

Precision regulator **RP1000** Series

Port size: Rc1/4

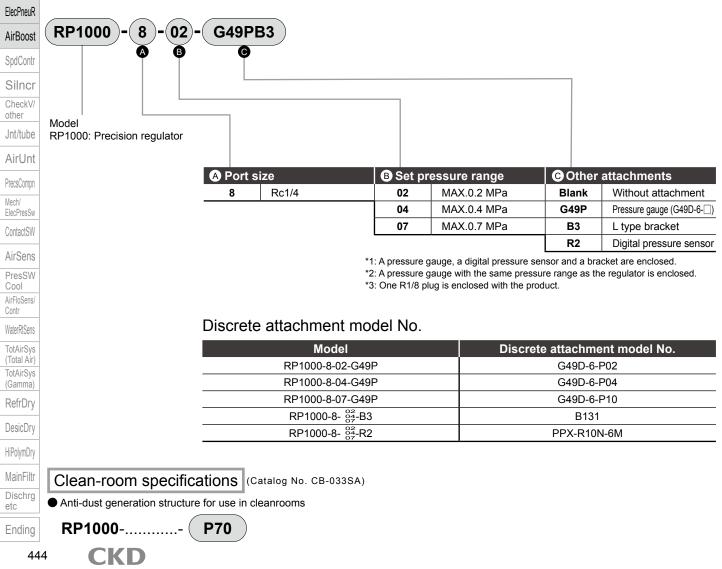
Specifications

PresSW

PrecsR

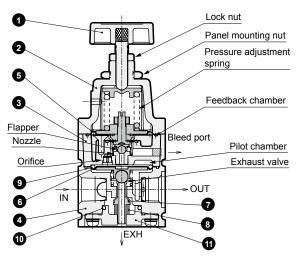
Clean FR

Sh SION FImR 0il-l Med No (PTF Out FR (Re Con Lg


hutoff	Specifications 1 MPa = 10 bar				
04	Descriptions		RP1000-8-02	RP1000-8-04	RP1000-8-07
lowStart	Working fluid		Compressed clean air (refer to recommended air circuit on page 453)		
nResistFR	Max. working pressure	MPa	1.0 (≈150 psi, 10 bar)		
il-ProhR	Min. working pressure	MPa	Set pressure +0.1 (≈15 psi, 1 bar) *1		
	Proof pressure	MPa	1.5 (≈220 psi, 15 bar)		
edPresFR	Ambient / fluid temperatures	°C	-5 (2	23°F) to 60 (140°F) (no freezing) *3
o Cu/	Set pressure	MPa	0.003 (≈0.44 psi) to 0.2 (≈29 psi)	0.005 (≈0.73 psi) to 0.4 (≈58 psi)	0.005 (≈0.73 psi) to 0.7 (≈100 psi)
TFE FRL	Sensitivity			Within 0.1% of full scale	
utdrs FR	Repeatability			Within ±0.5% of full scale	
R.L	Air consumption *2	ℓ/min(ANR)	1.3 0	rless	3.4 or less
Related)	Port size			Rc1/4	
ompFRL	PRL Pressure gauge port size Rc1/8				
gFRL	Weight	g		250	

*1: Flow rate of the secondary side is to be zero. For RP1000-8-04, if the set pressure is 0.3 MPa and over, increase +0.2 MPa in the set pressure.

*2: Conditions where the primary pressure is 0.7 MPa. Air is released to the atmosphere normally.

