5	45	30	50	70	6	7	5	5	18.5	57
40 dia.	105	38	62	45	30	50	70	6	7	5	5	22	67
50 dia.	126	44	73	60	40	70	90	8	9	5	5	28	82
63 dia.	139	44	79	60	40	70	90	8	9	5	5	35	95

C mount bracket CAD (File name: Page 1644 or Ending 152)

Symbol Bore size (mm)	CJ	СК	CL	СМ	CN	СР	CQ	CR	cs
12 dia.	13	27	40	22.5	50	5	42	81	M3
16 dia.	15	35.5	50	29	60	6	48	88	M3
20 dia.	18	32.5	50	26	60	6	60	100	M4
25 dia.	20	45	69	28	71	5	70	116	M5
32 dia.	20	54	81.5	33.5	80	7	80	128	M6
40 dia.	30	63	95.5	38	91.5	8	90	138	M6
50 dia.	30	74	113	48	112.5	10	100	142	M8
63 dia.	40	88	138	58	131	13	110	158	M8

Selection guide

SCP * 2

CMK2 CMA2

SCM

SCA2 SCS CKV2

CAV2/ COV*

CAT

MDC2 MVC

SMD2

MSD/ SSD SSD (large)

FC * ULKP/ ULK JSK2/ JSM2 JSC3 (medium

JSC3 (large)

JSB3 UCAC STS/ LCS LCY STR2 UCA2 STK

USSD

USC

Rodless cylinder with brake (SRT) selection guide

<STEP1>

Note: Including 0.05 (m) above distance from temporary piston center to table surface

2 Find a rough value of coefficient G according to <Table 1>.

<Table 1>

Va (average speed) = Moving distance (m/s) Moving time

Va (average speed)	Vm (speed at stroke	end)	Coefficient
(m/s)	(m/s)		G
to 0.3	to 0.65		9
to 0.6	to 1.00		15
to 0.9	to 1.30		23
to 1.2	to 2.00		40
		_	¥
	Coefficient G =		
Sele	ct bore size rougl	nly.	
M1 X G =	(N·m)	\rightarrow	(dia.)
M2 =	(N·m)	\rightarrow	(dia.)
M3 X G =	(N·m)	\rightarrow	(dia.)
W =	(N)	\rightarrow	(dia.)
$E_0 = \frac{1}{2} X m X Vm_2 =$	(J)	\rightarrow	(dia.)
(M≑ ² <u>₩</u> 98)			+
0.0	t maximum bore si	ze te	emporally. dia.

<Table 2> Allowable value Refer to the value in () for type with C mount bracket.

Descriptions Bore size (mm)	Wmax (N)	M1max (N·m)	M2max (N·m)	M3max (N·m)
12 dia.	30(15)	1.5(1)	0.6(0.3)	0.6(0.6)
16 dia.	140(70)	5(3.5)	1(0.5)	1(1)
20 dia.	200(100)	10(7)	1.5(0.7)	3(3)
25 dia.	360(180)	17(12)	5(2.5)	10(10)
32 dia.	620(310)	36(25)	10(5)	21(21)
40 dia.	970(485)	77(54)	23(11.5)	26(26)
50 dia.	1470(735)	154(108)	32(16)	42(42)
63 dia.	2320(1160)	275(193)	52(26)	76(76)

Note) C mount can be installed onto the side where the brake not provided. (Cannot be installed to brake side.)

<Table 3> allowable energy absorption (Eo)

<table 3=""> allo</table>	wable energy absorpt	ion (Eo)		MFC
Bore size	Integrated air cushion	Shock absorber	Shock absorber	GLC
(mm)	(J)	(J)	model No.	SHC
12 dia.	0.03	2.4	NCK-0.3-C	CAC
16 dia.	0.22	2.4	NCK-0.3-C	
20 dia.	0.59	5.7	NCK-0.7-C	HCM
25 dia.	1.40	10.0	NCK-1.2	HCA
32 dia.	2.57	18.0	NCK-2.6	MRL2
40 dia.	4.27	50.0	NCK-7	SRL2
50 dia.	9.13	86.0	NCK-12	SRG
63 dia.	17.4	86.0	NCK-12	000

Note) For SRT, no shock absorber is installed.

As an external damper, please use the shock absorber above.

3 Find composite moment at stroke end (MT).

(Confirm if the bore size temporally selected at 2 meets the following formula.)

