Altivar 71

Programming manual

Retain for future use

Variable speed drives
for asynchronous motors

Software V1.2

Contents

Before you begin 4
Documentation structure 5
Software enhancements 6
Steps for setting up the braking unit 8
Factory configuration 9
Application functions 10
Setup - Preliminary recommendations 14
Graphic display termina 16
Description of terminal 16
Description of the graphic screen 17
First power-up - [5. LANGUAGE] menu 20
Subsequent power ups 21
Programming: Example of accessing a parameter 22
Quick navigation 23
Integrated display terminal 26
Functions of the display and the keys 26
Accessing menus 27
Accessing menu parameters 28
[2. ACCESS LEVEL] (LAC-) 29
Structure of parameter tables 32
Interdependence of parameter values 33
Finding a parameter in this document 34
[1.1 SIMPLY START] (SIM-) 35
[1.2 MONITORING] (SUP-) 43
[1.3 SETTINGS] (SEt-) 52
[1.4 MOTOR CONTROL] (drC-) 66
[1.5 INPUTS / OUTPUTS CFG] (I-O-) 85
[1.6 COMMAND] (CtL-) 113
[1.7 APPLICATION FUNCT.] (FUn-) 126
[1.8 FAULT MANAGEMENT] (FLt-) 210
[1.9 COMMUNICATION] (COM-) 234
[1.10 DIAGNOSTICS] 238
1.11 IDENTIFICATION 240
[1.12 FACTORY SETTINGS] (FCS-) 241
1.13 USER MENU] (USr-) 244
1.14 PROGRAMMABLE CARD] (PLC-) 245
3. OPEN/SAVE AS] 246
[4. PASSWORD] (COd-) 248
[6 MONITORING CONFIG.] 250
[7 DISPLAY CONFIG.] 254
[MULTIPOINT SCREEN] 259
Maintenance 260
Faults - Causes - Remedies 261
User settings tables 267
ndex of functions 269
Index of parameter codes 270

Read and understand these instructions before performing any procedure on this drive.

DANGER

HAZARDOUS VOLTAGE

- Read and understand the Installation Manual before installing or operating the ATV71 drive. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.
- The user is responsible for compliance with all international and national electrical standards in force concerning protective grounding of all equipment.
- Many parts of this variable speed drive, including the printed circuit boards, operate at the line voltage. DO NOT TOUCH.
Use only electrically insulated tools.
- DO NOT touch unshielded components or terminal strip screw connections with voltage present.
- DO NOT short across terminals PA/+ and PC/- or across the DC bus capacitors.
- Install and close all the covers before applying power or starting and stopping the drive.
- Before servicing the variable speed drive
- Disconnect all power.
- Place a "DO NOT TURN ON" label on the variable speed drive disconnect.
- Lock the disconnect in the open position.
- Disconnect all power including external control power that may be present before servicing the drive. WAIT 15 MINUTES to allow the DC bus capacitors to discharge. Then follow the DC bus voltage measurement procedure given in the Installation Manual to verify that the DC voltage is less than 45 V . The drive LEDs are not accurate indicators of the absence of DC bus voltage.
Electric shock will result in death or serious injury.

CAUTION

DAMAGED EQUIPMENT

Do not operate or install any drive that appears damaged. Failure to follow this instruction can result in equipment damage.

The following Altivar 71 technical documents are available on the Telemecanique website (www.telemecanique.com) as well as on the CD-ROM supplied with the drive.

Installation Manual

This describes how to assemble and connect the drive.

Programming manual

This describes the functions, parameters and use of the drive terminal (integrated display terminal and graphic display terminal). The communication functions are not described in this manual, but in the manual for the bus or network used.

Communication Parameters Manual

This manual describes:

- The drive parameters with specific information for use via a bus or communication network.
- The operating modes specific to communication (state chart).
- The interaction between communication and local control.

Manuals for Modbus, CANopen, Ethernet, Profibus, INTERBUS, Uni-Telway, FIPIO and Modbus Plus, etc.

These manuals describe the assembly, connection to the bus or network, signaling, diagnostics, and configuration of the communicationspecific parameters via the integrated display terminal or the graphic display terminal.
They also describe the communication services of the protocols.

ATV 58-58FIATV 71 Migration Manual

This manual describes the differences between the Altivar 71 and the Altivar 58/58F and explains how to replace an Altivar 58 or 58F, including how to replace drives communicating on a bus or a network.

Software enhancements

Since the Altivar ATV 71 was first launched, it has benefited from the addition of several new functions. Software version V1.1 has now been updated to V1.2. The new version can be substituted for the old one without making any changes.
Although this documentation relates to version V1.2, it can still be used with version V1.1, as the update merely involves the addition of new values and parameters and none of the previous version parameters have been modified or removed.
The software version is indicated on the nameplate attached to the body of the drive.

Enhancements made to version V1.2 in comparison to V1.1

Factory setting

Note 1: In version V1.1, the analog input was $0 \pm 10 \mathrm{~V}$. For safety reasons, in the new version this input has been set to $0+10 \mathrm{~V}$. Note 2: In version V1.1, analog output AO1 was assigned to the motor frequency. In the new version, this output is not assigned at all.
With the exception of these two parameters, the factory settings of version V 1.1 remain the same in the new version. The new functions are factory-set to disabled.

Motor frequency range

The maximum output frequency has been extended from 1000 to 1600 Hz (depending on the drive rating and control profile).

New parameters and functions

Menu [1.2 MONITORING] (SUP-)

Addition of internal states and values relating to the new functions described below.

Menu [1.3 SETTINGS] (SEt-)

- [High torque thd.] (ttH) page 64.
- [Low torque thd.] (ttL) page 64.
- [Pulse warning thd.] (FqL) page 65.
- [Freewheel stop Thd.] (FFt) page 65.

Menu[1.4 MOTOR CONTROL] (drC-)

- [rpm increment] (InSP) page 67.
- Extension of the following configurations to all drive ratings; previously limited to $45 \mathrm{~kW}(60 \mathrm{HP})$ for ATV71•eゃM3X and to 75 kW (100 HP) for ATV71e๗eN4:synchronous motor[Sync. mot.] (SYn) page 69, sinus filter [Sinus filter] (OFI) page $\underline{79}$, noise reduction [Noise reduction] (nrd) page 80, braking balance [Braking balance] (bbA) page 82.

Menu [1.5 INPUTS I OUTPUTS CFG] (I-O-)

- Input Al1 can now be configured to $0+10 \mathrm{~V}$ or $0 \pm 10 \mathrm{~V}$ via [Al1 Type] (Al1t) page 91.
- [AI net. channel] (AIC1) page 95.
- New methods of assigning relays and logic outputs page 100 : rope slack, high torque threshold, low torque threshold, motor in forward rotation, motor in reverse rotation, measured speed threshold reached, load variation detection.
- Analog output AO1 can now be used as a logic output and assigned to relay functions and logic outputs, page 105.
- New method of modifying the scale of analog outputs page 107 using the parameters [Scaling AOx min] (ASLx) and [Scaling AOx max] (ASHx).
- New methods of assigning logic outputs page 108: signed motor torque and measured motor speed.
- New methods of assigning alarm groups page 112 : rope slack, high torque threshold, low torque threshold, measured speed threshold reached, load variation detection.

Software enhancements

Menu [1.7 APPLICATION FUNCT.] (Fun-)

- The summing, subtraction and multiplication reference functions can now be assigned to virtual input [Network AI] (AIU1) page 133.
- New parameter [Freewheel stop Thd.] (FFt) page 137 used to set a threshold for switching to freewheel at the end of a stop on ramp or fast stop.
- Brake engage at regulated zero speed [Brake engage at 0] (bECd) page 158.
- Weight [Weight sensor ass.] (PES) page 163 can now be assigned to virtual input [Network AI] (AIU1).
- New "rope slack" function page 167, with the parameters [Rope slack config.] (rSd) and [Rope slack trq level] (rStL).
- Use of the ramp [Acceleration 2] (AC2) page 175 when starting and "waking up" the PID function.
- The torque limitation [TORQUE LIMITATION] (tOL-) page 182 can now be configured in whole $\%$ or in 0.1% increments using [Torque increment] (IntP) and assigned to virtual input [Network AI] (AIU1).
- New "stop at distance calculated after deceleration limit switch" function page 191, with the parameters [Stop distance] (Std), [Rated linear speed] (nLS) and [Stop corrector] (SFd).
- Positioning by sensors or limit switch [POSITIONING BY SENSORS] (LPO-) page 192 can now be configured in positive logic or negative logic using [Stop limit config. (SAL) and [Slowdown limit cfg.] (dAL).
- Parameter set switching [PARAM. SET SWITCHING] (MLP-) page 195 can now be assigned to the frequency thresholds attained [Freq. Th. att.] (FtA) and [Freq. Th. 2 attain.] (F2A).
- New half-floor: menu [HALF FLOOR] (HFF-) page 208.

Menu [1.8 FAULT MANAGEMENT] (FLt)

- Possibility of reinitializing the drive without turning it off, via [Product reset] (rP) page 213.
- Possibility of reinitializing the drive via a logic input without turning it off, using [Product reset assig.] (rPA) page 213.
- The possibility of configuring the "output phase loss" fault [Output Phase Loss] (OPL) page 217 to [Output cut] (OAC) has been extended to all drive ratings (previously limited to $45 \mathrm{~kW}(60 \mathrm{HP})$ for ATV71eeeM3X and 75 kW (100HP) for ATV71eeゃN4).
- The external fault [EXTERNAL FAULT] (EtF-) page 220 can now be configured in positive or negative logic via [External fault config.] (LEt).
- New monitoring function based on speed measurement via "Pulse input" page 227, via the [FREQUENCY METER] menu (FqF-).
- New function for detecting load variation page 229, via the [DYNAMIC LOAD DETECT] menu (dLd-).
- Short-circuit faults on the braking unit can now be configured via[Brake res. fault Mgt] bUb) page 231 .

Menu [7 DISPLAY CONFIG.]

- In [7.4 KEYPAD PARAMETERS] page 258, the [KEYPAD CONTRAST] and [KEYPAD STAND-BY] parameters to adjust the contrast and stand-by mode of the graphic display unit.

Steps for setting up the braking unit

INSTALLATION

$\square 1$ Consult the Installation Manual

PROGRAMMING

■ 2 Power up without run command - If you are using a separate power supply for the control section, follow the instructions on page 14.

3 Select the language, if the drive has a graphic display terminal

4 Configure the [SIMPLY START]
(5 1 П -) menu
Tips:

- Before you start programming, complete the user setting tables, page 267 .
- Perform an auto-tuning operation to optimize performance, page 41.
- If you get lost, return to the factory settings, page 243 .

Note: Check that the wiring of the drive is compatible with its configuration.

2-wire or 3-wire control
Macro configuration

- Motor parameters Perform an auto-tuning operation
Motor thermal current
- Acceleration and deceleration ramps
Speed variation range
$\square 5$ Start

Factory configuration

Drive factory settings

The Altivar 71 is factory-set for the most common operating conditions:

- Macro configuration: Start/Stop
- Motor frequency: 50 Hz
- Constant torque application, with sensorless flux vector control
- Normal stop mode on deceleration ramp
- Stop mode in the event of a fault: freewheel
- Linear, acceleration and deceleration ramps: 3 seconds
- Low speed: 0 Hz
- High speed: 50 Hz
- Motor thermal current = rated drive current
- Standstill injection braking current $=0.7 \times$ rated drive current, for 0.5 seconds
- No automatic starts after a fault
- Switching frequency 2.5 kHz or 4 kHz depending on drive rating
- Logic inputs:
- LI1: forward, LI2: Forward (2 operating direction), 2-wire control on transition
- L13, L14, LI5, LI6: inactive (not assigned)
- Analog inputs:
- Al1: speed reference $0+10 \mathrm{~V}$
- AI2: 0-20 mA, inactive (not assigned)
- Relay R1: The contact opens in the event of a fault (or drive off).
- Relay R2: Inactive (not assigned)
- Analog output AO1: 0-20 mA, inactive (not assigned)

If the above values are compatible with the application, the drive can be used without changing the settings.

Option card factory settings

The option card inputs/outputs are not factory-set.

Application functions

The tables on the following pages show the most common combinations of functions and applications, in order to guide your selection. The applications in these tables relate to the following machines in particular:

- Hoisting: cranes, overhead cranes, gantries (vertical hoisting, translation, slewing), lifting platforms
- Elevators: elevators in retrofit up to 1.2 m/s
- Handling: palletizers/depalletizers, conveyors, roller tables
- Packing: carton packers, labeling machines
- Textiles: weaving looms, carding frames, washing machines, spinners, drawing frames
- Wood: automatic lathes, saws, milling
- High inertia: centrifuges, mixers, unbalanced machines (beam pumps, presses)
- Process

Each machine has its own special features, and the combinations listed here are neither mandatory nor exhaustive.
Some functions are designed specifically for a particular application. In this case, the application is identified by a tab in the margin on the relevant programming pages.

Motor control functions

		Applications							
Functions	Page	은 ¢ ¢ (1)	気				J O 3		u U Oin
V/f ratio	$\underline{69}$			\square			\square	\square	
Sensorless flux vector control	$\underline{69}$	\square							
Flux vector control with sensor	$\underline{69}$	\square							
2-point vector control	$\underline{69}$	\square				\square			
Open-loop synchronous motor	$\underline{69}$					\square			
Output frequency of up to 1600 Hz	67					\square	\square		
Motor overvoltage limiting	80					\square	\square		
DC bus connection (see User's Manual)	-					\square			\square
Motor fluxing using a logic input	150	\square		\square	\square				
Switching frequency of up to 16 kHz	79		\square			\square	\square		
Auto-tuning	68	\square							

Application functions

Functions on speed references

Functions	Page	Applications							
			$\stackrel{n}{4}$		은 든 ©		O 0 3		¢ U ¢ íL
Differential bipolar reference	88	\square		\square	■				
Reference delinearization (magnifying glass effect)	$\underline{90}$	\square		\square					
Frequency control input	122					\square			\square
Reference switching	123-132				\square				
Reference summing	131				\square				
Reference subtraction	131				\square				
Reference multiplication	131				\square				
S ramps	134	\square	\square	\square					
Jog operation	141			\square		\square			\square
Preset speeds	142	\square	\square	\square	\square			\square	
+ speed / - speed using single action pushbuttons (1 step)	$\underline{145}$								\square
+ speed / - speed using double action pushbuttons (2 steps)	145	\square							
+/-speed around a reference	$\underline{147}$					\square			\square
Save reference	$\underline{149}$								\square

Application functions

Application-specific functions

		Applications							
Functions	Page		$\stackrel{\text { N }}{\substack{ \pm}}$	$\begin{aligned} & \text { 으 } \\ & \overline{\bar{I}} \\ & \text { 듶 } \end{aligned}$	¢		\square 0 3 3		0 0 U O 0-
Fast stop	137						\square		
Limit switch management	$\underline{151}$	\square	\square	\square					
Brake control	$\underline{153}$	\square	\square						
Load measurement	162		\square						
High-speed hoisting	164	\square							
Rope slack	167	-							
PID regulator	169								\square
Torque monitoring	$\underline{178}$					\square			\square
Motor/generator torque limit	$\underline{181}$			\square		\square		\square	\square
Load sharing	82			\square					
Line contactor control	$\underline{185}$	\square		\square			\square		
Output contactor control	187								
Positioning by limit switches or sensors	189				\square				
Stop at distance calculated after deceleration limit switch	191			\square	\square				
ENA system (mechanical with unbalanced load)	77							\square	
Parameter switching	$\underline{194}$	\square							
Motor or configuration switching	197	\square		\square	\square				
Traverse control	$\underline{200}$					\square			
Stop configuration	137			\square		\square	\square	\square	
Evacuation	$\underline{207}$		\square						
Half floor	208		\square						

Application functions

Safety functions/fault management

Functions	Page	Applications							
			$\stackrel{n}{4}$	$\begin{aligned} & \text { 으 } \\ & \text { 흐 } \\ & \text { 듣 } \end{aligned}$	$\begin{aligned} & \text { Do } \\ & \text { 咅 } \\ & \text { ®in } \end{aligned}$		잉 3		¢0
Power Removal (safety function, see User's Manual)	-	■	■	■	\square	■	\square	\square	\square
Deferred stop on thermal alarm	$\underline{219}$		■						
Alarm handling	112	■	■	\square	\square	■	\square	\square	\square
Fault management	$\underline{211}$ to $\underline{\underline{233}}$	\square							
IGBT tests	$\underline{222}$	\square							
Catch a spinning load	215					\square	\square	\square	
Braking resistor thermal protection	231	\square	\square	\square	\square				
Motor protection with PTC probes	$\underline{211}$	\square							
Undervoltage management	221					\square	\square	\square	
4-20mA loss	$\underline{223}$	\square	\square	\square		\square	\square		\square
Uncontrolled output cut (output phase loss)	217			\square					
Automatic restart	$\underline{214}$			\square					
Use of the "Pulse input" input to measure the speed of rotation of the motor.	$\underline{227}$	\square	\square	\square					
Load variation detection	229	\square							

Setup - Preliminary recommendations

Turning on and configuring the drive

DANGER

UNINTENDED EQUIPMENT OPERATION

- Before turning on and configuring the Altivar 71, check that the PWR (POWER REMOVAL) input is deactivated (at state 0) in order to prevent unintended operation.
- Before turning on the drive, or when exiting the configuration menus, check that the inputs assigned to the run command are deactivated (at state 0) since they can cause the motor to start immediately.

Failure to follow these instructions will result in death or serious injury.

CAUTION

INCOMPATIBLE LINE VOLTAGE

Before turning on and configuring the drive, ensure that the line voltage is compatible with the supply voltage range shown on the drive nameplate. The drive may be damaged if the line voltage is not compatible.

Failure to follow this instruction can result in equipment damage.

Separate control section power supply

When the drive control section is powered independently of the power section (P24 and 0 V terminals), whenever an option card is added or replaced, only the power section must be supplied with power next time the drive is powered up.
By default the new card would not be recognized and it would be impossible to configure it, thereby causing the drive to lock in fault mode.

Power switching via line contactor

CAUTION

- Avoid operating the contactor frequently (premature ageing of the filter capacitors).
- Cycle times < 60 s may result in damage to the pre-charge resistor.

Failure to follow this instruction can result in equipment damage.

User adjustment and extension of functions

- The display unit and buttons can be used to modify the settings and to extend the functions described in the following pages.
- Return to factory settings is made easy by the [1.12 FACTORY SETTINGS] (FCS-) menu, see page 241.
- There are three types of parameter:
- Display: Values displayed by the drive
- Adjustment: Can be changed during operation or when stopped
- Configuration: Can only be modified when stopped and no braking is taking place. Can be displayed during operation.

DANGER

UNINTENDED EQUIPMENT OPERATION

- Check that changes made to the settings during operation do not present any danger.
- We recommend stopping the drive before making any changes.

Failure to follow these instructions will result in death or serious injury.

Setup - Preliminary recommendations

Starting

Important:

- In factory settings mode, the motor can only be supplied with power once the "forward", "reverse" and "DC injection stop" commands have been reset:
- On power-up or a manual fault reset or after a stop command If they have not been reset, the drive will display "nSt" but will not start.
- If the automatic restart function has been configured ([Automatic restart] (Atr) parameter in the [1.8-FAULT MANAGEMENT] (FLt-) menu, see page 214), these commands are taken into account without a reset being necessary.

Test on a low power motor or without a motor

- In factory settings mode, [Output Phase Loss] detection (OPL) page 217 is active (OPL = YES). To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives), deactivate [Output Phase Loss] (OPL = no).
- Configure [Motor control type] (Ctt) = [V/F 2pts] (UF2) or [V/F 5pts] (UF5) ([1.4-MOTOR CONTROL] (drC-) menu, see page 69)

CAUTION

- Motor thermal protection will not be provided by the drive if the motor current is less than 0.2 times the rated drive current. Provide an alternative means of thermal protection.

Failure to follow this instruction can result in equipment damage.

Using motors in parallel

- Configure [Motor control type] (Ctt) = [V/F 2pts] (UF2) or [V/F 5pts] (UF5) ([1.4-MOTOR CONTROL] (drC-) menu, see page 69)

CAUTION

- Motor thermal protection is no longer provided by the drive. Provide an alternative means of thermal protection on every motor.

Failure to follow this instruction can result in equipment damage.

Graphic display terminal

Although the graphic display terminal is optional for low-power drives, it is a standard component on high-power drives (see catalog). The graphic display terminal can be disconnected and connected remotely (on the door of an enclosure for example) using the cables and accessories available as options (see catalog).