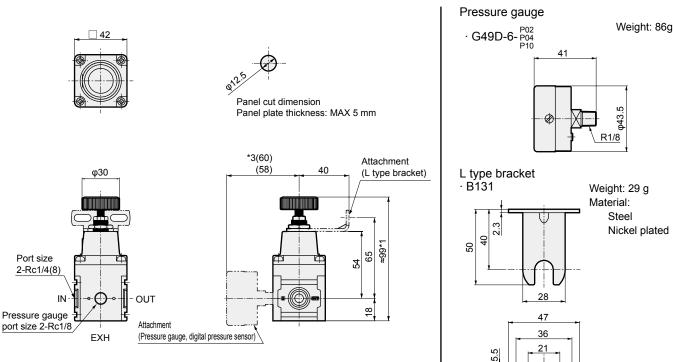

*3: The range is -5 to 50°C when a digital pressure sensor is used. VacF/R

How to order

RP1000 Series

Internal structure and parts list

No.	Part name	Material
1	Pressure adjustment knob	Polyacetal resin, stainless steel
2	Cover	Aluminum alloy die-casting
3	Pilot body assembly	Aluminum alloy die-casting, etc.
4	Body	Aluminum alloy die-casting
5	Pilot diaphragm	Hydrogenated nitrile rubber
6	Main diaphragm	Hydrogenated nitrile rubber
7	Valve	Hydrogenated nitrile rubber, stainless steel
8	Bottom rubber	Silicone rubber
9	O-ring	Nitrile rubber
10	O-ring	Hydrogenated nitrile rubber
11	Bottom plug	Polybutylene terephthalate resin


Internal structure/external dimensions

Operational explanation Air supplied from the IN side is prevented from flowing to the OUT side by the Ø valve. Some supplied air passes through the orifice to flow into the pilot chamber. When the O pressure adjustment knob is rotated, the pressure adjustment spring is compressed, and the **G** pilot diaphragm and the flapper are pushed down to close the nozzle. If the pressure in the pilot chamber rises, the ③ main diaphragm is forced lower to open the **O** valve, and to supply air to the OUT side. The intake air flows into the feedback chamber, and works on the G pilot diaphragm. If the diaphragm is forced upward until the air reaches the pressure of the regulator spring, the G pilot diaphragm and flapper are forced upward to open the nozzle, and an extremely small amount of air is released to the atmosphere to reduce pressure in the pilot chamber. At the same time, the OUT side pressure works on the **G** main diaphragm to force it upward, and the **3** valve is closed and the set pressure is maintained. When the air is consumed and the pressure drops on the OUT side, the pressure in the feedback chamber also drops. The G pilot diaphragm and the flapper are forced lower to close the nozzle. Pressure in the pilot chamber rises, causing the ⁽³⁾ main diaphragm to operate and open the ⁽³⁾ valve, compensating for any drop in pressure. If the OUT side pressure increases further than the set pressure, the pressure in the feedback chamber also increases. The **G** pilot diaphragm and the flapper are forced upward to open the nozzle. This allows the pressure in the pilot chamber to decrease, and the Omain diaphragm is forced upward to open the exhaust valve, and the surplus pressure is exhausted from EXH port in OUT side to the atmosphere. This pilot pressure control method using the nozzle and flapper can follow up a minimal pressure change, which enables the high precision pressure control.