M3 X G + $MT = \frac{M1 X G}{M1 X G} +$ W M2 - <1 M1max M3max Wmax M2max Μт : Composite moment (should be smaller than 1.) G : Coefficient G Wmax : Max. allowable value of W (from Table 2.) M1max : M1 maximum allowable value (from Table 2) M2max : M2 maximum allowable value (from Table 2) M3max : M3 maximum allowable value (from Table 2)

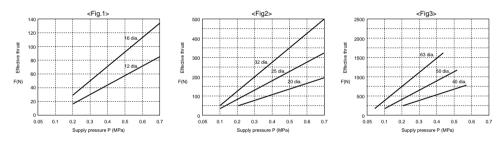
<STEP2>

Then, increase the accuracy of load factor, effective thrust, speed at stroke end, and composite moment value. · Find load factor.

$\alpha = \frac{F_0}{F} \times 100 [\%]$	Fo : R	ad factor equired force to move work piece (N). ylinder effective thrust (N) (Fig.1 to 3)
At horizontal operation	on	When vertical operation
F0 = Fw + F1 + F2 + F3 +	FL	F0 = W + F1 + F2 + F3 + FL
Fw: W X 0.2 (N)		F1: M1 X 10 Note (N)
F2 : M2 X 30 Note (N)		F3: M3 X 10 Note (N)
FL : Other resistance (guide resistance)	stance e	tc.) (N) W: Load (N)

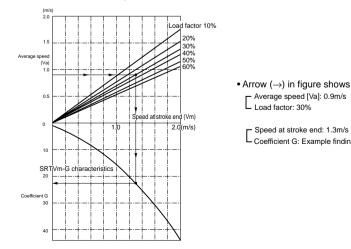
<Table 4> Reference of load factor

Working pressure (MPa)	Load factor (%)
0.2 to 0.3	$\alpha \leq 40$
0.3 to 0.6	$\alpha \leq 50$
0.6 to 0.7	$\alpha \leq 60$


- Average speed [Va]: 0.9m/s

- Speed at stroke end: 1.3m/s Coefficient G: Example finding 22.5

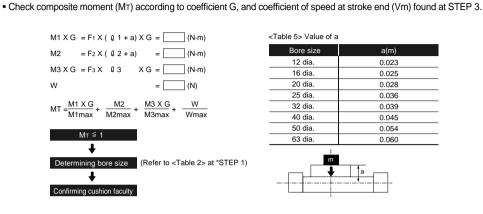
Load factor: 30%


Note: When moment is applied, coefficient compensating increase of generated frictional force

· Graph of effective thrust

<STEP3>

Find speed at stroke end (Vm) according to coefficient G, average speed (Va), and load factor found at STEP 2



• Graph of speed - coefficient G <Fig.3>

SCP * 2

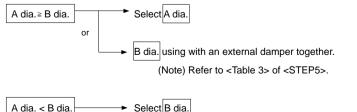
<STEP4>

<STEP5>

Confirming cushion faculty

	<table 3=""> allowa</table>	ible energy absorpti	on (Eo)	
	Bore size (mm)	Integrated air cushion (J)	Shock absorber (J)	Shock absorber model No.
	12 dia.	0.03	2.4	NCK-0.3-C
$E = \frac{1}{2} X m X Vm^2$	16 dia.	0.22	2.4	NCK-0.3-C
$E = \frac{1}{2} \times 111 \times 111$	20 dia.	0.59	5.7	NCK-0.7-C
E : Kinetic energy at stroke end (J)	25 dia.	1.40	10.0	NCK-1.2
0 7 ()	32 dia.	2.57	18.0	NCK-2.6
m : Load mass (kg) Vm : Piston speed rush into cushion (m/s)	40 dia.	4.27	50.0	NCK-7
vin . Fision speed fush into cushion (n/s)	50 dia.	9.13	86.0	NCK-12
	63 dia.	17.4	86.0	NCK-12

Note) For SRT, no shock absorber is installed.


As an external damper, please use the shock absorber above.

<STEP6>

Bore size determined by cushion faculty is assumed as A dia. (Bore size determined at STEP5)

Bore size determined according to load conditions is assumed as B dia. (bore size determined according to

STEP 4)

CMK2 CMA2 SCM SCA2 SCS CKV2 CAV2/ COV * CAT MDC2 MVC SMD2 MSD/ SSD SSD (large) FC * ULKP/ ULK JSK2/ JSM2 JSC3 (medium JSC3 (large) JSB3 UCAC STS/ LCS LCY STR2 UCA2 STK USSD USC MFC GLC SHC CAC3 HCM HCA MRL2 SRL2 SRG SRM SRT SRB2 Rodless type Rodless cylinder with

1 brake