Description of terminal

Note: Buttons 3, 4, 5 and 6 can be used to control the drive directly, if control via the terminal is activated.

Disconnected terminal

When the terminal is disconnected, 2 LEDs become visible:

Graphic display terminal

Description of the graphic screen

1. Display line. Its content can be configured; the factory settings show:

- The drive state (see page 18)
- The active control channel:
- Term: Terminals
- HMI: Graphic display terminal
- MDB: Integrated Modbus
- CAN: Integrated CANopen
- NET: Communication card
- APP: Controller Inside card
- Frequency reference
- Current in the motor

2. Menu line. Indicates the name of the current menu or submenu.
3. Menus, submenus, parameters, values, bar charts, etc., are displayed in drop-down window format on a maximum of 5 lines. The line or value selected by the navigation button is displayed in reverse video.
4. Section displaying the functions assigned to the F1 to F4 keys and aligned with them, for example:

- Code F1 : Displays the code of the selected parameter, i.e., the code corresponding to the 7 -segment display.
- HELP F1 : Contextual help
- << F2 : Navigate horizontally to the left, or go to previous menu/submenu or, for a value, go to the next digit up, displayed in reverse video (see the example on page 19).
- \gg F3 : Navigate horizontally to the right or go to next menu/submenu (going to the [2 ACCESS LEVEL] menu in this example) or, for a value, go to the next digit down, displayed in reverse video (see the example on page 19).
- Quick F4 : Quick navigation, see page $\underline{23}$.

The function keys are dynamic and contextual.
Other functions (application functions) can be assigned to these keys via the [1.6 COMMAND] menu.
5.

Indicates that there are no more levels below this display window. Indicates that there are more levels below this display window.
6.Indicates that this display window does not scroll further up.
Indicates that there are more levels above this display window.

Graphic display terminal

Drive state codes:

- ACC: Acceleration
- CLI: Current limit
- CTL: Controlled stop on input phase loss
- DCB: DC injection braking in progress
- DEC: Deceleration
- FLU: Motor fluxing in progress
- FST: Fast stop
- NLP: No line power (no line supply on L1, L2, L3)
- NST: Freewheel stop
- OBR: Auto-adapted deceleration
- PRA: Power Removal function active (drive locked)
- RDY: Drive ready
- RUN: Drive running
- SOC: Controlled output cut in progress
- TUN: Auto-tuning in progress
- USA: Undervoltage alarm

Graphic display terminal

Example configuration windows:

RDY	Term	+0.00 Hz	OA
	5 LANGUAGE		
English			
Français Deutsch Español			\checkmark
Italiano			
	\ll	\gg	Quick
Chinese			

When only one selection is possible, the selection made is indicated by \checkmark Example: Only one language can be chosen.

PARAMETER SELECTION	
1.3 SETTINGS	
Ramp increment	
Acceleration	
Deceleration	
Acceleration 2	
Deceleration 2	

When multiple selection is possible, the selections made are indicated by \square Example: A number of parameters can be chosen to form the [USER MENU].

Example configuration window for one value:

The << and >> arrows (keys F2 and F3) are used to select the digit to be modified, and the navigation button is rotated to increase or decrease this number.

Graphic display terminal

First power-up - [5. LANGUAGE] menu

The first time the drive is powered up, the user will automatically be guided through the menus as far as [1. DRIVE MENU]. The parameters in the [1.1 SIMPLY START] submenu must be configured and auto-tuning performed before the motor is started up.

Subsequent power ups

ENT or ESC

RDY \quad Term $\quad+38 \mathrm{~Hz}$	0.0 A
MAIN MENU	
1 DRIVE MENU	
2 ACCESS LEVEL	
3 OPEN / SAVE AS	
4 PASSWORD	
5 LANGUAGE	
Code	

Switches to [1. DRIVE MENU] 3 seconds later.

If no operator inputs are made, switches to "Display" automatically 10 seconds later (the display will vary depending on the selected configuration).

Users can return to [MAIN MENU] by pressing ENT or ESC.

Graphic display terminal

Programming: Example of accessing a parameter

Accessing the acceleration ramp

Note:

- To select a parameter:
- Turn the navigation button to scroll vertically.
- To modify a parameter:
- Use the << and >> keys (F2 and F3) to scroll horizontally and select the digit to be modified (the selected digit changes to white on a black background).
- Turn the navigation button to modify the digit.
- To cancel the modification:
- Press ESC.
- To save the modification:
- Press the navigation button (ENT).

Graphic display terminal

Quick navigation

If the "Quick" function is displayed above the F4 key, you can gain quick access to a parameter from any screen.

Example:

RDY	Term	+0.00 Hz
1.4 MOTOR CONTROL		
Standard mot. freq:	50 Hz IEC	
Rated motor power:	$0.37 \mathrm{~kW}(0.5 \mathrm{HP})$	
Rated motor volt.:	206 V	
Rated mot. current:	1.0 A	
Rated motor freq.:	50.0 Hz	
Code		\ll

Press F4 to access the Quick screen, which contains
4 selection options.

- [HOME]: Return to [MAIN MENU].

- [DIRECT ACCESS TO...] : Opens the direct access window, which will contain the text "1". The function keys << and >> (F2 and F3) can be used to select each of the numbers and the navigation button to increment or decrement the numbers: 1.3 in the example below.

- [10 LAST MODIFICATIONS]: Opens a window in which the last 10 parameters modified can be accessed directly.

Graphic display terminal

[MAIN MENU] - Menu mapping

Content of [MAIN MENU] menus

[1 DRIVE MENU]	See next page
[2 ACCESS LEVEL]	Defines which menus can be accessed (level of complexity)
[3 OPEN / SAVE AS]	Can be used to save and recover drive configuration files
[4 PASSWORD]	Provides password protection for the configuration
[5 LANGUAGE]	Language selection
[6 MONITORING CONFIG.]	Customization of information displayed on the graphic display terminal during operation
[7 DISPLAY CONFIG.]	• Customization of parameters • Custoation of a customized user menu Cution of the visibility and protection mechanisms for menus and parameters

Graphic display terminal

[1 DRIVE MENU]

RDY	Term	+0.00Hz	0A
1 DRIVE MENU			
1.1 SIMPLY START			
1.2 MONITORING			
1.3 SET 1.4 MO 1.5 INP	NGS	ROL	
Code	<<	>>	Quick
1.6 COMMAND			
1.7 APPLICATION FUNCT.			
1.8 FAULT MANAGEMENT			
1.9 COMMUNICATION			
1.10 DIAGNOSTICS			
1.11 IDENTIFICATION			
1.12 FACTORY SETTINGS			
1.13 USER MENU			
1.14 PR	GRAMm	BLE CA	

Content of [1. DRIVE MENU] menus:

[1.1 SIMPLY START]:
[1.2 MONITORING]:
[1.3 SETTINGS]:
[1.4 MOTOR CONTROL]:
[1.5 INPUTS / OUTPUTS CFG]:
[1.6 COMMAND]:
[1.7 APPLICATION FUNCT.]:
[1.8 FAULT MANAGEMENT]:
[1.9 COMMUNICATION]:
[1.10 DIAGNOSTICS]:
[1.11 IDENTIFICATION]:
[1.12 FACTORY SETTINGS]:
[1.13 USER MENU]:
[1.14 PROGRAMMABLE CARD]: :

Simplified menu for a quick start
Visualization of current, motor and input/output values
Accesses the adjustment parameters, which can be modified during operation
Motor parameters (motor nameplate, auto-tuning, switching frequency, control algorithms, etc.)
I/O configuration (scaling, filtering, 2-wire control, 3-wire control, etc.)
Configuration of command and reference channels (graphic display terminal, terminals, bus, etc.)
Configuration of application functions (e.g., preset speeds, PID, brake logic control, etc.)
Configuration of fault management
Communication parameters (fieldbus)
Motor/drive diagnostics
Identifies the drive and the internal options
Access to configuration files and return to factory settings
Specific menu set up by the user in the [7. DISPLAY CONFIG.] menu
Configuration of optional Controller Inside card

Integrated display terminal

Low-power Altivar 71 drives (see catalog) feature an integrated display terminal with a 7-segment 4-digit display. The graphic display terminal described on the previous pages can also be connected to these drives as an option.

Functions of the display and the keys

Note

- Pressing or does not store the selection.
- Press and hold down (>2 s) or ∇ to scroll through the data quickly.

Save and store the selection: ENT

The display flashes when a value is stored.
Normal display, with no fault present and no startup:

- 43.0 : Display of the parameter selected in the SUP menu (default selection: motor frequency)
- CLI: Current limit
- CtL: Controlled stop on input phase loss
- dCb: DC injection braking in progress
- FLU: Motor fluxing in progress
- FSt: Fast stop.
- nLP: No line power (no line supply on L1, L2, L3)
- nSt: Freewheel stop
- Obr: Auto-adapted deceleration
- PrA: Power Removal function active (drive locked)
- rdY = Drive ready
- SOC: Controlled output cut in progress
- tUn: Auto-tuning in progress
- USA: Undervoltage alarm

The display flashes to indicate the presence of a fault.

Accessing menus

A dash appears after menu and submenu codes to differentiate them from parameter codes.
Examples: FUn- menu, ACC parameter.
The grayed-out menus may not be accessible depending on the control access (LAC) configuration.

Accessing menu parameters

Save and store the displayed selection : ENT

All the menus are "drop-down" type menus, which means that after the last parameter, if you continue to press $\boldsymbol{\nabla}$, you will return to the first parameter and, conversely, you can switch from the first parameter to the last parameter by pressing $\boldsymbol{\Delta}$.

Selection of multiple assignments for one parameter

Example: List of group 1 alarms in [INPUTS / OUTPUTS CFG] menu (I-O-)
A number of alarms can be selected by "checking" them as follows.

The digit on the right indicates: 4 selected
\square not selected.

The same principle is used for all multiple selections.

With graphic display terminal

Basic

Access to 5 menus only, and access to 6 submenus only in the
[1. DRIVE MENU] menu.
A single function can be assigned to each input.

Standard
This is the factory-set level. Access to 6 menus only, and access to all submenus in the [1. DRIVE MENU] menu.
A single function can be assigned to each input.

RDY	MAIN MENU
$+0.00 \mathrm{~Hz}$	
2 DRIVE MENU	
2 ACCESS LEVEL	
3 OPEN / SAVE AS	
4 PASSWORD	
5 LANGUAGE	
Code	

6 MONITORING CONFIG.
7 DISPLAY CONFIG.

Expert

Access to all menus and submenus as for [Advanced] level, and access to additional parameters.
Several functions can be assigned to each input.

7 DISPLAY CONFIG.

[2. ACCESS LEVEL] (LAC-)

With integrated display terminal:

Code	Name/Description	Factory setting
L A [-		Std
b 55	- bAS: Limited access to SIM, SUP, SEt, FCS, USr, COd and LAC menus. Only one function can be assigned to each input. - Std: Access to all menus on the integrated display terminal. Only one function can be assigned to each input. - AdU: Access to all menus on the integrated display terminal. Several functions can be assigned to each input. - EPr: Access to all menus on the integrated display terminal and access to additional parameters. Several functions can be assigned to each input.	
5td		
Adu		
EPr		

Comparison of the menus that can be accessed on the graphic display terminal/ integrated display terminal

(1) Can be accessed if the Controller Inside card is present.

Structure of parameter tables

The parameter tables in the descriptions of the various menus can be used with both the graphic display terminal and the integrated display terminal. They, therefore, contain information for these two terminals in accordance with the description below.

Example:

1. Name of menu on 4-digit 7-segment display.
2. Submenu code on 4-digit 7 -segment display.
3. Parameter code on 4-digit 7-segment display.
4. Parameter value on 4-digit 7 -segment display.
5. Name of menu on graphic display terminal.
6. Name of submenu on graphic display terminal.
7. Name of parameter on graphic display terminal.
8. Value of parameter on graphic display terminal.

N Note:

- The text in square brackets [] indicates what you will see on the graphic display terminal.
- The factory settings correspond to [Macro configuration] (CFG) $=[$ Start/Stop] (StS). This is the macro configuration set at the factory.

Interdependence of parameter values

The configuration of certain parameters modifies the adjustment range of other parameters, in order to reduce the risk of errors. This may result in the modification of a factory setting or a value you have already selected.

Example:

1. [Current Limitation] (CLI) page 59 set to 1.6 In or left at its factory setting, 1.5 In
2. [Switching freq.] (SFr) page 59 set to 1 kHz (and confirmed with "ENT") restricts [Current Limitation] (CLI) to 1.36 In
3. If [Switching freq.] (SFr) is increased to 4 kHz , [Current limitation] (CLI) is no longer restricted, but remains at 1.36 In. If you require 1.6 In , you must reset [Current Limitation] (CLI).

Finding a parameter in this document

The following assistance with finding explanations on a parameter is provided:

- With the integrated display terminal: Direct use of the parameter code index, page $\underline{270}$, to find the page giving details of the displayed parameter.
- With the graphic display terminal: Select the required parameter and press F1: [Code]. The parameter code is displayed instead of its name while the key is held down.

Example: ACC

Then use the parameter code index, page 270, to find the page giving details of the displayed parameter.

With graphic display terminal:

With integrated display terminal:

The [1.1-SIMPLY START] (SIM-) menu can be used for fast startup, which is sufficient for the majority of applications.

The parameters in this menu can only be modified when the drive is stopped and no run command is present, with the following exceptions:

- Auto-tuning, which causes the motor to start up
- The adjustment parameters on page 42

Note : The parameters of the [1.1 SIMPLY START] (SIM-) menu must be entered in the order in which they appear, as the later ones are dependent on the first ones.
For example [2/3 wire control] (tCC) must be configured before any other parameters.
The [1.1 SIMPLY START] (SIM-) menu should be configured on its own or before the other drive configuration menus. If a modification has previously been made to any of them, in particular in [1.4 MOTOR CONTROL] (drC-), some [1.1 SIMPLY START] (SIM-) parameters may be changed, for example, the motor parameters, if a synchronous motor has been selected. Returning to the [1.1 SIMPLY START] (SIM-) menu after modifying another drive configuration menu is unnecessary but does not pose any risk. Changes following modification of another configuration menu are not described, to avoid unnecessary complication in this section.

Macro configuration

Macro configuration provides a means of speeding up the configuration of functions for a specific field of application.
7 macro configurations are available:

- Start/stop (factory configuration)
- Handling
- General use
- Hoisting
- PID regulator
- Communication bus
- Master/slave

Selecting a macro configuration assigns the parameters in this macro configuration.
Each macro configuration can still be modified in the other menus.

[1.1 SIMPLY START] (SIM-)

Macro configuration parameters

Assignment of the inputs/outputs

Input/ output	[Start/Stop]	[M. handling]	[Gen. Use]	[Hoisting]	[PID regul.]	[Network C.]	[Mast.I slave]
Al1	[Ref. 1 channel] (PID reference)	[Ref. 2 channel] ([Ref. 1 channel] = integrated Modbus) (1)	[Ref. 1 channel]				
AI2	[No]	[Summing ref. 2]	[Summing ref. 2]	[No]	[PID feedback]	[No]	[Torque reference]
AO1	[No]						
R1	[No drive fit]						
R2	[No]	[No]	[No]	[Brk control]	[No]	[No]	[No]
LI1 (2-wire)	[Forward]						
LI2 (2-wire)	[Reverse]						
LI3 (2-wire)	[No]	[2 preset speeds]	[Jog]	[Fault reset]	[PID integral reset]	[Ref. 2 switching]	[Trq/spd switching]
LI4 (2-wire)	[No]	[4 preset speeds]	[Fault reset]	[External fault]	[2 preset PID ref.]	[Fault reset]	[Fault reset]
LI5 (2-wire)	[No]	[8 preset speeds]	[Torque limitation]	[No]	[4 preset PID ref.]	[No]	[No]
LI6 (2-wire)	[No]	[Fault reset]	[No]	[No]	[No]	[No]	[No]
LI1 (3-wire)	Stop						
LI2 (3-wire)	[Forward]						
LI3 (3-wire)	[Reverse]						
LI4 (3-wire)	[No]	[2 preset speeds]	[Jog]	[Fault reset]	[PID integral reset]	[Ref. 2 switching]	[Trq/spd switching]
LI5 (3-wire)	[No]	[4 preset speeds]	[Fault reset]	[External fault]	[2 preset PID ref.]	[Fault reset]	[Fault reset]
LI6 (3-wire)	[No]	[8 preset speeds]	[Torque limitation]	[No]	$\begin{aligned} & \text { [4 preset PID } \\ & \text { ref.] } \end{aligned}$	[No]	[No]
Option cards							
LI7 to LI14	[No]						
LO1 to LO4	[No]						
R3/R4	[No]						
Al3, Al4	[No]						
RP	[No]						
AO2	[I motor]	[I motor]	[1 motor]	[I motor]	[I motor]	[I motor]	[I motor]
AO3	[No]	[Sign. torque]	[No]	[Sign. torque]	[PID Output]	[No]	[Motor freq.]
Graphic display terminal keys							
F1 key	[No]	[No]	[No]	[No]	[No]	Control via graphic display terminal	[No]
$\begin{aligned} & \text { F2, F3, F4 } \\ & \text { keys } \end{aligned}$	[No]						

[^0](1) To start with integrated Modbus [Modbus Address] (Add) must first be configured, page 236.

Note: These assignments are reinitialized every time the macro configuration changes.

[1.1 SIMPLY START] (SIM-)

Macro configuration parameters

Other configurations and settings

In addition to the assignment of inputs/outputs, other parameters are assigned only in the Hoisting and Mast./slave macro configurations.

Hoisting:

- [Movement type] (bSt) $=$ [Hoisting] (UEr) page 157
- [Brake contact] $(\mathrm{bCl})=[\mathrm{No}](\mathrm{nO})$ page 157
- $[$ Brake impulse $](\mathrm{bIP})=[\mathrm{No}](\mathrm{nO})$ page 157
- [Brake release I FW] (Ibr) = [Rated mot. current] (nCr) page 157
- [Brake Release time] $(b r t)=0.5 \mathrm{~s}$ page 158
- [Brake release freq] (blr) = [Auto] (AUtO) page 158
- [Brake engage freq] (bEn) = [Auto] (AUto) page 158
- [Brake engage time] $(b E t)=0.5 \mathrm{~s}$ page 158
- [Engage at reversal] $(\mathrm{bEd})=[\mathrm{No}](\mathrm{nO})$ page 159
- [Jump at reversal] $(\mathrm{JdC})=[$ Auto] (AUtO) page 159
- [Time to restart] (ttr) $=0$ s page 159
- [Current ramp time] (brr) = 0 s page 161
- [Low speed] (LSP) = Rated motor slip calculated by the drive, page 42
- [Output Phase Loss] (OPL) = [Yes] (YES) page 217. No further modifications can be made to this parameter.
- [Catch on the fly] $(\mathrm{FLr})=[\mathrm{No}](\mathrm{nO})$ page 215. No further modifications can be made to this parameter.

Mast./slave:

- [Motor control type] (Ctt) = [SVC I] (CUC) page $\underline{69}$

Note: These assignments are forced every time the macro configuration changes, except for [Motor control type] (Ctt) for the Mast./slave macro configuration, if it is configured in [FVC] (FUC).

Return to factory settings:

Returning to factory settings with [Config. Source] (FCSI) $=$ [Macro-Conf] (InI) page 243 will return the drive to the selected macro configuration. The [Macro configuration] (CFG) parameter does not change, although [Customized macro] (CCFG) disappears.

Note :

- The factory settings that appear in the parameter tables correspond to [Macro configuration] (CFG) = [Start/Stop] (StS). This is the macro configuration set at the factory.

[1.1 SIMPLY START] (SIM-)

Example diagrams for use with the macro configurations

[Hoisting] (HSt) diagram

(1) A contact on the Preventa module must be inserted in the brake control circuit to engage it safely when the "Power Removal" safety function is activated (see connection diagrams in the Installation Manual).
[Mast./slave] (MSL) diagram

When the two motors are mechanically connected, the Speed/torque contact closing results in operation in Mast./slave mode. The master drive regulates the speed and controls the slave drive in torque mode to ensure distribution of the load.