Repair parts list

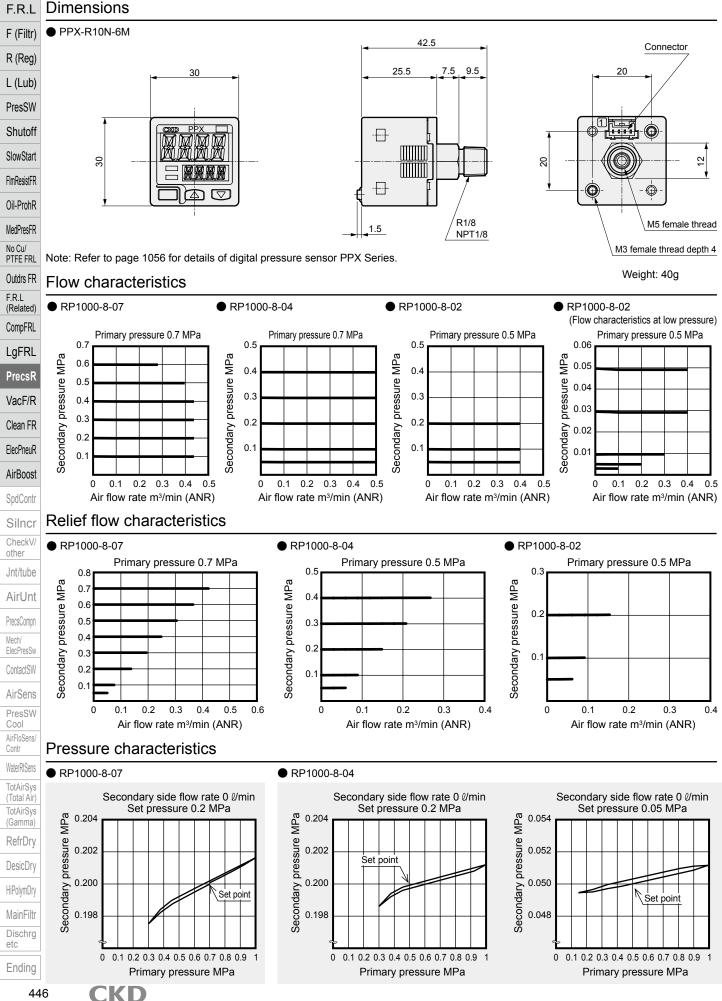
For 0.2 and 0.4 MPa		
Model No.	No.	
RP1000-PILOT-ASSY	0 , 0	
RP1000-DIAPHRAGM-ASSY	() , ()	
RP1000-VALVE-ASSY	0, 8, 0	
For 0.7 MPa		
	No.	
For 0.7 MPa		
For 0.7 MPa Model No.	No.	
For 0.7 MPa Model No. RP1000-PILOT-ASSY-07	No.	

Dimensions CAD

*1: Dimensions at the setting pressure of 0 MPa

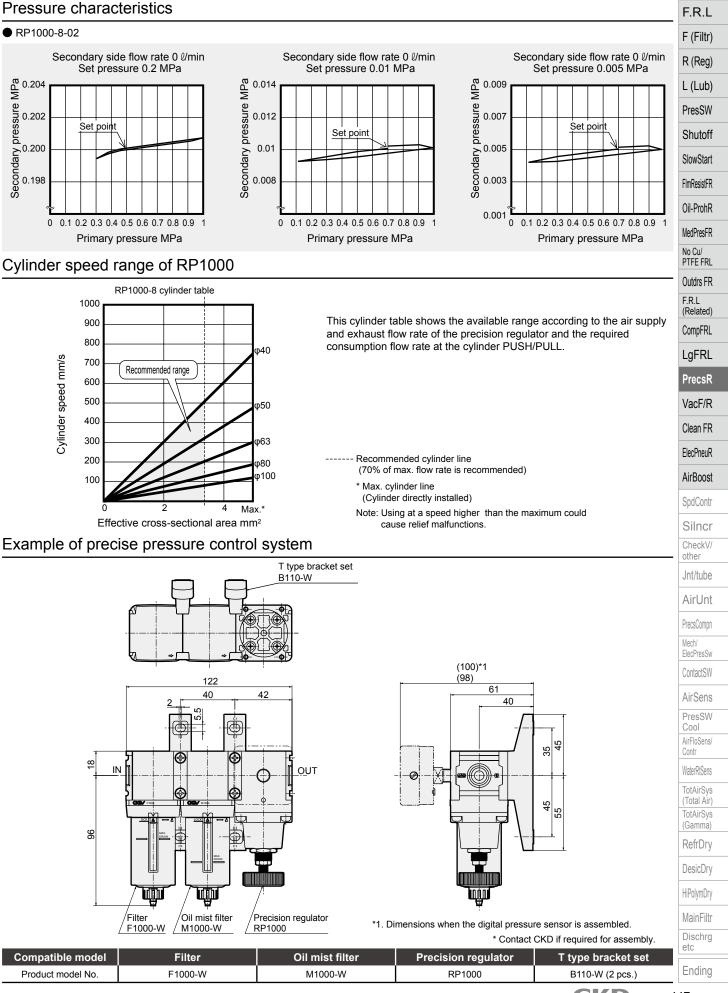
*2: Pressure gauge, digital pressure sensor and bracket are optional.

*3. Dimensions when the digital pressure sensor is assembled.


CKD

A

F.R.L


F (Filtr)

RP1000 Series

RP1000 Series

Pressure characteristics/technical data

Precision regulator

RP2000 Series

Port size: Rc1/4 Rc3/8

Specifications

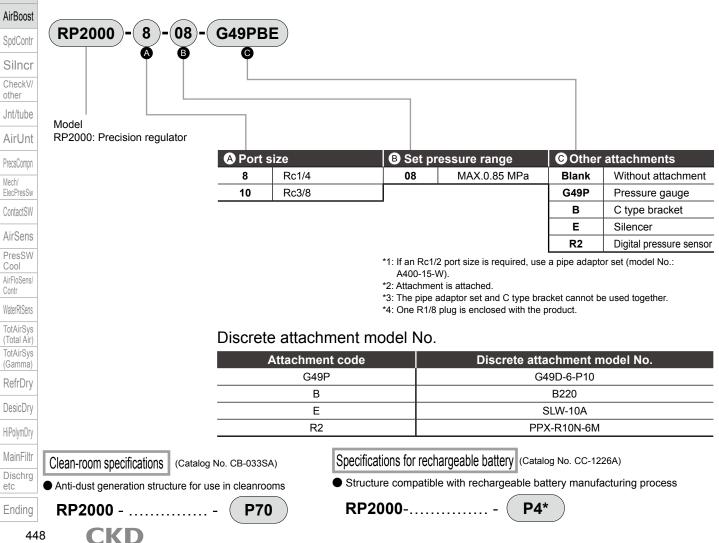
F.R.L

F (Filtr) R (Reg)

L (Lub) PresSW

VacF/R

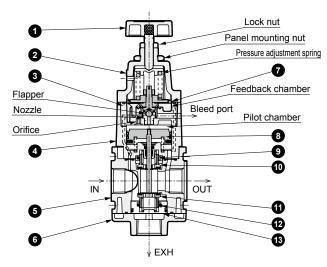
Clean FR


ElecPneuR

Shutoff						
ClouiCtart	Descriptions		RP2000-8-08	RP2000-10-08		
SlowStart	Working fluid		Compressed clean air (refer to recommended air circuit on page 453)			
FImResistFR	Max. working pressure	MPa	1.0 (≈150 psi, 10 bar)			
Oil-ProhR	Min. working pressure	MPa	Set pressure +0.1 (Set pressure +0.1 (≈15 psi, 1 bar) *1		
	Proof pressure	MPa	1.5 (≈220 p	si, 15 bar)		
MedPresFR	Ambient / fluid temperatures	°C	-5 (23°F) to 60 (140	°F) (no freezing) *3		
No Cu/	Set pressure	MPa	0.03 (≈4.4 psi, 0.3 bar) to	0.03 (≈4.4 psi, 0.3 bar) to 0.85 (≈120 psi, 8.5 bar)		
PTFE FRL	Sensitivity		Within 0.2% of full scale			
Outdrs FR	Repeatability		Within ±0.5% of full scale			
F.R.L	Air consumption	l/min(ANR)	5 or less *2			
(Related) CompFRL	Port size		Rc1/4	Rc3/8		
	Exhaust side port size		Rc3/8			
LgFRL	Pressure gauge port size		Rc1/8			
DrocoD	Weight	g 470		0		
PrecsR						

*1: Flow rate of the secondary side is to be zero.