Code	Name/Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
$\begin{aligned} t[L & \\ & 2[\\ & \exists[\end{aligned}$	[2/3 wire control] [2 wire] (2C) [3 wire] (3C) 2-wire control: This is the input state (0 or 1) or edge (0 to 1 or 1 to 0), which controls running or stopping. Example of "source" wiring: LI1: forward LIx: reverse 3-wire control (pulse commands): A "forward" or "reverse" pulse is sufficient to command starting, a "stop" pulse is sufficient to command stopping. Example of "source" wiring: LI1: stop LI2: forward LIx: reverse WARNING UNINTENDED EQUIPMENT OPERATION To change the assignment of [2/3 wire control] (tCC) press and hold down the "ENT" key for 2 s . The following function will be returned to factory settings: [2 wire type] (tCt) page 86 as will all functions which assign logic inputs. The macro configuration selected will also be reset it if has been customized (loss of custom settings). Check that this change is compatible with the wiring diagram used. Failure to follow these instructions can result in death or serious injury.
$\begin{aligned} & \text { CFL } \\ & 5 E 5 \\ & \text { HdG } \\ & \text { HSt } \\ & \text { CEn } \\ & \text { PId } \\ & \text { CEt } \\ & \text { MSL } \end{aligned}$	[Macro configuration] [Start/Stop] (StS): Start/stop [M. handling] (HdG): Handling [Hoisting] (HSt): Hoisting [Gen. Use] (GEn): General use [PID regul.] (PId): PID regulation [Network C.] (nEt): Communication bus [Mast.Islave] (MSL): Master/slave UNINTENDED EQUIPMENT OPERATION To change the assignment of [Macro configuration] (CFG) press and hold down the "ENT" key for 2 s . Check that the selected macro configuration is compatible with the wiring diagram used. Failure to follow these instructions can result in death or serious injury.
LIF YES	[Customized macro] Read-only parameter, only visible if at least one macro configuration parameter has been modified. [Yes] (YES)

[^1]| Code | Name／Description ${ }^{\text {a }}$（ Factory setting |
| :---: | :---: |
| $\begin{array}{r} \text { EUn } \\ \text { n } \\ \text { YE } \\ d \square \cap E \end{array}$ | ［Auto tuning］
 －［No］（nO）：Auto－tuning not performed．
 \square［Yes］（YES）：Auto－tuning is performed as soon as possible，then the parameter automatically changes to［Done］ （dOnE）．
 \square［Done］（dOnE）：Use of the values given the last time auto－tuning was performed．
 Caution：
 －It is essential that all motor parameters（［Rated motor volt．］（UnS），［Rated motor freq．］（FrS），［Rated mot． current］（ nCr ），［Rated motor speed］（ nSP ），［Rated motor power］（ nPr ））are configured correctly before starting auto－tuning．
 If at least one of these parameters is modified after auto－tuning has been performed，［Auto tuning］（tUn）will return to $[\mathrm{No}](\mathrm{nO})$ and must be repeated．
 －Auto－tuning is only performed if no stop command has been activated．If a＂freewheel stop＂or＂fast stop＂ function has been assigned to a logic input，this input must be set to 1 （active at 0 ）．
 －Auto－tuning takes priority over any run or prefluxing commands，which will be taken into account after the auto－tuning sequence．
 －If auto－tuning fails，the drive displays $[\mathrm{No}](\mathrm{nO})$ and，depending on the configuration of［Autotune fault mgt］ （tnL）page 231，may switch to［Auto－tuning］（tnF）fault mode．
 －Auto－tuning may last for 1 to 2 seconds．Do not interrupt the process．Wait for the display to change to ＂［Done］（dOnE）＂or＂［No］（nO）＂．
 Note：During auto－tuning the motor operates at rated current． |
| ヒU5
 ヒ月女
 PEnd
 Prou
 FAIL
 $d \square \cap E$ | ［Auto tuning status］
 （for information only，cannot be modified） ［Not done］（tAb）：The default stator resistance value is used to control the motor． ［Pending］（PEnd）：Auto－tuning has been requested but not yet performed． ［In Progress］（PrOG）：Auto－tuning in progress． ［Failed］（FAIL）：Auto－tuning has failed． ［Done］（dOnE）：The stator resistance measured by the auto－tuning function is used to control the motor． |
| PHr
 Аь ᄃ
 月的 | ［Output Ph rotation］ ［ABC］（AbC）：Forward ［ACB］（ACb）：Reverse
 This parameter can be used to reverse the direction of rotation of the motor without reversing the wiring． |

Parameters that can be changed during operation or when stopped

Code	Name/Description		Factory setting
It H	\square [Mot. therm. current]	0.2 to $1.5 \ln (1)$	According to drive rating
	Motor thermal protection current, to be set to the rated current indicated on the nameplate.		
A [5	\square [Acceleration]	0.1 to 999.9 s	3.0 s
	Time to accelerate from 0 to the [Rated motor freq.] (FrS) (page 40). Make sure that this value is compatible with the inertia being driven.		
d E	\square [Deceleration]		
	Time to decelerate from the [Rated motor freq.] (FrS) (page 40) to 0 . Make sure that this value is compatible with the inertia being driven.		
L 5 P	\square [Low speed]		
	Motor frequency at minimum reference, can be set between 0 and [High speed] (HSP).		
H5P	\square [High speed]		50 Hz
	Motor frequency at maximum reference, can be set between [Low speed] (LSP) and [Max frequency] (tFr). The factory setting changes to 60 Hz if [Standard mot. freq] (bFr) $=[60 \mathrm{~Hz}$ NEMA] (60).		

(1) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

[1.2 MONITORING] (SUP-)

With graphic display terminal:

With integrated display terminal:

[1.2 MONITORING] (SUP-)

With graphic display terminal

This menu can be used to display the inputs/outputs, the drive internal states and values, and the communication data and values.

I/O

RUN \quad Term $\quad+50.00 \mathrm{~Hz} \quad$ 80A	
I/O MAP	
LOGIC INPUT MAP	
ANALOG INPUTS IMAGE	
LOGIC OUTPUT MAP	
ANALOG OUTPUTS IMAGE	
FREQ. SIGNAL IMAGE	
Code	

Move from one screen to another
(from LOGIC INPUT MAP
to FREQ. SIGNAL IMAGE)
by turning the navigation button

State 0

RUN	Term	+50.00Hz		
LOGIC INPUT MAP				
	<<	>>	Quic	

Access to the selected input or output configuration: Press ENT.	RUN	Term	$+50.00 \mathrm{~Hz}$	80A
	LI1 assignment			
	Forwa Pre F LII O	ng elay		0 ms
		<<	>>	Quick

\otimes State 0
(State 1

RUN	Term	+50.00 Hz	80 A
ANALOG INPUTS IMAGE			
Al1		\vdots	
AI2		\vdots	
			2.87 VA
Code	\ll	\gg	

\longrightarrow| RUN \quad Term | +50.00 Hz | 80 A |
| :--- | ---: | :--- |
| Al1 assignment | | |
| Ref.1 channel | | |
| Forced local | | |
| Torque reference | 0.0 V | |
| Al1 min value : | 10.0 V | |
| Al1 max value : | Quick | |
| | | |

RUN	Term	+50.00 Hz	80A
LOGIC OUTPUT MAP			
R1	R2	LO	
\otimes	\bigotimes	\otimes	
LOA:		0000000000000010 b	
	\ll	\gg	Quick

ENT	RUN Term	+50.00Hz	80A
	LO1 assignment		
	No LO1 delay time LO1 active at LO1 holding time		$\begin{aligned} & 0 \mathrm{~ms} \\ & 1 \\ & 0 \mathrm{~ms} \end{aligned}$
	<<	>>	Quick

RUN	Term	+50.00 Hz	80 A
ANALOG OUTPUTS IMAGE			
AO1		$:$	9.87 V
Code	\ll	\gg	Quick

ENT	RUN Term	+50.00Hz	80A
	AO1 assignment		
	Motor freq. AO1 min output AO1 max output AO1 Filter		$\begin{gathered} 4 \mathrm{~mA} \\ 20 \mathrm{~mA} \\ 10 \mathrm{~ms} \end{gathered}$
			Quick

RUN	Term	+50.00 Hz	80 A
FREQ. SIGNAL IMAGE			
RP input	$:$	25.45 kHz	
Encoder :		225 kHz	
Code	\ll	\gg	Quick

ENT	RUN Term	$+50.00 \mathrm{~Hz}$	80A
	RP assignment		
	Frequency ref.		
	RP min value	:	2 kHz
	RP max value	:	50 kHz
	RP filter	:	0 ms
			Quick

With graphic display terminal

Controller Inside card I/O

RUN	Term $\quad+50.00 \mathrm{~Hz}$ 8 80 A
PROG. CARD I/O MAP	
PROG CARD LI MAP	
PROG. CARD AI MAP	
PROG CARD LO MAP	
PROG. CARD AO MAP	
Code	

Move from one screen to another (from PROG CARD LI MAP
to PROG. CARD AO MAP)
by turning the navigation button

RUN		Term	+50.00 Hz	80A
PROG CARD AI MAP				
Al51	\vdots		0.000 mA	
Al52	\vdots		9.87 V	
Code	\ll	\gg	Quick	

With graphic display terminal

Communication

RUN	Term	$+50.00 \mathrm{~Hz}$	80A
COMMUNICATION MAP			
Command Channel Cmd value : Active ref. channel: Frequency ref. : ETA state word:		Mod ABCD CANo -12.5 2153	
Code			Quick
W3141 : F230 Hex			
W2050	: F230		
W4325	: F230		
W0894	: F230		
COM. SCANNER INPUT MAP			
COM SCAN OUTPUT MAP			
CMD. WORD IMAGE			
FREQ. REF. WORD MAP-			
MODBUS NETWORK DIAG			
MODBUS HMI DIAG			
CANopen MAP			
PROG. CARD SCANNER			

[COMMUNICATION MAP] indicates the types of bus used for control or reference, the corresponding command and reference values, the status word, the words selected in the [DISPLAY CONFIG.] menu, etc.
The display format (hexadecimal or decimal) can be configured in the [DISPLAY CONFIG.] menu.

[COM. SCANNER INPUT MAP] and [COM SCAN OUTPUT MAP]:
Visualization of registers exchanged periodically (8 input and 8 output) for integrated Modbus and for fieldbus cards.

With graphic display terminal

Communication (continued)

W0894 : F230 Hex
COM. SCANNER INPUT MAP
COM SCAN OUTPUT MAP
CMD. WORD IMAGE
FREQ. REF. WORD MAP
MODBUS NETWORK DIAG \qquad
MODBUS HMI DIAG
CANopen MAP
PROG. CARD SCANNER

The state of the LEDs, the periodic data, the address, the speed, and the format, etc,, is given for each bus.

Q LED off

- LED on

Communication via Modbus

RUN	Term
MODBUS NETWORK DIAG	
COM LED	
Mb NET frames nb.	
Mb NET CRC errors	
Code	

Communication via the graphic display terminal

RUN	Term	+50.00 Hz			
MODBUS HMI DIAG		80 A			
COM LED					
Mb HMI frames nb.					
Mb HMI CRC errors					
Code					Quick

Communication via CANopen

RUN \quad Term	+50.00 Hz	80 A
CANopen MAP		
RUN LED:		
ERR LED:		\bigotimes
PDO1 IMAGE		
PDO2 IMAGE		
PDO3 IMAGE		
Code		Quick
Canopen NMT state		
Number of TX PDO	0	
Number of RX PDO	0	
Error code	0	
RX Error Counter		0
TX Error Counter		0

PDO images are only visible if
CANopen has been enabled (address other than OFF) and if the PDOs are active.

PDO configuration using the network tool. Some PDOs cannot be used.

RUN	Term	$+50.00 \mathrm{~Hz}$	Hz 80A
PDO1 IMAGE			
Receiv	PDO1-1		FDBA Hex
Received PDO1-2			
Received PDO1-3			
Received PDO1-4			
Transm	PDO1-1		FDBA Hex
Code			Quick

Transmit PDO1-2
Transmit PDO1-3
Transmit PDO1-4

RX Error Counter 0
TX Error Counter

RUN	Term	+50.00Hz	Hz 80A
PDO2 IMAGE			
Received PDO2-1 : FDBA Hex			
Received PDO2-2			
Received PDO2-3			
Received PDO2-4			
Transm	DO2-1		FDBA Hex
Code			Quick

Transmit PDO2-2
Transmit PDO2-3
Transmit PDO2-4

RUN Term	+50.00Hz 80A
PDO3 IMAGE	
Received PDO3-1	FDBA Hex
Received PDO3-2	
Received PDO3-3	
Received PDO3-4	
Transmit PDO3-1	FDBA Hex
Code	Quick

Transmit PDO3-2
Transmit PDO3-3
Transmit PDO3-4

With graphic display terminal

Communication (continued)

RUN Term +50.00Hz 80A			
COMMUNICATION MAP			
Command Channel : Modbus Cmd value : ABCD Hex Active ref. channel: CANopen Frequency ref. : -12.5 Hz ETA state word: 2153 Hex			
Code Quick			
W3141 $\quad:$ F230 Hex W2050 $:$ F230 Hex W4325 $:$ F230 Hex W0894 $:$ F230 Hex COM. SCANNER INPUT MAP COM SCAN OUTPUT MAP CMD. WORD IMAGE FREQ. REF. WORD MAP MODBUS NETWORK DIAG MODBUS HMI DIAG CANopen MAP PROG. CARD SCANNER			
		RUN Term +50.00 Hz	80A
		Input scanner	
		Prg.card. scan in1:	0
		Prg.card. scan in2:	0
		Prg.card. scan in3:	0
	Controller Inside card	Prg.card. scan in4:	0
	RUN Term +50.00Hz 80A	Prg.card. scan in5:	0
	PROG. CARD SCANNER	Code	Quick
	Input scanner	Prg.card scan in6:	0
	Output scanner	Prg.card scan in7:	0
		Prg.card scan in8:	0
	Code \quad Quick		
		RUN Term +50.00Hz	80A
		Output scanner	
		PLC card.scan Out1:	0
		PLC card.scan Out2:	0
		PLC card.scan Out3:	0
		PLC card.scan Out4:	0
		PLC card.scan Out5 :	0
		Code	Quick
		PLC card.scan Out6:	0
		PLC card.scan Out7:	0
		PLC card.scan Out8:	0

[Input scanner] and [Output scanner]:
Visualization of registers exchanged periodically (8 input and 8 output).

With graphic display terminal: Drive-internal states and values

［1．2 MONITORING］（SUP－）

With integrated display terminal

This menu can be used to display the drive inputs，states and internal values．

Code	Name／Description \quad Adjustment range \quad Factory setting
$1 \square \Pi$－	1／O MAP
L 1 A－	－Logic input functions
$\text { to } \frac{L}{L} \quad 1 \text { A }$	Can be used to display the functions assigned to each input．If no functions have been assigned，nO is displayed． Use the and $\boldsymbol{\nabla}$ arrows to scroll through the functions．If a number of functions have been assigned to the same input，check that they are compatible．
L 151	－State of logic inputs LI1 to L18
	Can be used to visualize the state of logic inputs LI1 to LI8 （display segment assignment：high $=1$ ，low $=0$ ） Example above：LI1 and LI6 are at 1；LI2 to LI5，LI7 and LI8 are at 0 ．
L 152	－State of logic inputs LI9 to Ll14 and Power Removal
	Can be used to visualize the state of logic inputs LI9 to LI14 and PR（Power Removal） （display segment assignment：high $=1$ ，low $=0$ ） Example above：LI9 and LI14 are at 1，LI10 to LI13 are at 0 and PR（Power Removal）is at 1.
A 1 月－	Analog input functions
A \｜1 A －ノ こ $月$ A 1 ヨ 月 A 1 4 月	Can be used to display the functions assigned to each input．If no functions have been assigned， nO is displayed．Use the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ arrows to scroll through the functions．If a number of functions have been assigned to the same input，check that they are compatible．

With integrated display terminal：Drive－internal states and values

Code	Name／Description	Unit
ALEr	Alarm groups：Current alarm group numbers	
rPl	Internal PID reference：PID reference via graphic display terminal（can be accessed if the function has been configured）．	as a process value
M F r	Multiplication coefficient（can be accessed if［Multiplier ref．－］（MA2，MA3）page $\underline{133}$ has been assigned）	\％
FrH	Frequency ref．	Hz
trr	Torque reference：Can be accessed if the function has been configured	\％．
$r \mathrm{Fr}$	Output frequency	Hz
ПП F	The measured motor speed is displayed if an encoder card has been inserted and configured in speed feedback mode，otherwise 0 appears．	Hz
F 95	Frequency of the＂Pulse input＂input used by the［FREQUENCY METER］（FqF－）function，page 228.	Hz
L［ r	Motor current	A
R 45	ENA avg speed：The parameter can be accessed if EnA＝YES（see page 78）	Hz
5 Pd	Motor speed	rpm
$U \square P$	Motor voltage	V
－Pr	Motor power	\％
－ $\mathrm{t}_{\text {r }}$	Motor torque	\％
$U L \square$	Line voltage：Line voltage from the point of view of the DC bus，motor running or stopped．	V
t Hr	Motor thermal state	\％
tHd	Drv thermal state	\％
ヒ H b	DBR thermal state：Can be accessed on high rating drives only．	\％
APH	Power consumption	Wh，kWh or MWh
rt H	Run time：Length of time the motor has been turned on	seconds，
PEH	Power on time：Length of time the drive has been turned on	
t A ［	IGBT alarm counter：Length of time the＂IGBT temperature＂alarm has been active	seconds
r PL	PID reference：Can be accessed if the PID function has been configured	as a process
r PF	PID feedback：Can be accessed if the PID function has been configured	
$r P E$	PID error：Can be accessed if the PID function has been configured	
rPb	PID Output：Can be accessed if the PID function has been configured	Hz
［Lロ－	tIME，dAY：Current date and time generated by the Controller Inside card（can be accessed if the card has been inserted）	
－ロ 己	Word generated by the Controller Inside card（can be accessed if the card has been inserted）	
－ロヨ	Word generated by the Controller Inside card（can be accessed if the card has been inserted）	
－ 04	Word generated by the Controller Inside card（can be accessed if the card has been inserted）	
$\square \square 5$	Word generated by the Controller Inside card（can be accessed if the card has been inserted）	
－$\square 6$	Word generated by the Controller Inside card（can be accessed if the card has been inserted）	
［nFs	Config．active：CnFO， 1 or 2 （can be accessed if motor or configuration switching has been enabled，see page 199）	
［FPS	Utilised param．set：CFP1， 2 or 3 （can be accessed if parameter switching has been enabled，see page 195）	

[1.3 SETTINGS] (SEt-)

With graphic display terminal:

RDY	Term
MAIN MENU	
1 DRIVE MENU	
2 ACCESS LEVEL	
3 OPEN / SAVE AS	
4 PASSWORD	
5 LANGUAGE	
Code	Quick

With integrated display terminal:

The adjustment parameters can be modified with the drive running or stopped.

```
DANGER
```


UNINTENDED EQUIPMENT OPERATION

```
- Check that changes made to the settings during operation do not present any danger.
- We recommend stopping the drive before making any changes.
```

Failure to follow these instructions will result in death or serious injury.

(1)Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to [Ramp increment] (Inr).

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

Parameter settings for [K speed loop filter] (SFC), [Speed prop. gain] (SPG) and [Speed time integral] (SIt)

- The following parameters can only be accessed in vector control profiles: [Motor control type] (Ctt) page $69=[\mathrm{SVC}$ V] (UUC), [SVC I] (CUC), [FVC] (FUC) and [Sync. mot.] (SYn) and if [ENA system] (EnA) page $78=[\mathrm{No}](\mathrm{nO})$.
- The factory settings are suitable for most applications.

General case: Setting for [K speed loop filter] (SFC) =0

The regulator is an "IP" type with filtering of the speed reference, for applications requiring flexibility and stability (hoisting or high inertia, for example).

- [Speed prop. gain] (SPG) affects excessive speed.
- [Speed time integral] (SIt) affects the passband and response time.

Initial response
Reference division

Reduction in SIT

Reference division

Increase in SPG

Reference division

Reduction in SIT

Reference division

Increase in SPG

Reference division

Special case: Parameter [K speed loop filter] (SFC) not 0

This parameter must be reserved for specific applications that require a short response time (trajectory positioning or servo control).

- When set to 100 as described above the regulator is a "Pl" type, without filtering of the speed reference.
- Settings between 0 and 100 will obtain an intermediate function between the settings below and those on the previous page.

Example: Setting for [K speed loop filter] $(\mathrm{SFC})=100$

- [Speed prop. gain] (SPG) affects the passband and response time.
- [Speed time integral] (SIt) affects excessive speed.

Initial response
 Reference division

Reduction in SIT
Reference division

Increase in SPG

Reference division

Reduction in SIT

Reference division

Increase in SPG
Reference division

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

Code	Name/Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
5 Fr	[Switching freq.] Switching frequency setting. Adjustment range: This can vary between 1 and 16 kHz , but the minimum and maximum values, as well as the factory setting, can be limited in accordance with the type of drive (ATV71H or W), the rating and the configuration of the [Sinus filter] (OFI) and [Motor surge limit] (SUL) parameters, page 80. If the value is less than 2 kHz , [Current Limitation] (CLI) and [I Limit. 2 value] (CL2) page 59 are limited to 1.36 In . Adjustment with drive running: - If the initial value is less than 2 kHz , it is not possible to increase it above 1.9 kHz while running. - If the initial value is greater than or equal to 2 kHz , a minimum of 2 kHz must be maintained while running. Adjustment with the drive stopped: No restrictions. Note: In the event of excessive temperature rise, the drive will automatically reduce the switching frequency and reset it once the temperature returns to normal. Note: If [Motor control type] (Ctt) page $\underline{69}=[$ FVC] (FUC), we do not recommend setting the switching frequency to a value less than 2 kHz (in order to avoid speed instability). CAUTION On ATV71•075N4 to U40N4, drives, if the RFI filters are disconnected (operation on an IT system), the drive's switching frequency must not exceed 4 kHz . Failure to follow this instruction can result in equipment damage.
[L I	[Current Limitation] Used to limit the motor current. The adjustment range is limited to 1.36 In if [Switching freq.] (SFr) page 59 is less than 2 kHz . Note: If the setting is less than 0.25 In, the drive may lock in [Output Phase Loss] (OPF) fault mode if this has been enabled (see page 217). If it is less than the no-load motor current, the limitation no longer has any effect.
LL 2 \star \star	[I Limit. 2 value] See page 184 The adjustment range is limited to 1.36 In if [Switching freq.] (SFr) page $5 \underline{99}$ is less than 2 kHz . Note: If the setting is less than 0.25 In , the drive may lock in [Output Phase Loss] (OPF) fault mode if this has been enabled (see page 217). If it is less than the no-load motor current, the limitation no longer has any effect.

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

\begin{tabular}{|c|c|c|c|}
\hline Code \& Name/Description \& Adjustment range \& Factory setting

\hline $F L U$

$F \cap \square$
$F[t$

F \& \multicolumn{3}{|l|}{| [Motor fluxing] |
| :--- |
| [Not cont.] (FnC): Non-continuous mode |
| [Continuous] (FCt): Continuous mode. This option is not possible if [Auto DC injection] (AdC) page 139 is [Yes] (YES) or if [Type of stop] (Stt) page 137 is [Freewheel] (nSt). |
| [No] (FnO): Function inactive This option is not possible if [Motor control type] (Ctt) page $\underline{69}=[\mathrm{SVCI}]$ (CUC) or [FVC] (FUC). |
| If [Motor control type] (Ctt) page $69=[\mathrm{SVCI}](\mathrm{CUC}),[\mathrm{FVC}]$ (FUC) or [Sync. mot.] (SYn) the factory setting is replaced by [Not cont.] (FnC). |
| In order to obtain rapid high torque on startup, magnetic flux needs to already have been established in the motor. |
| - In [Continuous] (FCt) mode, the drive automatically builds up flux when it is powered up. |
| - In [Not cont.] (FnC) mode, fluxing occurs when the motor starts up. |
| The flux current is greater than nCr (configured rated motor current) when the flux is established and is then adjusted to the motor magnetizing current... |
| CAUTION |
| Check that the motor will withstand this current without overheating. |
| Failure to follow this instruction can result in equipment damage. |
| If [Motor control type] (Ctt) page $\underline{69}=$ [Sync. mot.] (SYn), the [Motor fluxing] (FLU) parameter causes the alignment of the rotor and not the fluxing. |
| If [Brake assignment] (bLC) page 157 is not [No] (nO), the [Motor fluxing] (FLU) parameter has no effect. |}

\hline ELS \& | [Low speed time out] |
| :--- |
| Maximum operating time at [Low speed] (LSP) (see page Following operation at LSP for a defined period, a motor st if the reference is greater than LSP and if a run command Caution: A value of 0 indicates an unlimited period of time |
| Note: If [Low speed time out] (tLS) is not 0 , [Type of (only if a ramp stop can be configured). | \& | 0 to 999.9 s |
| :--- |
| requested automatic ill present. |
| p] (Stt) page 137 is fo | \& | 0 s |
| :--- |
| The motor will restart |
| do [Ramp stop] (rMP) |

\hline JLF

大 \& | \square [Jog frequency] |
| :--- |
| See page 141 |
| Reference in jog operation | \& 0 to 10 Hz \& 10 Hz

\hline JLt

大 \& | [Jog delay] |
| :--- |
| See page 141 |
| Anti-repeat delay between 2 consecutive jog operations. | \& \[

0 to 2.0 \mathrm{~s}
\] \& 0.5 s

\hline
\end{tabular}

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

.These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Name／Description	Adjustment range	Factory setting
5 P己	\square［Preset speed 2］	0 to 1600 Hz	10 Hz
＊	See page 144 Preset speed 2		
$5 Р \exists$	］［Preset speed 3］	0 to 1600 Hz	15 Hz
＊	See page 144 Preset speed 3		
$5 P 4$	\square［Preset speed 4］	0 to 1600 Hz	20 Hz
＊	See page \qquad Preset speed 4		
$5 P 5$	［Preset speed 5］	0 to 1600 Hz	25 Hz
＊	See page \qquad Preset speed 5		
5 P6	［Preset speed 6］	0 to 1600 Hz	30 Hz
＊	See page \qquad Preset speed 6		
$5 P 7$	\square［Preset speed 7］	0 to 1600 Hz	35 Hz
－	See page 144 Preset speed 7		
5 P日	［Preset speed 8］	0 to 1600 Hz	40 Hz
＊	See page \qquad Preset speed 8		
5 P9	\square［Preset speed 9］	0 to 1600 Hz	45 Hz
＊	See page 144 Preset speed 9		
5 P ID	［Preset speed 10］	0 to 1600 Hz	50 Hz
－	See page 144 Preset speed 10		
5 P I I	［Preset speed 11］	0 to 1600 Hz	55 Hz
－	See page 144 Preset speed 11		
	［Preset speed 12］	0 to 1600 Hz	60 Hz
＊	See page 144 Preset speed 12		
5 P1ヨ	\square［Preset speed 13］	0 to 1600 Hz	70 Hz
＊	See page 144 Preset speed 13		
$5 P 14$	\square［Preset speed 14］	0 to 1600 Hz	80 Hz
t	See page 144 Preset speed 14		

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

(1) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4 -digit display with a period mark after the thousand digit, e.g., 15.65 for 15650.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4 -digit display with a period mark after the thousand digit, e.g., 15.65 for 15650 .
(2) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

[^2]
(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.
 also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Name/Description	Adjustment range	Factory setting
$F 9 L$ \star	Speed threshold measured by the FREQUENCY METER] FqF-) function, page 228, assigned to a relay or a logic output (see page 100).		
Ftd	Frequency threshold for [Freq.Th.att.] (FtA) function assigned to a relay or a logic output (see page 100), or used by the [PARAM. SET SWITCHING] (MLP-) function, page 195.		
Fed	Frequency threshold for [Freq. Th. 2 attain.] (F2A) function assigned to a relay or a logic output (see page 100), or used by the [PARAM. SET SWITCHING] (MLP-) function, page 195.		
FFt *	\square [Freewheel stop Thd] See page 137 This parameter supports switching from a ramp stop or a fast threshold. It can be accessed if [Type of stop] (Stt) = [Fast stop] (FSt) or 0.0: Does not switch to freewheel stop. 0,1 to 1600 Hz : Speed threshold below which the motor w	0.0 to 1600 Hz op to a freewheel sto [Ramp stop] (rMP). switch to freewheel	$0.0 \mathrm{~Hz}$ elow a low speed
$t \in d$	\square [Motor therm. level] See page 217 Trip threshold for motor thermal alarm (logic output or relay)	0 to 118\%	100\%
Lbᄃ +	\square [Load correction] See page 82 Rated correction in Hz.	0 to 1000 Hz	0

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

With graphic display terminal:

RDY	Term	+0.00Hz	OA	ENT	1.2 MONITORING 1.3 SETTINGS				ENT	RUN	Term	+50.0	80A	
MAIN MENU									1.4 MOTOR CONTROL					
1 DRIVE MENU					1.4 MOTOR CONTROL						Standard mot. freq			
2 ACCESS LEVEL					1.5 INPUTS / OUTPUTS CFG					Rated motor power				
					Code	<<	>>	Quick		Rated motor volt.				
4 PASSWORD										Rated mot. current				
5 LANGUAGE										Rated motor freq.				
Code			Quic							Code	<<	>>	Quick	

With integrated display terminal:

The parameters in the [1.4 MOTOR CONTROL] (drC-) menu can only be modified when the drive is stopped and no run command is present, with the following exceptions:

- [Auto tuning] (tUn) page 68, which may cause the motor to start up.
- Parameters containing the sign () in the code column, which can be modified with the drive running or stopped.

Code	Name/Description	Adjustment range	Factory setting
bFr 50 6ロ	[Standard mot. freq] [50Hz IEC] (50): IEC [60Hz NEMA] (60) : NEMA This parameter modifies the presets of the following parameters: [High speed] (HSP) page 42, [Freq. threshold] (Ftd) page 65, [Rated motor volt.] (UnS), [Rated motor freq.] (FrS) and [Max frequency] (tFr).		
$n P r$	The parameter cannot be accessed if [Motor control type] (Ctt) page $\underline{69}=[$ Sync. mot.] (SYn). Rated motor power given on the nameplate, in kW if [Standard mot. freq] (bFr) $=[50 \mathrm{~Hz} \mathrm{IEC]}$ (50), in HP if [Standard mot. freq] (bFr) = [60Hz NEMA] (60).		
$U \cap 5$	[Rated motor volt.] The parameter cannot be accessed if [Motor control type] (Ct Rated motor voltage given on the nameplate. ATV71•0॰M3X: 100 to 240 V ATV71•00N4: 200 to 480 V	According to drive rating $\text { page } \underline{69}=[\text { Sync. mot }$	According to drive rating and [Standard mot. freq] (bFr) (SYn).
$n \mathrm{Lr}$	[Rated mot. current] The parameter cannot be accessed if [Motor control type] (Ct) Rated motor current given on the nameplate.	$0.25 \text { to } 1.5 \ln (1)$ $\text { page } \underline{69}=[\text { Sync. mo }$	According to drive rating and [Standard mot. freq] (bFr) (SYn).
Fr 5	\square [Rated motor freq.] The parameter cannot be accessed if [Motor control type] Rated motor frequency given on the nameplate. The factory setting is 50 Hz , or preset to 60 Hz if [Standard m The maximum value is limited to 500 Hz if [Motor control type] higher than ATV71HD37. Values between 500 Hz and 1600 Hz are only possible in V/F In this case configure [Motor control type] (Ctt) before [Rated	10 to 1600 Hz page $69=[$ Sync. m t. freq] (bFr) is set to (Ctt) (page 69) is not ontrol and for power motor freq.] (FrS).	50 Hz (SYn). Hz. or if the drive rating is mited to 37 kW (50 HP).
$\begin{array}{rrr}\ln 5 P & \\ \\ 1 \\ 10\end{array}$	\square [rpm increment] Increment of parameter [Rated motor speed] (nSP). [x1 rpm] (1): Increment of 1 rpm , to be used if [Rated motor [x10 rpm] (10) : Increment of 10 rpm , to be used if [Rated Note: Changing [rpm increment] (InSP) will restore [R	peed] (nSP) does tor speed] (nSP) ed motor speed]	[x1 rpm] (1) xceed 65535 rpm . ds 65535 rpm . to its factory setting.
n5P	[Rated motor speed] The parameter cannot be accessed if [Motor control type] (Ctu) Rated motor speed given on the nameplate. Adjustable betwe [x 1 rpm] (1) or between 0.00 and 96.00 krpm if [rpm incremen 0 to 9999 rpm then 10.00 to 65.53 or 96.00 krpm on the integ If, rather than the rated speed, the nameplate indicates the sy calculate the rated speed as follows: - Nominal speed $=$ Synchronous speed $x \frac{100-\text { slip as a } \%}{100}$ or - Nominal speed $=$ Synchronous speed x or - Nominal speed $=$ Synchronous speed x $60-$ slip in Hz 60	0 to 96000 rpm page $69=[$ Sync. mo 0 and 65535 rpm if $($ InSP $)=[\times 10 \mathrm{rpm}]$ ated display terminal. chronous speed and (50 Hz motors) (60 Hz motors)	According to drive rating (SYn). m increment] (InSP) = slip in Hz or as a \%,

(1) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

Code	Name／Description \quad Factory setting
t Fr	［Max frequency］ The factory setting is 60 Hz ，or preset to 72 Hz if［Standard mot．freq］（bFr）is set to 60 Hz ． The maximum value is limited by the following conditions： －It must not exceed 10 times the value of［Rated motor freq．］（FrS） －It must not exceed 500 Hz if［Motor control type］（Ctt）（page 69）is not V／F or if the drive rating is higher than ATV71HD37． Values between 500 Hz and 1600 Hz are only possible in V／F control and for powers limited to 37 kW （ 50 HP ）．In this case configure［Motor control type］（Ctt）before［Max frequency］（tFr）．
$\begin{array}{r} \text { EUn } \\ \cap \square \\ \text { YE5 } \\ \text { dロחE } \end{array}$	－［Auto tuning］ ［No］（nO）：Auto－tuning not performed． ［Yes］（YES）：Auto－tuning is performed as soon as possible，then the parameter automatically changes to［Done］ （dOnE）． ［Done］（dOnE）：Use of the values given the last time auto－tuning was performed． Caution： －It is essential that all the motor parameters are correctly configured before starting auto－tuning． －Asynchronous motor：［Rated motor volt．］（UnS），［Rated motor freq．］（FrS），［Rated mot．current］（nCr）， ［Rated motor speed］（nSP），［Rated motor power］（nPr） －Synchronous motor：［Nominal I sync．］（nCrS），［Nom motor spdsync］（nSPS），［Pole pairs］（PPnS），［Syn． EMF constant］（PHS），［Autotune L d－axis］（LdS），［Autotune L q－axis］（LqS） If one or more of these parameters is modified after auto－tuning has been performed，［Auto tuning］（tUn）will return to $[\mathrm{No}](\mathrm{nO})$ and the procedure must be repeated． －Auto－tuning is only performed if no stop command has been activated．If a＂freewheel stop＂or＂fast stop＂ function has been assigned to a logic input，this input must be set to 1 （active at 0 ）． －Auto－tuning takes priority over any run or prefluxing commands，which will be taken into account after the auto－tuning sequence． －If auto－tuning fails，the drive displays［ No ］（ nO ）and，depending on the configuration of［Autotune fault mgt］ （tnL）page 231，may switch to［Auto－tuning］（tnF）fault mode． －Auto－tuning may last for 1 to 2 seconds．Do not interrupt the process．Wait for the display to change to ＂［Done］（dOnE）＂or＂［No］（nO）＂． Note：During auto－tuning the motor operates at rated current．
RUE n YE	［Automatic autotune］ ［ No ］（nO）：Function inactive ［Yes］（YES）：Auto－tuning is performed on every power－up． Caution：Same comments as for［Auto tuning］（tUn）above．
tU5 ヒ月ロ PEnd ProL FA IL dane ［ 45	［Auto tuning state］ For information only，cannot be modified． ［Not done］（ tAb ）：The default stator resistance value is used to control the motor． ［Pending］（PEnd）：Auto－tuning has been requested but not yet performed． ［In Progress］（PrOG）：Auto－tuning in progress ［Failed］（FAIL）：Auto－tuning has failed． ［Done］（dOnE）：The stator resistance measured by the auto－tuning function is used to control the motor． ［Customized］（CUS）：Auto－tuning has been performed，but at least one parameter set by this auto－tuning operation has subsequently been modified．The［Auto tuning］（tUn）parameter then returns to［ No ］（nO）．The following auto－tuning parameters are affected： ［Cust．stator R syn］（rSAS）page 72，［Cust stator resist．］（rSA），［Idw］（IdA），［LFw］（LFA）and［T2w］（trA）page 73 ．
PHr 月女［ HCb	［Output Ph rotation］ ［ABC］（AbC）：Forward ［ACB］（ACb）：Reverse This parameter can be used to reverse the direction of rotation of the motor without reversing the wiring． Do not modify the［Output Ph rotation］（PHr）parameter when［Motor control type］（Ctt） page $69=[$［FVC］（FUC）．The direction of rotation must be modified，if required，before or during the procedure to check the encoder page $\underline{76}$ when［Motor control type］（Ctt）is not［FVC］（FUC）．

Synchronous motor parameters:

These parameters can be accessed if [Motor control type] (Ctt) page $\underline{69}=$ [Sync. mot.] (SYn). In this case, the asynchronous motor parameters cannot be accessed.

Code	Name/Description	Adjustment range	Factory setting
$u F r$	\square [IR compensation]	25 to 200\%	100\%
()	The parameter can be accessed if [Motor control type] (Ctt) is not [V/F 2pts] (UF2) and [V/F 5pts] (UF5). Used to optimize the torque at very low speed (increase [IR compensation] (UFr) if the torque is insufficient). Check that the [IR compensation] (UFr) value is not too high when the motor is warm (risk of instability).		
$5 L P$	\square [Slip compensation]	0 to 300\%	100\%
()	The parameter can be accessed if [Motor control type] (Ctt) is not [V/F 2pts] (UF2), [V/F 5pts] (UF5) and [Sync. mot.] (SYn). Adjusts the slip compensation around the value set by the rated motor speed. The speeds given on motor nameplates are not necessarily exact. - If slip setting < actual slip: The motor is not rotating at the correct speed in steady state, but at a speed lower than the reference. - If slip setting > actual slip: The motor is overcompensated and the speed is unstable.		

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

Motor parameters that can be accessed in［Expert］mode．

These include：

－Parameters calculated by the drive during auto－tuning，in read－only mode．For example，R1r，calculated cold stator resistance．
－The possibility of replacing some of these calculated parameters by other values，if necessary．For example，R1w，measured cold stator resistance．
When a parameter Xyw is modified by the user，the drive uses it in place of the calculated parameter Xyr．

Asynchronous motor

If an auto－tuning operation is performed or if one of the motor parameters on which auto－tuning depends is modified（［Rated motor volt．］ （UnS），［Rated motor freq．］（FrS），［Rated mot．current］（nCr），［Rated motor speed］（nSP），［Rated motor power］（nPr）），parameters Xyw return to their factory settings．

Code	Name／Description
r 5Π	［Stator R measured］ Cold stator resistance，calculated by the drive，in read－only mode．Value in milliohms（ $\mathrm{m} \Omega$ ）up to 75 kW （ 100 HP ），in hundredths of milliohms（ $\mathrm{m} \Omega / 100$ ）above 75 kW （ 100 HP ）．
$1 d 7$	［Idr］ Magnetizing current in A，calculated by the drive，in read－only mode．
$L F \Pi$	Leakage inductance in mH ，calculated by the drive，in read－only mode．
ヒrワ	[T2r] Rotor time constant in mS ，calculated by the drive，in read－only mode．
$n 5 \mathrm{~L}$	［Nominal motor slip］ Rated slip in Hz，calculated by the drive，in read－only mode． To modify the rated slip，modify the［Rated motor speed］（nSP）（page 67）．
PPn	［Pr］ Number of pairs of poles，calculated by the drive，in read－only mode．
r 5 月	［Cust stator resist．］ Cold state stator resistance（per winding），modifiable value．In milliohms（m Ω ）up to 75 kW （ 100 HP ），in hundredths of milliohms（ $\mathrm{m} \Omega / 100$ ）above $75 \mathrm{~kW}(100 \mathrm{HP}$ ）．On the integrated display unit： 0 to 9999 then 10.00 to 65.53 （10000 to 65536）．
$1 d A$	［Idw］ Magnetizing current in A ，modifiable value．
LFA	［Lfw］ Leakage inductance in mH ，modifiable value．
ヒrA	［T2w］ Rotor time constant in mS，modifiable value．

Synchronous motor
Code \quad Name/Description
r 5 П 5
[R1rS]
Cold state stator resistance (per winding), in read-only mode. This is the drive factory setting or the result of the auto-tuning operation, if it has been performed.
Value in milliohms ($\mathrm{m} \Omega$) up to $75 \mathrm{~kW}(100 \mathrm{HP}$), in hundredths of milliohms ($\mathrm{m} \Omega / 100$) above $75 \mathrm{~kW}(100 \mathrm{HP})$. On the integrated display unit: 0 to 9999 then 10.00 to 65.53 (10000 to 65536).
$F r 55$ [Nominal freq sync.]