*2: Conditions where the primary pressure is 0.7 MPa and set pressure is 0.3 MPa. Consumed air is normally released to the atmosphere from the bleed port and EXH port. So, air consumption is the total of consumption volume released from the bleed port and EXH port. Air 1 U/min. (ANR) or less is released from EXH port. *3: The range is -5 to 50°C when a digital pressure sensor is used.


How to order

RP2000 Series

Internal structure/external dimensions

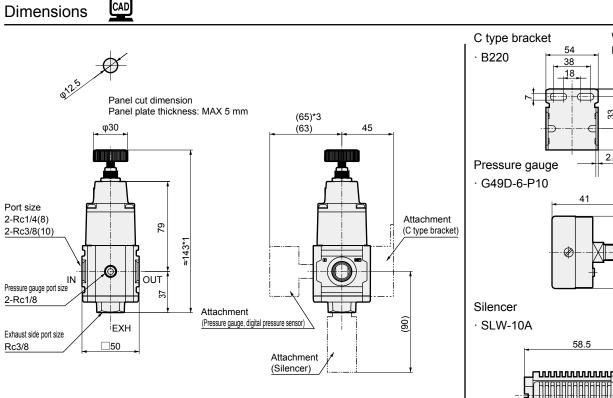
Internal structure and parts list

No.	Part name	Material
1	Pressure adjustment knob	Polyacetal resin, stainless steel
2	Cover	Aluminum alloy die-casting
3	Pilot body assembly	Aluminum alloy die-casting, etc.
4	Top body assembly	Aluminum alloy die-casting, etc.
5	Body	Aluminum alloy die-casting
6	Exhaust adaptor	Aluminum alloy die-casting
7	Pilot diaphragm	Hydrogenated nitrile rubber
8	Piston assembly	Aluminum, stainless steel, etc.
9	O-ring	Nitrile rubber
10	Exhaust valve	Copper alloy, hydrogenated nitrile rubber
11	Air supply valve	Copper alloy, hydrogenated nitrile rubber
12	O-ring	Nitrile rubber
13	Bottom cap	Copper alloy

Operational explanation

Air supplied from IN side is stopped its flow to OUT side by the air supply valve. Some supplied air passes through the orifice to flow into the pilot chamber.

When the **1** pressure adjustment knob is rotated, the pressure adjustment spring is compressed, and the O pilot diaphragm and the flapper are pushed down to close the nozzle.


Pressure in the pilot chamber rises, forcing the piston lower to open the **1** air supply valve, and to supply air to OUT side. The intake air flows into the feedback chamber, and works on the **0** pilot diaphragm. If the diaphragm is forced upward until the air reaches the pressure of the regulator spring, the Ø pilot diaphragm and flapper are forced upward to open the nozzle, and an extremely small amount of air is released to the atmosphere to reduce pressure in the pilot chamber. At the same time, the OUT side pressure works on the piston to force it upward, the @ air supply valve is closed and the set pressure is maintained

When the air is consumed and the pressure drops on the OUT side, the pressure in the feedback chamber also drops. The O pilot diaphragm and the flapper are forced lower to close the nozzle Pressure in the pilot chamber rises, causing the piston to open the air supply valve, compensating for any drop in pressure. If the OUT side pressure increases further than the set pressure, the pressure in the feedback chamber also increases. The Opilot diaphragm and the flapper are forced upward to open the nozzle. This allows the pressure in the pilot chamber to decrease, and the piston is forced upward to open the @exhaust valve; the surplus pressure is pumped from EXH port on the OUT side to the atmosphere. This pilot pressure control method using the nozzle and flapper can follow up a minimal pressure change, which enables the high precision pressure control.