Motor frequency at rated speed in Hz, calculated by the drive (rated motor frequency), in read-only mode.

Selecting the encoder

Follow the recommendations in the catalog and the Installation Manual.

(1) The encoder parameters can only be accessed if the encoder card has been inserted, and the available selections will depend on the type of encoder card used. The encoder configuration can also be accessed in the [1.5- INPUTS / OUTPUTS CFG] (I/O) menu.

Encoder check procedure

1. Set [Motor control type] (Ctt) to a value other than [FVC] (FUC) even if it is the required configuration.
2. Set up in open-loop mode, following the recommendations on page $\underline{5}$.
3. Set $[$ Encoder usage $](E n U)=[\mathrm{No}](\mathrm{nO})$.
4. Set [Encoder type] (EnS) and [Number of pulses] (PGI) accordingly for the encoder used.
5. Set [Encoder check] (EnC) $=[\mathrm{Yes}](\mathrm{YES})$
6. Check that the rotation of the motor is safe.
7. Set the motor rotating at stabilized speed $\approx 15 \%$ of the rated speed for at least 3 seconds, and use the [1.2-MONITORING] (SUP-) menu to monitor its behavior.
8. If it trips on an [Encoder fault] (EnF), [Encoder check] (EnC) returns to [No] (nO).

- Check [Number of pulses] (PGI) and [Encoder type] (EnS).
- Check that the mechanical and electrical operation of the encoder, its power supply and connections are all correct.
- Reverse the direction of rotation of the motor ([Output Ph rotation] (PHr) parameter page 68) or the encoder signals.

9. Repeat the operations from 5 onwards until [Encoder check] (EnC) changes to [Done] (dOnE).
10. If necessary, change [Motor control type] (Ctt) to [FVC] (FUC).

Code	Name/Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
	[Encoder check] Check encoder feedback See the procedure below. The parameter can be accessed if an encoder card has been inserted (1). [Not done] (nO) Check not performed. [Yes] (YES): Activates monitoring of the encoder. [Done] (dOnE): Check performed successfully. The check procedure checks: - The direction of rotation of the encoder/motor - The presence of signals (wiring continuity) - The number of pulses/revolution If a fault is detected, the drive locks in [Encoder fault] (EnF) fault mode.
$E \cap U$ $\begin{aligned} & \text { пロ } \\ & 5 E L \\ & \text { rEG } \end{aligned}$ PGr	[Encoder usage] The parameter can be accessed if an encoder card has been inserted (1). [No] (nO): Function inactive \square [Fdbk monit.] (SEC): The encoder provides speed feedback for monitoring only. \square [Spd fdk reg.] (rEG): The encoder provides speed feedback for regulation and monitoring. This configuration is automatic if the drive is configured for closed-loop operation ([Motor control type] (Ctt) = [FVC] (FUC). If [Motor control type] (Ctt) $=$ [SVC V] (UUC) the encoder operates in speed feedback mode and enables static correction of the speed to be performed. This configuration is not accessible for other [Motor control type] (Ctt) values. \square [Speed ref.] (PGr): The encoder provides a reference.

(1)The encoder parameters can only be accessed if the encoder card has been inserted, and the available selections will depend on the type of encoder card used. The encoder configuration can also be accessed in the [1.5- INPUTS / OUTPUTS CFG] (I/O) menu.

[ENA SYSTEM]

ENA SYSTEM is a control profile designed for rotating machines with unbalanced load.
It is used primarily for oil pumps. The operating principle applied:

- Allows operation without a braking resistor
- Reduces mechanical stress on the rod
- Reduces line current fluctuations
- Reduces energy consumption by improving the electric power/current ratio

[ENA prop.gain]

This setting is used to achieve a compromise between the reduced energy consumption (and/or line current fluctuations) and the mechanical stress to which the rod is subject.
Energy is saved by reducing current fluctuations and increasing the current while retaining the same average speed.

[ENA integral gain]

This setting is used to smooth the DC bus voltage.
Start up the machine with a low integral and proportional gain (proportional 25% and integral 10\%) in order to avoid an overvoltage trip in the absence of a braking resistor. See if these settings are suitable.

Recommended adjustments to be made during operation:

- To eliminate the braking resistor and, therefore, the increase in the DC bus voltage: Display the machine speed on the graphic display terminal.
Reduce the integral gain value until the machine speed drops. When this point is reached, increase the integral gain until the machine speed stabilizes.
Use the graphic display terminal or an oscilloscope to check that the DC bus voltage is stable.
- To save energy:

Reducing the proportional gain (gradually) may increase energy savings by reducing the maximum value of the line current, but it will increase speed variations and, therefore, mechanical stress.
The aim is to identify settings that will enable energy to be saved and minimize mechanical stress.
When reducing the proportional gain, it may be necessary to readjust the integral gain in order to avoid an overvoltage trip.
Note: Once the adjustments are complete, check that the pump starts up correctly. If the ENA integral gain setting is too low, this may lead to insufficient torque on startup.

[Reduction ratio]

This setting corresponds to the motor speed ahead of gearbox/speed after gearbox ratio. This parameter is used to display the average speed in Hz and the machine speed in customer units (e.g., in strokes per minute) on the graphic display terminal. In order to be displayed on the graphic display terminal, these values must be selected in the [1.2 MONITORING] (SUP-) menu.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
() Parameter that can be modified during operation or when stopped.

Code	Name/Description \quad Adjustment range \quad Factory setting
DF I $\begin{array}{r} \cap \square \\ Y E 5 \end{array}$	[Sinus filter] ㅁ [No] (nO): No sinus filter \square [Yes] (YES): Use of a sinus filter, to limit overvoltages on the motor and reduce the ground fault leakage current. [Sinus filter] (OFI) is forced to [No] (nO) on ATV71•037M3 and ATV71•075N4. Note: The settings for [Current Limitation] (CLI) and [I Limit. 2 value] (CL2) page 59 must be made once [Sinus filter] (OFI) has been set to [Yes] (YES) and [Motor control type] (Ctt) page 69 has been set to [V/ F 2pts] (UF2) or [V/F 5pts] (UF5). This is due to the fact that for certain ratings, this configuration will result in a reduced factory setting (1.36 In) for current limitations. CAUTION If [Sinus filter] (OFI) = [Yes] (YES), [Motor control type] (Ctt) page 69 must be [V/F 2pts] (UF2), [V/F 5pts] (UF5), or [SVC V] (UUC) only, and [Max frequency] (tFr) must not exceed 100 Hz . Failure to follow this instruction can result in equipment damage.
$\begin{equation*} 5 F_{r} \tag{1} \end{equation*}$ $()$	[Switching freq.] Switching frequency setting. Adjustment range: This can vary between 1 and 16 kHz , but the minimum and maximum values, as well as the factory setting, can be limited in accordance with the type of drive (ATV71H or W), the rating and the configuration of the [Sinus filter] (OFI) and [Motor surge limit] (SUL) parameters, page 80. If the value is less than 2 kHz , [Current Limitation] (CLI) and [I Limit. 2 value] (CL2) page $5 \underline{9}$ are limited to 1.36 In . Adjustment with drive running: - If the initial value is less than 2 kHz , it is not possible to increase it above 1.9 kHz while running. - If the initial value is greater than or equal to 2 kHz , a minimum of 2 kHz must be maintained while running. Adjustment with the drive stopped: No restrictions. Note: In the event of excessive temperature rise, the drive will automatically reduce the switching frequency and reset it once the temperature returns to normal. Note: If [Motor control type] (Ctt) page $69=[F V C]$ (FUC), we do not recommend setting the switching frequency to a value less than 2 kHz (in order to avoid speed instability). CAUTION On ATV71•075N4 to U40N4, drives, if the RFI filters are disconnected (operation on an IT system), the drive's switching frequency must not exceed 4 kHz . Failure to follow this instruction can result in equipment damage.
[L I ()	[Current Limitation] Used to limit the motor current. The adjustment range is limited to 1.36 In if [Switching freq.] (SFr) is less than 2 kHz . Note: If the setting is less than 0.25 In , the drive may lock in [Output Phase Loss] (OPF) fault mode if this has been enabled (see page 217). If it is less than the no-load motor current, the limitation no longer has any effect.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

0 Parameter that can be modified during operation or when stopped.

The value of the "SOP" parameter corresponds to the attenuation time of the cable used. It is defined to prevent the superimposition of voltage wave reflections resulting from long cable lengths. It limits overvoltages to twice the DC bus rated voltage.
The tables on the following page give examples of correspondence between the "SOP" parameter and the length of the cable between the drive and the motor. For longer cable lengths, a sinus filter or a dV/dt protection filter must be used.

- For motors in parallel, the sum of all the cable lengths must be taken into consideration. Compare the length given in the table row corresponding to the power for one motor with that corresponding to the total power, and select the shorter length. Example: Two $7.5 \mathrm{~kW}(10 \mathrm{HP})$ motors - take the lengths on the $15 \mathrm{~kW}(20 \mathrm{HP})$ table row, which are shorter than those on the $7.5 \mathrm{~kW}(10 \mathrm{HP})$ row, and divide by the number of motors to obtain the length per motor (with unshielded "GORSE" cable and SOP $=6$, the result is $40 / 2=20 \mathrm{~m}$ maximum for each 7.5 kW (10 HP) motor).

In special cases (for example, different types of cable, different motor powers in parallel, different cable lengths in parallel, etc.), we recommend using an oscilloscope to check the overvoltage values obtained at the motor terminals.

To retain the overall drive performance, do not increase the SOP value unnecessarily.

Tables giving the correspondence between the SOP parameter and the cable length, for 400 V line supply

Altivar 71	Motor		Cable cross-section		Maximum cable length in meters					
Reference	Power		in mm^{2}	AWG	Unshielded "GORSE" cable Type H07 RN-F 4Gxx			Shielded "GORSE" cable Type GVCSTV-LS/LH		
	kW	HP			SOP = 10	SOP = 8	SOP = 6	SOP = 10	SOP = 8	SOP = 6
ATV71H075N4	0.75	1	1.5	14	109.36 yd	76.55 yd	49.21 yd	114.83 yd	92.96 yd	71.08 yd
ATV71HU15N4	1.5	2	1.5	14	109.36 yd	76.55 yd	49.21 yd	114.83 yd	92.96 yd	71.08 yd
ATV71HU22N4	2.2	3	1.5	14	120.30 yd	71.08 yd	49.21 yd	114.83 yd	92.96 yd	71.08 yd
ATV71HU30N4	3	-	1.5	14	120.30 yd	71.08 yd	49.21 yd	114.83 yd	92.96 yd	71.08 yd
ATV71HU40N4	4	5	1.5	14	120.30 yd	71.08 yd	49.21 yd	114.83 yd	92.96 yd	71.08 yd
ATV71HU55N4	5.5	7.5	2.5	14	131.23 yd	71.08 yd	49.21 yd	114.83 yd	92.96 yd	71.08 yd
ATV71HU75N4	7.5	10	2.5	14	131.23 yd	71.08 yd	49.21 yd	114.83 yd	92.96 yd	71.08 yd
ATV71HD11N4	11	15	6	10	125.77 yd	65.62 yd	49.21 yd	109.36 yd	82.02 yd	60.15 yd
ATV71HD15N4	15	20	10	8	114.83 yd	65.62 yd	43.74 yd	109.36 yd	76.55 yd	54.68 yd
ATV71HD18N4	18.5	25	10	8	125.77 yd	65.62 yd	38.28 yd	164.04 yd	82.02 yd	54.68 yd
ATV71HD22N4	22	30	16	6	164.04 yd	65.62 yd	43.74 yd	164.04 yd	76.55 yd	54.68 yd
ATV71HD30N4	30	40	25	4	164.04 yd	60.15 yd	38.28 yd	164.04 yd	76.55 yd	54.68 yd
ATV71HD37N4	37	50	35	5	218.72 yd	71.08 yd	54.68 yd	164.04 yd	76.55 yd	54.68 yd
ATV71HD45N4	45	60	50	0	218.72 yd	60.15 yd	32.81 yd	164.04 yd	65.62 yd	43.74 yd
ATV71HD55N4	55	75	70	2/0	218.72 yd	54.68 yd	27.34 yd	164.04 yd	60.15 yd	32.81 yd
ATV71HD75N4	75	100	95	4/0	218.72 yd	49.21 yd	27.34 yd	164.04 yd	60.15 yd	32.81 yd

Altivar 71	Motor		Cable cross-section		Maximum cable length in meters					
Reference	Power		in mm^{2}	AWG	Shielded "BELDEN" cable Type 2950x			Shielded "PROTOFLEX" cable Type EMV 2YSLCY-J		
	kW	HP			SOP = 10	SOP = 8	SOP = 6	SOP = 10	SOP = 8	SOP = 6
ATV71H075N4	0.75	1	1.5	14	54.68 yd	43.74 yd	32.81 yd			
ATV71HU15N4	1.5	2	1.5	14	54.68 yd	43.74 yd	32.81 yd			
ATV71HU22N4	2.2	3	1.5	14	54.68 yd	43.74 yd	32.81 yd			
ATV71HU30N4	3	-	1.5	14	54.68 yd	43.74 yd	32.81 yd			
ATV71HU40N4	4	5	1.5	14	54.68 yd	43.74 yd	32.81 yd			
ATV71HU55N4	5.5	7.5	2.5	14	54.68 yd	43.74 yd	32.81 yd			
ATV71HU75N4	7.5	10	2.5	14	54.68 yd	43.74 yd	32.81 yd			
ATV71HD11N4	11	15	6	10	54.68 yd	43.74 yd	32.81 yd			
ATV71HD15N4	15	20	10	8	54.68 yd	43.74 yd	32.81 yd			
ATV71HD18N4	18.5	25	10	8	54.68 yd	43.74 yd	32.81 yd			
ATV71HD22N4	22	30	16	6				82.02 yd	43.74 yd	27.34 yd
ATV71HD30N4	30	40	25	4				82.02 yd	43.74 yd	27.34 yd
ATV71HD37N4	37	50	35	5				82.02 yd	43.74 yd	27.34 yd
ATV71HD45N4	45	60	50	0				82.02 yd	43.74 yd	27.34 yd
ATV71HD55N4	55	75	70	2/0				82.02 yd	32.81 yd	16.40 yd
ATV71HD75N4	75	100	95	4/0				82.02 yd	32.81 yd	16.40 yd

For 230/400 V motors used at 230 V , the [Motor surge limit.] (SUL) parameter can remain $=[\mathrm{No}](\mathrm{nO})$.

\begin{tabular}{|c|c|c|c|}
\hline Code \& Name／Description \& Adjustment range \& Factory setting \\
\hline Ubr （） \& \multicolumn{3}{|l|}{\begin{tabular}{l}
\begin{tabular}{|l|l|}
\(\square\)［Braking level］ \& \begin{tabular}{l}
According to drive \\
voltage rating
\end{tabular} \\
\hline
\end{tabular} \\
DC bus voltage threshold above which the braking transistor cuts in to limit this voltage． \\
ATV71•00๑M3•：factory setting 395 V ． \\
ATV71 \(\bullet \bullet \bullet\) N4：factory setting 785 V ． \\
The adjustment range depends on the voltage rating of the drive and the［Mains voltage］（UrES）parameter， page 221 ．
\end{tabular}} \\
\hline \[
\begin{array}{r}
\text { bロA } \\
\text { ח口 } \\
\text { YE }
\end{array}
\] \& \begin{tabular}{l}
\(\square\)［Braking balance］
［No］（nO）：Function inactive
［Yes］（YES）：Function active，to be used on drives connected the braking power between the drives．The［Braking level］（Ub the various drives． \\
The value［Yes］（YES）is possible only if［Dec ramp adapt．］（brA）
\end{tabular} \& in parallel via their parameter must
\[
\text {) }=[\mathrm{No}](\mathrm{nO}) \text { (see }
\] \& \begin{tabular}{l}
［ No ］（nO） \\
bus．Used to balance to the same value on \\
136）
\end{tabular} \\
\hline L ロ

nロ

YE \& \begin{tabular}{l}
\square［Load sharing］

When 2 motors are connected mechanically and therefore at the this function can be used to improve torque distribution betwee based on the torque．
［No］（nO）：Function inactive
［Yes］（YES）：Function active

The parameter can only be accessed if［Motor control type］（C （UF5）．

 \&

same speed，and ea the two motors．To

t）page $\underline{69}$ is not［V／F

 \&

$[\mathrm{No}](\mathrm{nO})$

is controlled by a drive this，it varies the speed

s］（UF2）or［V／F 5pts］
\end{tabular}

\hline \[
$$
\begin{gather*}
L b[\tag{1}\\
\text { () }
\end{gather*}
$$

\] \& | ［Load correction］ |
| :--- |
| Rated correction in Hz． |
| The parameter can be accessed if［Load sharing］（LbA）$=$［Yes | \& | 0 to 1000 Hz |
| :--- |
| （YES） | \& 0

\hline
\end{tabular}

（1）The parameter can also be accessed in the［1．3 SETTINGS］（SEt－）menu．

[^3]Load sharing, parameters that can be accessed at expert level

Principle

The load sharing factor K is determined by the torque and speed, with two factors K 1 and $\mathrm{K} 2(\mathrm{~K}=\mathrm{K} 1 \times \mathrm{K} 2)$.

[1.5 INPUTS / OUTPUTS CFG] (I-O-)

With graphic display terminal:

With integrated display terminal:

The parameters in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu can only be modified when the drive is stopped and no run command is present.

Code	Name/Description ${ }^{\text {a }}$ (${ }^{\text {adjustment range }}$	tory setting
	[2/3 wire control] [2 wire] (2C) [3 wire] (3C) 2-wire control: This is the input state (0 or 1) or edge (0 to 1 or 1 to 0), which controls running or stopping. Example of "source" wiring: LII: forward LIX: reverse 3-wire control (pulse commands): A "forward" or "reverse" pulse is sufficient to command starting, a "stop" pulse is sufficient to command stopping. Example of "source" wiring: LI1: stop LI2: forward LIx: reverse A WARNING UNINTENDED EQUIPMENT OPERATION To change the assignment of [2/3 wire control] (tCC) press and hold down the "ENT" key for 2 s . It causes the following functions to return to factory setting: [2 wire type] (tCt) and [Reverse assign.] (rrS) below, and all functions which assign logic inputs and analog inputs. The macro configuration selected will also be reset it if has been customized (loss of custom settings). It is advisable to configure this parameter before configuring the [1.6 COMMAND] (CtL-) and [1.7 APPLICATION FUNCT.] (FUn-) menus. Check that this change is compatible with the wiring diagram used. Failure to follow these instructions can result in death or serious injury. [2 wire type] [Level] (LEL): State 0 or 1 is taken into account for run (1) or stop (0). [Transition] (trn): A change of state (transition or edge) is necessary to initiate operation, in order to prevent accidental restarts after a break in the power supply. \square [Fwd priority] (PFO): State 0 or 1 is taken into account for run or stop, but the "forward" input always takes priority over the "reverse" input. [Reverse assign.] [LI2] (LI2) [No] (nO): Not assigned \square [LI1] (LII) to [LI6] (LI6) \square [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted \square [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C101] (C101) to [C115] (C115): With integrated Modbus in [I/O profile] (IO) [C201] (C201) to [C215] (C215): With integrated CANopen in [I/O profile] (IO) [C301] (C301) to [C315] (C315): With a communication card in [I/O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [I/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] (IO) can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [I/O profile] (IO) can be switched without logic inputs Assignment of the reverse direction command.	
t[t LEL trn PFO		

Configuration of analog inputs and Pulse input

The minimum and maximum input values (in volts, mA, etc.) are converted to \% in order to adapt the references to the application.

Minimum and maximum input values:

The minimum value corresponds to a reference of 0% and the maximum value to a reference of 100%. The minimum value may be greater than the maximum value:

For $+/-$ bidirectional inputs, the min. and max. are relative to the absolute value, for example, $+/-2$ to 8 V .
Negative min. value of Pulse input:

Range (output values): For analog inputs only

This parameter is used to configure the reference range to $[0 \% \rightarrow 100 \%]$ or $[-100 \% \rightarrow+100 \%]$ in order to obtain a bidirectional output from a unidirectional input.

[1.5 INPUTS / OUTPUTS CFG] (I-O-)

Delinearization: For analog inputs only

The input can be delinearized by configuring an intermediate point on the input/output curve of this input:
For range $0 \rightarrow 100 \%$

Note: For [Interm. point X], 0\% corresponds to [Min value] and 100\% to [Max value]
For range $-100 \% \rightarrow 100 \%$
Reference

Code	Name/Description	Adjustment range	Factory setting
F 11 -	[AI1 CONFIGURATION]		
A I I A	[Al1 assignment] Read-only parameter, cannot be configured. It displays all the functions associated with input AI1 in order to check, for example, for compatibility problems.		
$\begin{aligned} & \text { A I It } \\ & \\ & \text { IロU } \\ & \text { ח IロU } \end{aligned}$	\square [AI1 Type] \square [Voltage] (10U): Positive voltage input (negative values are interpreted as zero: the input is unidirectional). $\square \quad[$ Voltage $+/-]$ (n10U): Positive and negative voltage input (the input is bidirectional).		
UIL I	[Al1 min value]	0 to 10.0 V	0 V
U IH I	[Al1 max value]	0 to 10.0 V	10.0 V
A I IF	\square [Al1 filter]	0 to 10.00 s	0 s
A I IE	[Al1 Interm. point X]	0 to 100\%	0\%
A 115	\square [Al1 Interm. point Y]	0 to 100\%	0\%
	Output delinearization point coordinate (frequency reference).		

Code	Name／Description	Adjustment range	Factory setting
－1 2－	－［A12 CONFIGURATION］		
（12月	［Al2 assignment］ Read－only parameter，cannot be configured． It displays all the functions associated with input AI2 in order to check，for example，for compatibility problems．		
$\begin{array}{r} \text { A Iコヒ } \\ \text { IロU } \\ \text { ロA } \end{array}$	［Al2 Type］ ［Voltage］（10U）：Voltage input ［Current］（0 A）：Current input		［Current］（0 A）
「rL己	\square［Al2 min value］ The parameter can be accessed if［AI2 Type］（Al2t）$=$［Curre	$\begin{aligned} & 0 \text { to } 20.0 \mathrm{~mA} \\ & \text { ent] (0 A) } \end{aligned}$	0 mA
リIL己	［Al2 min value］ The parameter can be accessed if［AI2 Type］（AI2t）$=$［Volta	$\begin{aligned} & 0 \text { to } 10.0 \mathrm{~V} \\ & \text { age] (10U) } \end{aligned}$	0 V
［rH己	［AI2 max．value］ The parameter can be accessed if［AI2 Type］（Al2t）$=$［Curre	$\begin{aligned} & 0 \text { to } 20.0 \mathrm{~mA} \\ & \text { ent] }(0 \mathrm{~A}) \end{aligned}$	$20.0 \mathrm{~mA}$
UIH己	［AI2 max．value］ The parameter can be accessed if［AI2 Type］（AI2t）$=[$ Volta	$\begin{array}{\|l} \hline 0 \text { to } 10.0 \mathrm{~V} \\ \text { age] (10U) } \end{array}$	10.0 V
－I FF	［Al2 filter］ Interference filtering．	$0 \text { to } 10.00 \mathrm{~s}$	0 s
$\begin{aligned} & \text { AICL } \\ & \text { PQS } \\ & \text { } E E L \end{aligned}$	［AI2 range］ \square［0－100\％］（POS）：Unidirectional input \square［＋／－100\％］（nEG）：Bidirectional input Example：On a $0 / 10 \mathrm{~V}$ input － 0 V corresponds to reference -100% － 5 V corresponds to reference 0% － 10 V corresponds to reference $+100 \%$		[0-100\%] (POS)
（12E	［AI2 Interm．point X］ Input delinearization point coordinate． － 0% corresponds to［Min value］if the range is $0 \rightarrow 100 \%$ ． － 0% corresponds to \qquad ［Max value］＋ if th － 100% corresponds to［Max value］．	0 to 100\％ the range is $-100 \%=$	0\％ 00\％．
（125	［AI2 Interm．point Y］ Output delinearization point coordinate（frequency reference）	0 to 100\％ e）．	0\％

Code	Name/Description	Adjustment range	Factory setting
A 14 -	[AI4 CONFIGURATION] Can be accessed if a VW3A3202 option card has been inserted		
A 14月	[A14 assignment] Read-only parameter, cannot be configured. It displays all the functions associated with input AI4 in order to check, for example, for compatibility problems.		
$\begin{array}{r} \text { A } 14 t \\ \text { IロU } \\ \square A \end{array}$	[AI4 Type] [Voltage] (10U): Voltage input [Current] (0 A): Current input		[Voltage] (10U)
[rL4	[Al4 min value] The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Curre	$\begin{aligned} & 0 \text { to } 20.0 \mathrm{~mA} \\ & \text { ent] (0 A) } \end{aligned}$	$0 \mathrm{~mA}$
UIL 4	\square [A14 min value] The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Volta	$\begin{aligned} & 0 \text { to } 10.0 \mathrm{~V} \\ & \text { age] (10U) } \end{aligned}$	0 V
[rH4	[AI4 max value] The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Curre	$\begin{aligned} & 0 \text { to } 20.0 \mathrm{~mA} \\ & \text { ent] }(0 \mathrm{~A}) \end{aligned}$	$20.0 \mathrm{~mA}$
U1H4	[AI4 max value] The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Volta	$\begin{aligned} & 0 \text { to } 10.0 \mathrm{~V} \\ & \text { age] (10U) } \end{aligned}$	10.0 V
A $14 F$	[A14 filter] Interference filtering.	$0 \text { to } 10.00 \text { s }$	0 s
$\begin{aligned} & \text { A } 14 L \\ & P \square 5 \\ & \cap E[\end{aligned}$	\square [AI4 range] [0-100\%] (POS): Unidirectional input [+/- 100\%] (nEG): Bidirectional input Example: On a 0/10 V input - 0 V corresponds to reference -100% - 5 V corresponds to reference 0% - 10 V corresponds to reference $+100 \%$		[0-100\%] (POS)
A 14E	[AI4 Interm.point X] Input delinearization point coordinate. - 0% corresponds to [Min value] if the range is $0 \rightarrow 100 \%$. - 0% corresponds to $\frac{[\text { Max value }]+[\text { Min value }]}{2}$ if then - 100% corresponds to [Max value].	$0 \text { to } 100 \%$ he range is $-100 \% \rightarrow+$	0\% 00\%.
A 145	[AI4 Interm.point Y] Output delinearization point coordinate (frequency reference)	0 to 100\% e).	0%

Code	Name/Description	Adjustment range	Factory setting
$P L$ I -	[RP CONFIGURATION] Can be accessed if a VW3A3202 option card has been inserted		
P I A	[RP assignment] Read-only parameter, cannot be configured. It displays all the functions associated with the Pulse In input in order to check, for example, for compatibility problems.		
$P I L$	[RP min value] Frequency corresponding to the minimum speed	- 30.00 to 30.00 kHz	0
PFr	[RP max value] Frequency corresponding to the maximum speed	$0 \text { to } 30.00 \mathrm{kHz}$	$30.00 \mathrm{kHz}$
PF I	- [RP filter] Interference filtering.	0 to 1000 ms	0

Configuration of the encoder input serving as a reference, with a frequency generator

This reference is not signed, therefore the directions of operation must be given via the control channel (logic inputs, for example).

Minimum and maximum values (input values):

The minimum value corresponds to a minimum reference of 0% and the maximum value to a maximum reference of 100%. The minimum value may be greater than the maximum value. It may also be negative.

A reference can be obtained at zero frequency by assigning a negative value to the minimum value.

[1.5 INPUTS / OUTPUTS CFG] (I-O-)

The encoder configuration can also be accessed in the [1.4 MOTOR CONTROL] (drC-) menu.

Code	Name/Description \quad Adjustment range \quad Factory setting
IEn-	[ENCODER CONFIGURATION] The encoder parameters can only be accessed if the encoder card has been inserted, and the available selections will depend on the type of encoder card used.
$E \cap 5$ $\begin{array}{r} n \square \\ \text { AR } \begin{array}{r} \text { B } \\ \text { Ab } \\ \text { A } \end{array} \end{array}$	[Encoder type] The parameter can be accessed if an encoder card has been inserted. To be configured in accordance with the type of encoder used. [----] (nO): Card missing. [AABB] (AAbb): For signals A, A-, B, B-. [AB] (Ab): For signals A and B. [A] (A) : For signal A. Value cannot be accessed if [Encoder usage] (EnU) page $99=[$ Spd fdk reg.] (rEG).
	[Encoder check] Checks the encoder feedback. See procedure page $\underline{77}$. The parameter can be accessed if an encoder card has been inserted and if [Encoder usage] (EnU) page 99 is not [Speed ref.] (PGr). [Not done] (nO): Check not performed. [Yes] (YES): Activates monitoring of the encoder. [Done] (dOnE): Check performed successfully. The check procedure checks: - The direction of rotation of the encoder/motor - The presence of signals (wiring continuity) - The number of pulses/revolution If a fault is detected, the drive locks in [Encoder fault] (EnF) fault mode.

Code	Name/Description \quad Adjustment range	Factory setting
	- [ENCODER CONFIGURATION] (continued)	
$E \cap U$ $\begin{aligned} & \text { חロ } \\ & \text { SEL } \\ & \text { rEG } \\ & \text { PEr } \end{aligned}$	[Encoder usage] The parameter can be accessed if an encoder card has been inserted. [No] (nO): Function inactive. In this case, the other parameters cannot be accessed. [Fdbk monit.] (SEC): The encoder provides speed feedback for monitoring only. [Spd fdk reg.] (rEG): The encoder provides speed feedback for regulation and monitoring. This configuration is automatic if the drive has been configured for closed-loop operation, and is only possible in this case. [Speed ref.] (PGr): The encoder provides a reference.	
PGI	Number of pulses per encoder revolution. The parameter can be accessed if an encoder card has been inserted.	
$P \square A$ $\begin{aligned} & E \cap[\\ & P \in[\end{aligned}$	\square [Reference type] The parameter can be accessed if [Encoder usage] (EnU) = [Speed ref.] (PGr). [Encoder] (EnC) : Use of an encoder. [Freq. gen.] (PtG): Use of a frequency generator (unsigned reference).	[Encoder] (EnC)
$E I L$	\square [Freq. min. value] The parameter can be accessed if [Encoder usage] (EnU) = [Speed ref.] (PGr) and (PGA) = [Freq. gen.] (PtG). Frequency corresponding to the minimum speed	0 if [Reference type]
EFr	\square [Freq. max value] The parameter can be accessed if [Encoder usage] (EnU) = [Speed ref.] (PGr) and (PGA) = [Freq. gen.] (PtG). Frequency corresponding to the maximum speed	$300 \mathrm{kHz}$ if [Reference type]
EF I	- [Freq. signal filter] 0 to 1000 ms The parameter can be accessed if [Encoder usage] (EnU) $=$ [Speed ref.] (PGr). Interference filtering.	0

Code	Name/Description \quad Adjustment range \quad Factory setting
r 1-	[R1 CONFIGURATION]
r r FLE r U FEA	[No] (nO): Not assigned [No drive flt] (FLt): Drive not faulty (relay normally energized, and de-energized if there is a fault) [Drv running] (rUn): Drive running [Freq. Th. attain.] (FtA): Frequency threshold attained ([Freq. threshold] (Ftd) page 65) [HSP attain.] (FLA): High speed attained [I attained] (CtA): Current threshold attained ([Current threshold] (Ctd) page 64) [Freq.ref.att] (SrA): Frequency reference attained [Th.mot. att.] (tSA): Motor 1 thermal state attained [PID error al] (PEE): PID error alarm [PID fdbk al] (PFA): PID feedback alarm [AI2 AI. 4-20] (AP2): Alarm indicating absence of 4-20 mA signal on input A12 [Freq. Th 2 attain.] (F2A): Frequency threshold 2 attained ([Freq. threshold 2] (F2d) page 65) [Th. drv. att.] (tAd): Drive thermal state attained [Rope slack] (rSdA): Rope slack (see [Rope slack config.] parameter (rSd) page 168) [High tq. att.] (ttHA): Motor torque overshooting high threshold[High torque thd.] (ttH) page 64. [Low tq. att.] (ttLA): Motor torque undershooting low threshold[Low torque thd.] (ttL) page $\underline{64}$. [Forward] (MFrd): Motor in forward rotation [Reverse] (MrrS): Motor in reverse rotation [Th.mot2 att] (tS2): Motor 2 thermal state attained [Th.mot3 att] (tS3): Motor 3 thermal state attained [Neg Torque] (AtS): Negative torque (braking) [Cnfg. 0 act.] (CnF0): Configuration 0 active [Cnfg. 1 act.] (CnF1): Configuration 1 active [Cnfg. 2 act.] (CnF2): Configuration 2 active [Set 1 active] (CFP1): Parameter set 1 active [Set 2 active] (CFP2): Parameter set 2 active [Set 3 active] (CFP3): Parameter set 3 active [DC charged] (dbL): DC bus charging [P. removed] (PRM): Drive loking [P. removed] (PRM): Drive locked by "Power removal" input \square [Fr.met. alar.] (FqLA): Measured speed threshold attained: [Pulse warning thd.] (FqL) page $\underline{65}$. \square [I present] (MCP): Motor current present \square [Limit sw. att] (LSA): Limit switch attained \square [Load alarm] (dLdA): Load variation detection (see page 230). - [Alarm Grp 1] (AGI): Alarm group 1 - [Alarm Grp 2] (AG2): Alarm group 2 - [Alarm Grp 3] (AG3): Alarm group 3 \square [PTC1 alarm] (P1A): Probe alarm 1 \square [PTC2 alarm] (P2A): Probe alarm 2 - [LI6=PTC al.] (PLA): LI6 = PTC probe alarm \square [Ext. fault al] (EFA): External fault alarm \square [Under V. al.] (USA): Undervoltage alarm \square [Uvolt warn] (UPA): Undervoltage warning \square [slipping al.] (AnA): Slipping alarm \square [AI. ${ }^{\circ} \mathrm{C}$ drv] (tHA): Drive overheating \square [Load mvt al] (bSA): Braking speed alarm \square [Brk cont. al] (bCA): Brake contact alarm \square [Lim T/I att.] (SSA): Torque limit alarm \square [Trq. ctrl. al.] (rtA): Torque control alarm \square [IGBT al.] (tJA): IGBT alarm \square [Brake R. al.] (bOA): Braking resistor temperature alarm - [Option al.] (APA): Alarm generated by the Controller Inside card. \square [AI3 AI. 4-20] (AP3): Alarm indicating absence of $4-20 \mathrm{~mA}$ signal on input AI3 \square [AI4 AI. 4-20] (AP4): Alarm indicating absence of 4-20 mA signal on input AI4 \square [Ready] (rdY): Drive ready

Code	Name/Description \quad Adjustment range \quad Factory setting
	[R1 CONFIGURATION] (continued)
rld	[R1 Delay time] The change in state only takes effect once the configured time has elapsed, when the information becomes true. The delay cannot be set for the [No drive flt] (FLt) assignment, and remains at 0 .
$r 15$ $\begin{aligned} & P Q S \\ & \cap E L \end{aligned}$	[R1 Active at] Configuration of the operating logic: [1] (POS): State 1 when the information is true [0] (nEG): State 0 when the information is true Configuration [1] (POS) cannot be modified for the [No drive flt] (FLt), assignment.
r IH	[R1 Holding time] The change in state only takes effect once the configured time has elapsed, when the information becomes false. The holding time cannot be set for the [No drive flt] (FLt) assignment, and remains at 0 .
$r 己-$	[R2 CONFIGURATION]
$r 2$	[R2 Assignment] Identical to R1 (see page 100) with the addition of (shown for information only as these selections can only be configured in the [1.7 APPLICATION FUNCT.] (Fun-)) menu: [Brk control] (bLC): Brake contactor control [Input cont.] (LLC): Line contactor control [Output cont] (OCC): Output contactor control [End reel] (EbO): End of reel(traverse control function) [Sync. wobble] (tSY): "Counter wobble" synchronization [DC charging] (dCO): DC bus precharging contactor control.
red	\square [R2 Delay time] The delay cannot be set for the [No drive flt] (FLt), [Brk control] (bLC), [Output cont.] (OCC), [DC charging] (dCO), and [Input cont.] (LLC) assignments, and remains at 0 . The change in state only takes effect once the configured time has elapsed, when the information becomes true.
$r 25$ $\begin{gathered} P \square 5 \\ \cap E L \end{gathered}$	[R2 Active at] Configuration of the operating logic: [1] (POS): State 1 when the information is true [0] (nEG): State 0 when the information is true The configuration [1] (POS) cannot be modified for the [No drive fIt] (FLt), [Brk control] (bLC), [DC charging] (dCO), and [Input cont.] (LLC) assignments.
r ᄅ H	\square [R2 Holding time] The holding time cannot be set for the [No drive flt] (FLt), [Brk control] (bLC), [DC charging] (dCO), and [Input cont] (LLC) assignments, and remains at 0. The change in state only takes effect once the configured time has elapsed, when the information becomes false.

[1.5 INPUTS / OUTPUTS CFG] (I-O-)

Use of analog output AO1 as a logic output

Analog output AO1 can be used as a logic output, by assigning DO1. In this case, when set to 0 this output corresponds to the AO1 min. value (0 V or 0 mA , for example), and when set to 1 to the $A O 1 \mathrm{max}$. value (10 V or 20 mA , for example).
The electrical characteristics of this analog output remain unchanged. As these differ from logic output characteristics, it is important to ensure that they are compatible with the intended application.

Configuration of analog outputs

Minimum and maximum values (output values):

The minimum output value, in volts or mA, corresponds to the lower limit of the assigned parameter and the maximum value corresponds to its upper limit. The minimum value may be greater than the maximum value:

Outputs AO2 and AO3 configured as bipolar outputs (strongly recommended for signed parameters):
The [min Output] (UOLx) and [max Output] (UOHx) parameters are absolute values, although they function symmetrically. In the case of bipolar outputs, always set the maximum value higher than the minimum value.
The [max Output] (UOHx) corresponds to the upper limit of the assigned parameter, and the [min Output] (UOLx) corresponds to an average value between the upper and lower limits (0 for a signed and symmetrical parameter such as in the example below).

Scaling of the assigned parameter

The scale of the assigned parameter can be adapted in accordance with requirements by modifying the values of the lower and upper limits by means of two parameters for each analog output.
These parameters are given in \%; 100% corresponds to the total variation range of the configured parameter, so:

- 100% = upper limit - lower limit For example, [Sign. torque] (Stq) which varies between -3 and +3 times the rated torque, 100% corresponds to 6 times the rated torque.
- The parameter [Scaling AOx min] (ASLx) modifies the lower limit: new value = lower limit + (range x ASLx). The value 0\% (factory setting) does not modify the lower limit.
- The parameter [Scaling AOx max] (ASHx) modifies the upper limit: new value = lower limit + (range x ASLx). The value 100% (factory setting) does not modify the upper limit.
- [Scaling AOx min] (ASLx) must always be lower than [Scaling AOx max] (ASHx).

Upper limit of the assigned parameter

Lower limit of the assigned parameter

Application example 1

The value of the signed motor torque at the AO 2 output is to be transferred with $+/-10 \mathrm{~V}$, with a range of -2 Tr to +2 Tr .
The parameter [Sign. torque.] (Stq) varies between -3 and +3 times the rated torque, or a range of 6 times the rated torque.
[Scaling AO2 min] (ASL2) must modify the lower limit by 1 x the rated torque, or $100 / 6=16.7 \%$ (new value $=$ lower limit + (range \times ASL2).
[Scaling AO2 max] (ASH2) must modify the upper limit by 1 x the rated torque, or 100-100/6 $=83.3 \%$ (new value $=$ lower limit + (range x ASH2).

Application example 2

The value of the motor current at the AO2 output is to be transferred with 0-20 mA, range 2 In motor, In motor being the equivalent of a 0.8 In drive.

The parameter [I motor] (OCr) varies between 0 and 2 times the rated drive current, or a range of 2.5 times the rated drive current.
[Scaling AO2 min] (ASL2) must not modify the lower limit, which therefore remains at its factory setting of 0\%.
[Scaling AO2 max] (ASH2) must modify the upper limit by $0.5 x$ the rated motor torque, or 100-100/5 $=80 \%$ (new value $=$ lower limit + (range \times ASH2).