Repair parts list

Part name	Model No.
Pilot body assembly	RP2000-PILOT-ASSY
Pilot diaphragm	RF2000-FILOT-A331
Top body assembly	RP2000-TOP-BODY-ASSY
Air supply valve	
O-ring	RP2000-BTM-VALVE-ASSY
Bottom cap	
	Pilot body assembly Pilot diaphragm Top body assembly Air supply valve O-ring

Note: Parts No. (8), (9), (10) are contained in the top body assembly (4)

*2: Pressure gauge, digital pressure sensor, C type bracket and silencer are optionally included.

*3. Dimensions when the digital pressure sensor is assembled.

R3/8 CKD

Weight: 150g

Weight: 86g

043.5

Weight: 15g

10 p25

449

R1/8

Steel

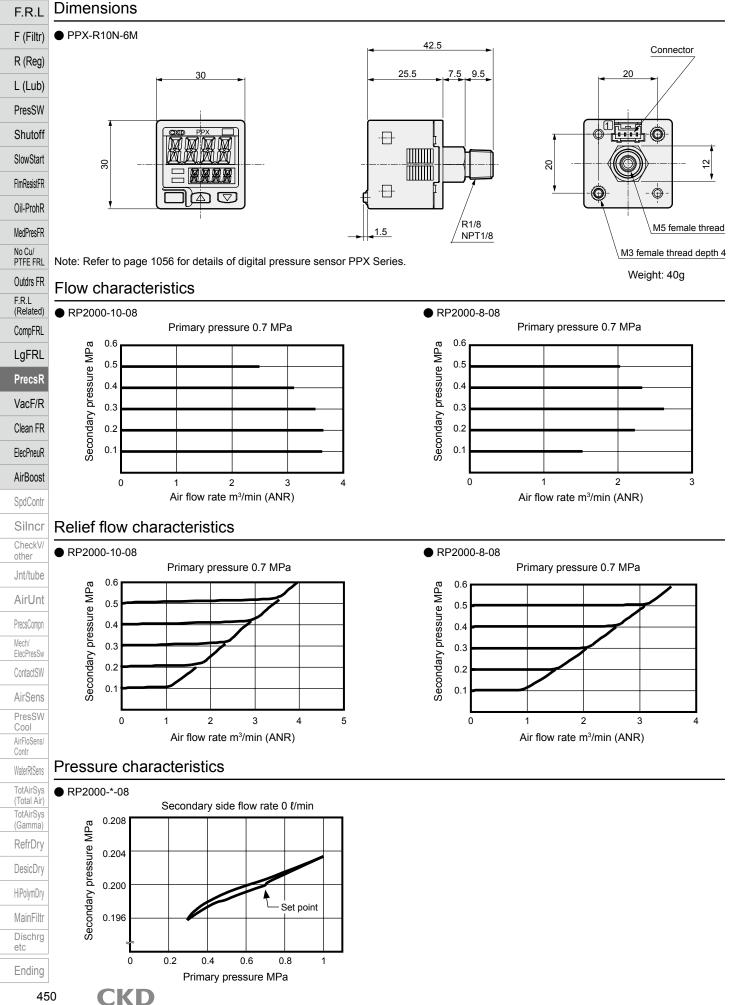
Zinc

plated

Material:

4 33

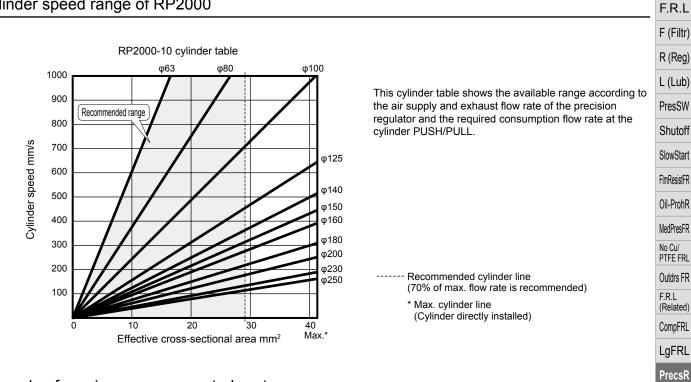
2.3

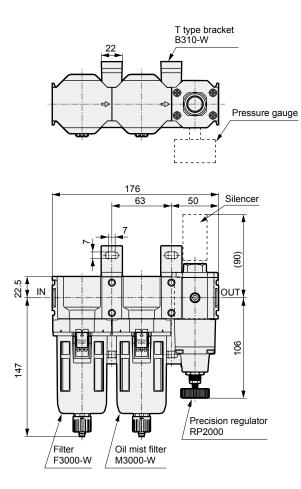

41

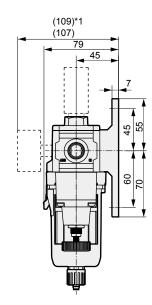
F.R.L

F (Filtr)

R (Reg)


RP2000 Series


RP2000 Series


Technical data

Cylinder speed range of RP2000

Example of precise pressure control system

*1. Dimensions when the digital pressure sensor is assembled.

* Contact CKD if required for assembly.

Compatible model	Filter	Oil mist filter	Precision regulator	T type bracket set	Dischrg
Product model No.	F3000-W	M3000-W	RP2000	B310-W (2 pcs.)	etc

Ending

VacF/R Clean FR

ElecPneuR AirBoost SpdContr Silncr

CheckV/ other Jnt/tube

AirUnt

PrecsCompn

AirSens

PresSW

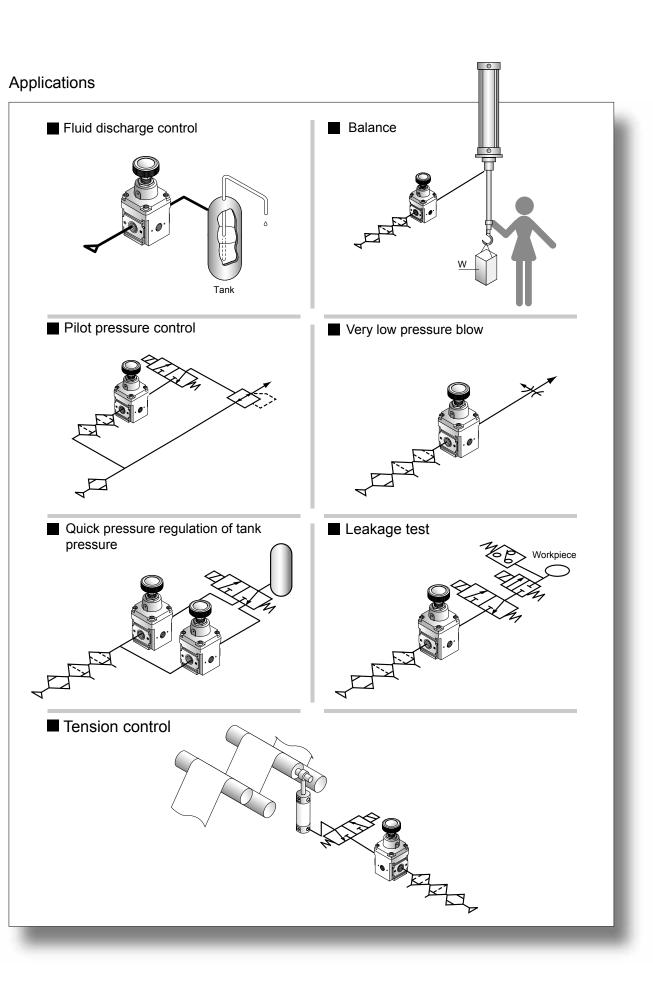
WaterRtSens

TotAirSys (Total Air) TotAirSys (Gamma)

RefrDry

DesicDry

HiPolymDry


MainFiltr

Cool AirFloSens/

Contr

Mech/ ElecPresSw ContactSW

RP1000/2000 Series