Code	Name／Description \quad Adjustment range \quad Factory setting
AD 1－	［AO1 CONFIGURATION］
คロ I $\cap \square$ प［r ロFr ロrP Er 9 5ヒの ロr 5 ロP5 ロPF पPE पР I ロPr thr tHd ヒ 9 П 5 QFrr DF 5 thre t Hr Uヒr 5tr t 9 L UロP dロI	［AO1 assignment］ ［No］（nO）：Not assigned ［I motor］（OCr）：Current in the motor，between 0 and $2 \ln$（ $\mathrm{In}=$ rated drive current indicated in the Installation Manual and on the drive nameplate）． ［Motor freq．］（OFr）：Output frequency，from 0 to［Max frequency］（tFr） ［Ramp out．］（OrP）：From 0 to［Max frequency］（tFr） ［Motor torq．］（trq）：Motor torque，between 0 and 3 times the rated motor torque． ［Sign．torque］（Stq）：Signed motor torque，between -3 and +3 times the rated motor torque．The + sign corresponds to the motor mode and the－sign to the generator mode（braking）． ［sign ramp］（OrS）：Signed ramp output，between－［Max frequency］（tFr）and＋［Max frequency］（tFr） ［PID ref．］（OPS）：PID regulator reference between［Min PID reference］（PIP1）and［Max PID reference］ （PIP2） \square［PID feedback］（OPF）：PID regulator feedback between［Min PID feedback］（PIF1）and［Max PID feedback］（PIF2） \square［PID error］（OPE）：PID regulator error between－ 5% and $+5 \%$ of（［Max PID feedback］（PIF2）－［Min PID feedback］（PIF1）） \square［PID Output］（OPI）：PID regulator output between［Low speed］（LSP）and［High speed］（HSP） ［Mot．power］（OPr）：Motor power，between 0 and 2.5 times［Rated motor power］（nPr） ［Mot thermal］（tHr）：Motor thermal state，between 0 and 200\％of the rated thermal state． ［Drv thermal］（tHd）：Drive thermal state，between 0 and 200% of the rated thermal state． ［Torque 4Q］（tqMS）：Signed motor torque，between -3 and +3 times the rated motor torque．The + sign and the－sign correspond to the physical direction of the torque，regardless of mode（motor or generator）． Example of usage：＂master－slave＂with the TORQUE CONTROL］（tOr－）function，page $\underline{179}$. ［Meas．mot．fr］（OFrr）：Measured motor speed． ［Sig．o／p frq．］（OFS）：Signed output frequency，between－［Max frequency］（tFr）and＋［Max frequency］ （tFr） ［Mot therm2］（tHr2）：Motor thermal state 2，between 0 and 200% of the rated thermal state． ［Mot therm3］（tHr3）：Motor thermal state 3，between 0 and 200\％of the rated thermal state． ［Uns．TrqRef］（Utr）：Torque reference，between 0 and 3 times the rated motor torque ［Uns．TrqRef］（Utr）：Signed torque reference，between -3 and +3 times the rated motor torque ［Torque lim．］（tqL）：Torque limit，between 0 and 3 times the rated motor torque ［Motor volt．］（UOP）：Voltage applied to the motor，between 0 and［Rated motor volt．］（UnS） ［dO1］（dO1）：Assignment to a logic output．This assignment can only appear if［DO1 assignment］（dO1） page 105 has been assigned．This is the only possible choice in this case，and is only displayed for informational purposes．
RロIt IロU ロA	［AO1 Type］ ［Voltage］（10U）：Voltage output ［Current］（0A）：Current output
FBL I	$\square[A O 1$ min Output］ The parameter can be accessed if［AO1 Type］（AO1t）$=\left[\begin{array}{ll}{[\text { Current }](0 A)}\end{array}\right.$ 0 mA
FロH I	$\square[A O 1$ max Output］ The parameter can be accessed if［AO1 Type］（AO1t）$=[$［Current］（0A） 0 to 20.0 mA 20.0 mA
UロL I	$\square[$ AO1 min Output］ The parameter can be accessed if［AO1 Type $($ AO1t $)=[$ Voltage $](10 \mathrm{U})$ 0 to 10.0 V
UロH I	［AO1 max Output］ The parameter can be accessed if［AO1 Type］（AO1t）＝［Voltage］（10U）

[1.5 INPUTS / OUTPUTS CFG] (I-O-)

The following submenus group the alarms into 1 to 3 groups, each of which can be assigned to a relay or a logic output for remote signaling. These groups can also be displayed on the graphic display terminal (see [6 MONITORING CONFIG.] menu) and viewed via the [1.2 MONITORING] (SUP) menu.
When one or a number of alarms selected in a group occurs, this alarm group is activated.

Code	Name/Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
A 15-	- [ALARM GRP1 DEFINITION]
	Selection to be made from the following list: [LI6=PTC al.] (PLA): LI6 = PTC probe alarm [PTC1 alarm] (P1A): Probe alarm 1 [PTC2 alarm] (P2A): Probe alarm 2 [Ext. fault al.] (EFA): External fault alarm [Under V. al.] (USA): Undervoltage alarm [slipping al.] (AnA): Slipping alarm [I attained] (CtA): Current threshold attained ([Current threshold] (Ctd) page 64) [Freq.Th.att.] (FtA): Frequency threshold attained ([Freq. threshold] (Ftd) page 65) [Freq. Th. 2 attain.] (F2A): Frequency threshold 2 attained ([Freq. Th. 2 attain] (F2d) page 65) [Freq.ref.att] (SrA): Frequency reference attained [Th.mot. att.] (tSA): Motor 1 thermal state attained [Th.mot2 att] (tS2): Motor 2 thermal state attained [Th.mot3 att] (tS3) : Motor 3 thermal state attained [Uvolt warn] (UPA): Undervoltage warning [HSP attain.] (FLA): High speed attained [AI. ${ }^{\circ} \mathrm{C}$ drv] (tHA): Drive overheating [Load mvt al] (bSA): Braking speed alarm [Brk cont. al] (bCA): Brake contact alarm [PID error al] (PEE): PID error alarm [PID fdbk al.] (PFA): PID feedback alarm [AI2 AI. 4-20] (AP2): Alarm indicating absence of $4-20 \mathrm{~mA}$ signal on input A12 [AI3 AI. 4-20] (AP3): Alarm indicating absence of $4-20 \mathrm{~mA}$ signal on input AI3 [AI4 AI. 4-20] (AP4): Alarm indicating absence of $4-20 \mathrm{~mA}$ signal on input AI4 [Lim T/I att.] (SSA): Torque limit alarm [Th. drv. att.] (tAd): Drive thermal state attained [IGBT alarm] (tJA): IGBT alarm [Torque Control al.] (rtA): Torque control alarm [Brake R. al.] (bOA): Braking resistor temperature alarm [Option al.] (APA): Alarm generated by an option card. [Regen. underV. al.] (UrA): Reserved. [Rope slack alarm] (rSdA) : Rope slack (see [Rope slack config.] (rSd) parameter page 168) [High torque alarm] (ttHA): Motor torque overshooting high threshold [High torque thd.] (ttH) page 64. [Low torque alarm] (ttLA) : Motor torque undershooting low threshold[Low torque thd.] (ttL) page 64. [Freq. meter Alarm] (FqLA) : Measured speed threshold attained: [Pulse warning thd.] (FqL) page 65. [Dynamic load alarm] (dLdA): Load variation detection (see[DYNAMIC LOAD DETECT.] (dLd-) page 230). See the multiple selection procedure on page $\underline{28}$ for the integrated display terminal, and page $\underline{19}$ for the graphic display terminal.
月 2 -	- [ALARM GRP2 DEFINITION]
	Identical to [ALARM GRP1 DEFINITION] (A1C-)
А \exists [-	- [ALARM GRP3 DEFINITION]
	Identical to [ALARM GRP1 DEFINITION] (A1C-)

[1.6 COMMAND] (CtL-)

With graphic display terminal:

RDY	Term +0.00 Hz	0A
MAIN MENU		
1 DRIVE MENU		
2 ACCESS LEVEL		
3 OPEN / SAVE AS		
4 PASSWORD		
5 LANGUAGE		
Code	Quick	

1.12 FACTORY SETTINGS
1.13 USER MENU
1.14 PROGRAMMABLE CARD

With integrated display terminal:

The parameters in the [1.6 COMMAND] (CtL) menu can only be modified when the drive is stopped and no run command is present.

Command and reference channels

Run commands (forward, reverse, stop, etc.) and references can be sent using the following channels:

Control	Reference
- Terminals: logic inputs LI	- Terminals: analog inputs AI, frequency input, encoder
- Graphic display terminal	- Graphic display terminal
- Integrated Modbus	- Integrated Modbus
- Integrated CANopen	- Integrated CANopen
- Communication card	- Communication card
- Controller Inside card	- Controller Inside card
	- +/- speed via the terminals
	- +/- speed via the graphic display terminal

The behavior of the Altivar 71 can be adapted according to requirements:

- [8 serie] (SE8): To replace an Altivar 58. See the Migration Manual.
- [Not separ.] (SIM): Command and reference are sent via the same channel.
- [Separate] (SEP): Command and reference may be sent via different channels.

In these configurations, control via the communication bus is performed in accordance with the DRIVECOM standard with only 5 freelyassignable bits (see Communication Parameters Manual). The application functions cannot be accessed via the communication interface.

- [I/O profile] (IO): The command and the reference can come from different channels. This configuration both simplifies and extends use via the communication interface.
Commands may be sent via the logic inputs on the terminals or via the communication bus.
When commands are sent via a bus, they are available on a word, which acts as virtual terminals containing only logic inputs. Application functions can be assigned to the bits in this word. More than one function can be assigned to the same bit.

Note: Stop commands from the terminals remain active even if the terminals are not the active command channel.

Note : The integrated Modbus channel has 2 physical communication ports:

- The Modbus network port
- The Modbus HMI port

The drive does not differentiate between these two ports, but recognizes the graphic display terminal irrespective of the port to which it is connected.

Reference channel for [Not separ.] (SIM), [Separate] (SEP) and [I/O profile] (IO) configurations, PID not configured

 Parameter:
The black square represents
the factory setting assignment

Instructions

Fr1, SA2, SA3, dA2, dA3, MA2, MA3:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Fr1b, for SEP and IO:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Fr1b, for SIM:

- Terminals, only accessible if Fr1 = terminals

Fr2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card, and $+/-$ speed

Note :[Ref.1B channel] (Fr1b) and [Ref 1B switching] (rCb) must be configured in the [1.7 APPLICATION FUNCT.] (Fun-) menu.

Reference channel for [Not separ.] (SIM), [Separate] (SEP) and [I/O profile] (IO) configurations, PID configured with PID references at the terminals

Instructions

Fr1:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Fr1b, for SEP and IO:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Fr1b, for SIM:

- Terminals, only accessible if Fr1 = terminals

SA2, SA3, dA2, dA3:

- Terminals only

Fr2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card, and +/speed
(1) Ramps not active if the PID function is active in automatic mode.

Note :[Ref.1B channel] (Fr1b) and [Ref 1B switching] (rCb) must be configured in the [1.7 APPLICATION FUNCT.] (Fun-) menu.

[1.6 COMMAND] (CtL-)

Command channel for [Not separ.] (SIM) configuration

Reference and command, not separate
The command channel is determined by the reference channel. Parameters Fr1, Fr2, rFC, FLO and FLOC are common to reference and command.
Example: if the reference is Fr1 = AI1 (analog input at the terminals), control is via LI (logic input at the terminals).

Key:

Parameter:
The black square represents the factory setting assignment

Command channel for [Separate] (SEP) configuration

Separate reference and command

Parameters FLO and FLOC are common to reference and command.
Example: If the reference is in forced local mode via Al1 (analog input at the terminals), command in forced local mode is via LI (logic input at the terminals).
The command channels Cd1 and Cd2 are independent of the reference channels Fr1, Fr1b and Fr2.

Key:

Parameter:
The black rectangle represents the factory
setting assignment, except for [Profile].

Commands

Cd1, Cd2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Command channel for [I/O profile] (IO) configuration

Separate reference and command, as in [Separate] (SEP) configuration

The command channels Cd1 and Cd2 are independent of the reference channels Fr1, Fr1b and Fr2.

Key:

Parameter:
The black rectangle represents the factory
setting assignment, except for [Profile].

Commands

Cd1, Cd2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Command channel for [I/O profile] (IO) configuration

Selection of a command channel:

A command or an action can be assigned:

- To a fixed channel by selecting an LI input or a Cxxx bit:
- By selecting e.g., LI3, this action will always be triggered by LI3 regardless of which command channel is switched.
- By selecting e.g., C214, this action will always be triggered by integrated CANopen with bit 14 regardless of which command channel is switched.
- To a switchable channel by selecting a CDxx bit:
- By selecting, e.g., CD11, this action will be triggered by LI12 if the terminals channel is active C111 if the integrated Modbus channel is active C211 if the integrated CANopen channel is active C311 if the communication card channel is active C411 if the Controller Inside card channel is active

If the active channel is the graphic display terminal, the functions and commands assigned to CDxx switchable internal bits are inactive.

Note:

- CD14 and CD15 can only be used for switching between 2 networks. They do not have equivalent logic inputs.

Terminals	Integrated Modbus	Integrated CANopen	Communication card	Controller Inside card	Internal bit, can be switched
					CD00
LI2 (1)	C101 (1)	C201 (1)	C301 (1)	C401 (1)	CD01
LI3	C102	C202	C302	C402	CD02
LI4	C103	C203	C303	C403	CD03
LI5	C104	C204	C304	C404	CD04
LI6	C105	C205	C305	C405	CD05
LI7	C106	C206	C306	C406	CD06
LI8	C107	C207	C307	C407	CD07
LI9	C108	C208	C308	C408	CD08
LI10	C109	C209	C309	C409	CD09
LI11	C110	C210	C310	C410	CD10
LII2	C111	C211	C311	C411	CD11
LII3	C112	C212	C312	C412	CD12
LI14	C113	C213	C313	C413	CD13
-	C114	C214	C314	C414	CD14
-	C115	C215	C315	C415	CD15

(1) If $[2 / 3$ wire control $]$ (tCC) page $86=[3$ wire $](3 C), L I 2, C 101, C 201, C 301$, and $C 401$ cannot be accessed.

[1.6 COMMAND] (CtL-)

Assignment conditions for logic inputs and control bits

The following elements are available for every command or function that can be assigned to a logic input or a control bit:

$\begin{gathered} \text { [LII] (LI1) } \\ \text { to } \\ {[\text { LI6] (LI6) }} \end{gathered}$	Drive with or without option
$\begin{gathered} \text { [LI7] (LI7) } \\ \text { to } \\ \text { [LI10] (LI10) } \end{gathered}$	With VW3A3201 logic I/O card
[LI11] (LI11) to [LI14] (LI14)	With VW3A3202 extended I/O card
$\begin{gathered} \text { [C101] (C101) } \\ \text { to } \\ {[\mathrm{C} 110] \text { (C110) }} \end{gathered}$	With integrated Modbus in [I/O profile] (IO) configuration
$\begin{gathered} {[\mathrm{C} 111] \text { (C111) }} \\ \text { to } \\ {[\mathrm{C} 115] \text { (C115) }} \end{gathered}$	With integrated Modbus regardless of configuration
$\begin{gathered} \text { [C201] (C201) } \\ \text { to } \\ {C 210} \end{gathered}$	With integrated CANopen in [I/O profile] (IO) configuration
$\begin{gathered} \text { [C211] (C211) } \\ \text { to } \\ {C 215} \end{gathered}$	With integrated CANopen regardless of configuration
$\begin{gathered} \text { [C301] (C301) } \\ \text { to } \\ {[\mathrm{C} 310] \text { (C310) }} \end{gathered}$	With a communication card in [//O profile] (IO) configuration
$\begin{gathered} \text { [C311] (C311) } \\ \text { to } \\ {[\mathrm{C} 315] \text { (C315) }} \end{gathered}$	With a communication card regardless of configuration
$\begin{gathered} \text { [C401] (C401) } \\ \text { to } \\ {[C 410] \text { (C410) }} \end{gathered}$	With Controller Inside card in [/O profile] (IO) configuration
$\begin{gathered} {\mathrm{C} 411} \\ \text { to } \\ {\mathrm{C} 415} \end{gathered}$	With Controller Inside card regardless of configuration
$\begin{gathered} {[C D 00](C d 00)} \\ \text { to } \\ {[C D 10](C d 10)} \end{gathered}$	In [I/O profile] (IO) configuration
$\begin{gathered} \text { [CD11] (Cd11) } \\ \text { to } \\ {[C D 15] \text { (Cd15) }} \end{gathered}$	Regardless of configuration

[^4]
A WARNING
 UNINTENDED EQUIPMENT OPERATION
 Inactive communication channels are not monitored (no lock following malfunction in the event of a communication bus failure). Make sure that the commands and functions assigned to bits C 101 to C 415 will not pose a risk in the event of the failure of the associated communication bus.

Failure to follow these instructions can result in death or serious injury.

Code	Name／Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
$\overline{F_{r} I}$ A 1 । म 12 ค $1 \exists$ A 14 L［ $[$ пыb ［月n nEt APP P I PL	［Ref． 1 channel］ ［AI1］（Al1）：Analog input ［AI2］（AI2）：Analog input ［AI3］（AI3）：Analog input，if VW3A3202 extension card has been inserted ［AI4］（AI4）：Analog input，if VW3A3202 extension card has been inserted ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［C．Insid．card］（APP）：Controller Inside card（if inserted） ［RP］（PI）：Frequency input，if VW3A3202 extension card has been inserted， ［Encoder］（PG）：Encoder input，if encoder card has been inserted
$\begin{aligned} r \ln \\ n \square \\ \text { YE } \end{aligned}$	［RV Inhibition］ ［ No ］（nO） ［Yes］（YES） Inhibition of movement in reverse direction，does not apply to direction requests sent by logic inputs． －Reverse direction requests sent by logic inputs are taken into account． －Reverse direction requests sent by the graphic display terminal are not taken into account． －Reverse direction requests sent by the line are not taken into account． －Any reverse speed reference originating from the PID，summing input，etc．，is interpreted as a zero reference．
$\begin{aligned} & \text { PSt } \\ & \text { nロ } \\ & \text { YE } 5 \end{aligned}$	［Stop Key priority］ ［No］（nO） ［Yes］（YES）：Gives priority to the STOP key on the graphic display terminal when the graphic display terminal is not enabled as the command channel． Press and hold down ENT for 2 seconds in order for any change in the assignment of［Stop Key priority］（PSt） to be taken into account． This will be a freewheel stop．If the active command channel is the graphic display terminal，the stop will be performed according to the［Type of stop］（Stt）page 137 irrespective of the configuration of［Stop Key priority］ （PSt）．
［ H L F 5E日 $51 \square$ 5 E P 10	［Profile］ ［8 serie］（SE8）：ATV58 interchangeability（see Migration Manual）．The［8 serie］（SE8）configuration is used to load，via PowerSuite，for example，an ATV58 drive configuration in an ATV71 that has already been set to this configuration．This assignment cannot be accessed if a Controller Inside card has been inserted． Note：Modifications to the configuration of the ATV71 must only be made using PowerSuite when it is in this configuration，otherwise operation cannot be guaranteed． ［Not separ．］（SIM）：Reference and command，not separate ［Separate］（SEP）：Separate reference and command．This assignment cannot be accessed in［I／O profile］ （IO）． ［I／O profile］（IO）：I／O profile When［8 serie］（SE8）is selected and［／／O profile］（IO）is deselected，the drive automatically returns to the factory setting（this is mandatory）．This factory setting only affects the［1 DRIVE MENU］menu．It does not affect either ［1．9 COMMUNICATION］or［1．5 PROGRAMMABLE CARD］． －With the graphic display terminal，a screen appears to perform this operation．Follow the instructions on the screen． －With the integrated display terminal，press ENT and hold it down（for 2 s ）．This will save the selection and return to the factory setting．

Code	Name／Description ${ }^{\text {a }}$ Adjustment range	Factory setting
$\text { [[} 5$ ［d 1 ［d己 L I I	［Cmd switching］ The parameter can be accessed if［Profile］（CHCF）＝［Separate］（SEP）or［I／O profile］（IO） ［ch1 active］（Cd1）：［Cmd channel 1］（Cd1）active（no switching） ［ch2 active］（Cd2）：［Cmd channel 2］（Cd2）active（no switching） ［LII］（LII） ［．．．］（．．．）：See the assignment conditions on page 121 （not CDOO to CD14）． If the assigned input or bit is at 0 ，channel［Cmd channel 1］（Cd1）is active． If the assigned input or bit is at 1 ，channel［Cmd channel 2］（Cd2）is active．	
［dI tEr L［［ Пdь ［月n nEt APP	［Cmd channel 1］ ［Terminals］（tEr）：Terminals ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［C．Insid．card］（APP）：Controller Inside card（if inserted） The parameter is available if［Profile］（CHCF）＝［Separate］（SEP）or［I／O profile］（IO）	［Terminals］（tEr）
$\begin{aligned} & \text { Cde } \\ & \text { tEr } \\ & \text { LEL } \\ & \text { חdb } \\ & \text { CRn } \\ & \text { nEt } \\ & \text { RPP } \end{aligned}$	［Cmd channel 2］ ［Terminals］（tEr）：Terminals ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（nEt）：Communication card（if inserted） ［C．Insid．card］（APP）：Controller Inside card（if inserted） The parameter is available if［Profile］（CHCF）＝［Separate］（SEP）or［I／O profile］（IO）	［Modbus］（Mdb）
$\left.\begin{array}{ccc} r F & \\ & \\ F r & 1 \\ F r & 1 \\ L & 1 & 1 \end{array} \right\rvert\,$	［Ref． 2 switching］ ［ch1 active］（Fr1）：no switching，［Ref． 1 channel］（Fr1）active ［ch2 active］（Fr2）：no switching，［Ref． 2 channel］（Fr2）active ［LII］（LII） ［．．．］（．．．）：See the assignment conditions on page 121 （not CDOO to CD14）． If the assigned input or bit is at 0 ，channel［Ref． 1 channel］（Fr1）is active． If the assigned bit or input is at 1 ，channel［Ref． 2 channel］（Fr2）is active．	［ch1 active］（Fr1）
Fre A 11 म 12 ค $1 \exists$ A 14 UPdt L［ L Пdb ［月n nEt APP P I PL	［Ref． 2 channel］ ［No］（nO）：Not assigned．If［Profile］（CHCF）＝［Not separ．］（SIM）the command is a reference．If［Profile］（CHCF）$=$［Separate］（SEP）or［／／O profile］（IO）the reference is ［AI1］（AI1）：Analog input ［AI2］（AI2）：Analog input ［AI3］（AI3）：Analog input，if VW3A3202 extension card has been inserted ［AI4］（AI4）：Analog input，if VW3A3202 extension card has been inserted ［＋／－Speed］（UPdt）：＋／－Speed command ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［C．Insid．card］（APP）：Controller Inside card（if inserted） ［RP］（PI）：Frequency input，if VW3A3202 extension card has been inserted ［Encoder］（PG）：Encoder input，if encoder card has been inserted	$[\mathrm{No}](\mathrm{nO})$ terminals with a zero ro．

[1.6 COMMAND] (CtL-)

As the graphic display terminal may be selected as the command and/or reference channel, its action modes can be configured. The parameters on this page can only be accessed on the graphic display terminal, and not on the integrated display terminal.

Comments:

- The display terminal command/reference is only active if the command and/or reference channels from the terminal are active with the exception of $[T / K]$ (command via the display terminal), which takes priority over these channels. Press [T/K] (command via the display terminal) again to revert control to the selected channel.
- Command and reference via the display terminal are impossible if the latter is connected to more than one drive.
- The JOG, preset speed and $+/$ - speed functions can only be accessed if [Profile] (CHCF) $=$ [Not separ.] (SIM).
- The preset PID reference functions can only be accessed if [Profile] (CHCF) = [Not separ.] (SIM) or [Separate] (SEP)
- The $[T / K]$ (command via the display terminal) can be accessed regardless of the [Profile] (CHCF).

- [F2 key assignment]

Identical to [F1 key assignment].

[F3 key assignment]

[No]

Identical to [F1 key assignment].

- [F4 key assignment]

Identical to [F1 key assignment].

[HMI cmd.]

When the $[T / K]$ function is assigned to a key and that function is active, this parameter defines the behavior at the moment when control returns to the graphic display terminal.
\square [Stop] : Stops the drive (although the controlled direction of operation and reference of the previous channel are copied (to be taken into account on the next RUN command)).
\square [Bumpless]: Does not stop the drive (the controlled direction of operation and the reference of the previous channel are copied).

［1．7 APPLICATION FUNCT．］（FUn－）

With graphic display terminal：

With integrated display terminal：

Summary of functions：

Code	Name	Page
r E F－	［REFERENCE SWITCH．］	$\underline{132}$
－1－	［REF．OPERATIONS］	$\underline{133}$
rPt－	［RAMP］	$\underline{134}$
5tヒ－	［STOP CONFIGURATION］	137
AdL－	［AUTO DC INJECTION］	$\underline{139}$
」 \square－	［JOG］	$\underline{141}$
P55－	［PRESET SPEEDS］	143
UPd－	［＋／－SPEED］	146
$5 r \mathrm{E}$－	［＋／－SPEED AROUND REF．］	148
5РП－	［MEMO REFERENCE］	149
FL I－	［FLUXING BY LI］	$\underline{150}$
L5t－	［LIMIT SWITCHES］	$\underline{152}$
bL［－	［BRAKE LOGIC CONTROL］	$\underline{157}$
EL \quad－	［EXTERNAL WEIGHT MEAS．］	$\underline{163}$
H5 H－	［HIGH SPEED HOISTING］	$\underline{168}$
Pld－	［PID REGULATOR］	$\underline{173}$
Pr 1－	［PID PRESET REFERENCES］	177
tロr－	［TORQUE CONTROL］	$\underline{179}$
EロL－	［TORQUE LIMITATION］	$\underline{182}$
［L I－	［2nd CURRENT LIMIT．］	184
L L L－	［LINE CONTACTOR COMMAND］	$\underline{186}$
－［［－	［OUTPUT CONTACTOR CMD］	$\underline{188}$
LPG－	［POSITIONING BY SENSORS］	192
ПLP－	［PARAM．SET SWITCHING］	$\underline{195}$
ППГ－	［MULTIMOTORS／CONFIG．］	$\underline{199}$
$t \cap L-$	［AUTO TUNING BY LI］	$\underline{199}$
trロ－	［TRAVERSE CONTROL］	$\underline{205}$
rFt－	［EVACUATION］	$\underline{207}$
HFF－	［HALF FLOOR］	$\underline{208}$
d［ $\square^{\text {－}}$	［DC BUS SUPPLY］	$\underline{209}$

[1.7 APPLICATION FUNCT.] (FUn-)

The parameters in the [1.7 APPLICATION FUNCT.] (FUn-) menu can only be modified when the drive is stopped and there is no run command, except for parameters with a () symbol in the code column, which can be modified with the drive running or stopped.

Note: Compatibility of functions

The choice of application functions may be limited by the number of I / O and by the fact that some functions are incompatible with one another. Functions that are not listed in the table below are fully compatible. If there is an incompatibility between functions, the first function configured will prevent the others being configured.

Each of the functions on the following pages can be assigned to one of the inputs or outputs
A single input can activate several functions at the same time (reverse and $2^{\text {nd }}$ ramp for example), The user must therefore ensure that these functions can be used at the same time. It is only possible to assign one input to several functions at [Advanced] (AdU) and [Expert] (EPr) levels.

Before assigning a command, reference or function to an input or output, the user must make sure that this input or output has not already been assigned and that another input or output has not been assigned to an incompatible or undesirable function. The drive factory setting or macro configurations automatically configure functions, which may prevent other functions being assigned. It may be necessary to unconfigure one or more functions in order to be able to enable another. Check the compatibility table below.

[1.7 APPLICATION FUNCT.] (FUn-)

Compatibility table

Ref. operations (page 133)				\uparrow	$\bullet(4)$		\uparrow								$\bullet(1)$			
+/- speed (3) (page 146)						\bullet	\bullet								$\bullet(1)$			
Management of limit switches (page $\underline{152}$) $^{\text {1 }}$					-													
Preset speeds (page 143)	\leftarrow						\uparrow								\bullet (1)			
PID regulator (page 173)	\bullet (4)		\bullet			\bullet	\bullet	\bullet					\bullet	\bullet	\bullet (1)	-	-	
Traverse control (page 205)		\bullet			\bullet		\bullet						\bullet	-	$\bullet(1)$			
JOG operation (page 141)	\leftarrow	\bullet		\leftarrow	\bullet	\bullet		\bullet					-	-	$\bullet(1)$			
Brake logic control (page ${ }^{157}$)					\bullet		\bullet		\bullet	\bullet					\bullet			\bullet
Catch on the fly (page 215)								\bullet							$\bullet(1)$			
DC injection stop (page 137)								\bullet			$\bullet(2)$	\uparrow						\bullet
Fast stop (page 137)										$\bullet(2)$		\uparrow						
Freewheel stop (page 137)										\leftarrow	\leftarrow							
+/- speed around a reference (page $\underline{148}$)					\bullet	\bullet	\bullet								\bullet (1)			
High speed hoisting (page 168)					\bullet	\bullet	\bullet								\bullet		\bullet	
Torque control (page 179)	\bullet (1)	\bullet (1)		\bullet (1)	\bullet (1)	$\bullet(1)$	\bullet (1)	-	$\bullet(1)$				\bullet (1)	\bullet		\bullet	\bullet (1)	\bullet
Load sharing (page 82)					\bullet										\bullet			
Positioning by sensors (page 192)					\bullet									\bullet	$\bullet(1)$			
Synchronous motor (page 74)								\bullet		\bullet					\bullet			

(1) Torque control and these functions are only incompatible while torque control mode is active.
(2) Priority is given to the first of these two stop modes to be activated.
(3) Excluding special application with reference channel Fr2 (see diagrams on pages 115 and 116).
(4) Only the multiplier reference is incompatible with the PID regulator.

- Incompatible functions \square Compatible functions
\square Not applicable

Priority functions (functions, which cannot be active at the same time):

| \leftarrow | \uparrow |
| :--- | :--- | The function indicated by the arrow has priority over the other.

Stop functions have priority over run commands.
Speed references via logic command have priority over analog references.

な
Note: This compatibility table does not affect commands that can be assigned to the keys of the graphic display terminal (see page 125.

[1.7 APPLICATION FUNCT.] (FUn-)

Incompatible functions

The following functions will be inaccessible or deactivated in the cases described below:

Automatic restart

This is only possible for control type [2/3 wire control] (tCC) $=[2$ wire] (2C) and [2 wire type] (tCt) = [Level] (LEL) or [Fwd priority] (PFO). See page 86 .

Catch a spinning load

This is only possible for control type [2/3 wire control] (tCC) $=[2$ wire] (2C) and [2 wire type] (tCt) = [Level] (LEL) or [Fwd priority] (PFO).
See page 86 .
This function is locked if automatic injection on stop [Auto DC injection] (AdC) $=$ [Continuous] (Ct). See page 139.
The SUP- monitoring menu (page 43) can be used to display the functions assigned to each input in order to check their compatibility.
When a function is assigned, a \checkmark appears on the graphic display terminal, as illustrated in the example below:

| RDY \quad Term +0.00 Hz | 0A |
| :--- | :--- | :--- |
| 1.7 APPLICATION FUNCT. | |
| REFERENCE SWITCH. | |
| REF. OPERATIONS | |
| RAMP | |
| STOP CONFIGURATION | |
| AUTO DC INJECTION | |
| Code $\ll \quad \gg$ | Quick |
| JOG | |

If you attempt to assign a function that is incompatible with another function that has already been assigned, an alarm message will appear:

With the graphic display terminal:

RDY \quad Term $\quad+0.00 \mathrm{~Hz} \quad$ OA
INCOMPATIBILITY
The function can't be assigned
because an incompatible
function is already selected. See
programming book.
ENT or ESC to continue

With the integrated display terminal:
COMP flashes until ENT or ESC is pressed.
When you assign a logic input, an analog input, a reference channel or a bit to a function, pressing the HELP button will display the functions that may already have been activated by this input, bit or channel.

[1.7 APPLICATION FUNCT.] (FUn-)

When a logic input, an analog input, a reference channel or a bit that has already been assigned is assigned to another function, the following screens appear:
With the graphic display terminal:

RUN $\quad+50.00 \mathrm{~Hz} \quad$ 1250A +50.00 Hz	
WARNING - ASSIGNED TO	
Ref. 2 switching	

If the access level permits this new assignment, pressing ENT confirms the assignment.
If the access level does not permit this new assignment, pressing ENT results in the following display:

RUN $\quad+50.00 \mathrm{~Hz} \quad 1250 \mathrm{~A}+50.00 \mathrm{~Hz}$
ASSIGNMENT FORBIDDEN
Un-assign the present functions, or select Advanced access level

With the integrated display terminal:

The code for the first function, which is already assigned, is displayed flashing.
If the access level permits this new assignment, pressing ENT confirms the assignment.
If the access level does not permit this new assignment, pressing ENT has no effect, and the message continues to flash. It is only possible to exit by pressing ESC.

[1.7 APPLICATION FUNCT.] (FUn-)

Summing input/Subtracting input/Multiplier

$A=(\operatorname{Fr} 1$ or $\mathrm{Fr} 1 \mathrm{~b}+\mathrm{SA} 2+\mathrm{SA} 3-\mathrm{dA} 2-\mathrm{dA} 3) \times \mathrm{MA} 2 \times \mathrm{MA} 3$

- If SA2, SA3, dA2, dA3 are not assigned, they are set to 0 .
- If MA2, MA3 are not assigned, they are set to 1 .
- A is limited by the minimum LSP and maximum HSP parameters.
- For multiplication, the signal on MA2 or MA3 is interpreted as a $\% ; 100 \%$ corresponds to the maximum value of the corresponding input. If MA2 or MA3 is sent via the communication bus or graphic display terminal, an MFr multiplication variable, page 49 must be sent via the bus or graphic display terminal.
- Reversal of the direction of operation in the event of a negative result can be inhibited (see page 122).

Code	Name/Description \quad Adjustment range ${ }^{\text {Factory setting }}$
$r E F-$	[REFERENCE SW/TCH.]
	[Ref 1B switching] See the diagrams on pages 115 and 116 . [ch1 active] (Fr1): no switching, [Ref. 1 channel] (Fr1) active [ch1B active] (Fr1b): no switching, [Ref.1B channel] (Fr1b) active [LII] (LI1) [...] (...): See the assignment conditions on page 121 (not CDOO to CD14). - If the assigned input or bit is at 0 , [Ref. 1 channel] (Fr1) is active (see page 122). - If the assigned input or bit is at 1, [Ref.1B channel] (Fr1b) is active. [Ref 1B switching] (rCb) is forced to [ch1 active] (Fr1) if [Profile] (CHCF) = [Not separ.] (SIM) with [Ref. 1 channel] (Fr1) assigned via the terminals (analog inputs, encoder, pulse input); see page 122.
Frlb - 12 ค $1 \exists$ A 14 L [[П』ь [月п nEt APP P I PL	[Ref.1B channel] [No] (nO): Not assigned [AI1] (AI1): Analog input [AI2] (AI2): Analog input [AI3] (AI3): Analog input, if VW3A3202 extension card has been inserted [AI4] (AI4): Analog input, if VW3A3202 extension card has been inserted [HMI] (LCC): Graphic display terminal [Modbus] (Mdb): Integrated Modbus [CANopen] (CAn): Integrated CANopen [Com. card] (nEt): Communication card (if inserted) [C.Insid. card] (APP): Controller Inside card (if inserted) [RP] (PI): Frequency input, if VW3A3202 extension card has been inserted [Encoder] (PG): Encoder input, if encoder card has been inserted Note: In the following instances, only assignments via the terminals are possible: - [Profile] (CHCF) = [Not separ.] (SIM) with [Ref. 1 channel] (Fr1) assigned via the terminals (analog inputs, encoder, pulse input); see page 122. - PID configured with PID references via the terminals

Code	Name／Description \quad Adjustment range	Factory setting
－I－	［REF．OPERATIONS］ Reference $=($ Fr1 or Fr1b + SA2 + SA3 $-\mathrm{dA} 2-\mathrm{dA} 3) \times$ MA2 \times MA3．See the diagrams on pages 115 and \qquad 116. Note：This function cannot be used with certain other functions．Follow the instructions on page \qquad 127.	
5 月 己 $n \square$ H $\quad 1$ －1 己 月 1 ヨ A 14 L［［ П』b ［月n п E APP P I $P[$ ト IリI	［Summing ref．2］ Selection of a reference to be added to［Ref． 1 channel］（Fr1）or［Ref．1B channel］（Fr1b）． ［No］（nO）：No source assigned ［AI1］（AI1）：Analog input ［AI2］（AI2）：Analog input ［AI3］（AI3）：Analog input，if VW3A3202 extension card has been inserted ［AI4］（AI4）：Analog input，if VW3A3202 extension card has been inserted ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（nEt）：Communication card（if inserted） ［C．Insid．card］（APP）：Controller Inside card（if inserted） ［RP］（PI）：Frequency input，if VW3A3202 extension card has been inserted ［Encoder］（PG）：Encoder input，if encoder card has been inserted ［Network AI］（AIU1）：Virtual input via communication bus，can be configured using［AI net．channel］ （AIC1）page 95. A WARNING UNINTENDED EQUIPMENT OPERATION If the equipment switches to forced local mode（see page 237），the virtual input remains fixed at the last value transmitted． Do not use the virtual input and forced local mode in the same configuration． Failure to follow these instructions can result in death or serious injury．	
5月ヨ	［Summing ref．3］ Selection of a reference to be added to［Ref． 1 channel］（Fr1）or［Ref．1B channel］（Fr1b）． －Possible assignments are identical to［Summing ref．2］（SA2）above．	
d月己	Selection of a reference to be subtracted from［Ref． 1 channel］（Fr1）or［Ref．1B channel］（Fr1b）． －Possible assignments are identical to［Summing ref．2］（SA2）above．	
d ${ }^{\text {a }}$	［Subtract．ref．3］ Selection of a reference to be subtracted from［Ref． 1 channel］（Fr1）or［Ref．1B －Possible assignments are identical to［Summing ref．2］（SA2）above．	$[\mathrm{No}](\mathrm{nO})$
П（	［Multiplier ref．2］ Selection of a multiplier reference［Ref． 1 channel］（Fr1）or［Ref．1B channel］（Fr1b） －Possible assignments are identical to［Summing ref．2］（SA2）above．	$[\mathrm{No}](\mathrm{nO})$
Пคヨ	［Multiplier ref．3］ Selection of a multiplier reference［Ref． 1 channel］（Fr1）or［Ref．1B channel］（Fr －Possible assignments are identical to［Summing ref．2］（SA2）above．	［ No ］（ nO ）

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to [Ramp increment] (Inr).

[1.7 APPLICATION FUNCT.] (FUn-)

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to [Ramp increment] (Inr) page 134.

Code	Name/Description ${ }^{\text {a }}$ (Adjustment range ${ }^{\text {a }}$ Factory setting
5tt -	[STOP CONFIGURATION] Note: Some types of stop cannot be used with all other functions. Follow the instructions on page 127.
$5 t t$ $\begin{aligned} & \text { rnf } \\ & \text { F5t } \\ & \text { n5t } \\ & d[1 \end{aligned}$	\square [Type of stop] Stop mode on disappearance of the run command or appearance of a stop command. [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop [Freewheel stop] (nSt): Freewheel stop [DC injection] (dCI): DC injection stop Note: If the "brake logic" function on page 157 has been enabled, or if [Low speed time out] (tLS) page 60 or $\underline{176}$ is not 0 , only ramp type stops may be configured.
FFE	[Freewheel stop Thd.] (1) This parameter supports switching from a ramp stop or a fast stop to a freewheel stop below a low speed threshold. It can be accessed if [Type of stop] (Stt) = [Fast stop] (FSt) or [Ramp stop] (rMP). 0.0: Does not switch to freewheel stop. 0.1 to 1600 Hz : Speed threshold below which the motor will switch to freewheel stop.
	[Freewheel stop ass.] [No] (nO): Not assigned [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C101] (C101) to [C115] (C115): With integrated Modbus in [I/O profile] (IO) [C201] (C201) to [C215] (C215): With integrated CANopen in [I/O profile] (IO) [C301] (C301) to [C315] (C315): With a communication card in [I/O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [I/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [I/O profile] can be switched without logic inputs The stop is activated when the input or the bit changes to 0 . If the input returns to state 1 and the run command is still active, the motor will only restart if [2/3 wire control] (tCC) page $\underline{86}=[2$ wire] (2C) and the [2 wire type] (tCt) $=$ [Level] (LEL) or [Fwd priority] (PFO). If not, a new run command must be sent.
FSt	[Fast stop assign.] Note: This function cannot be used with certain other functions. Follow the instructions on page 127. [No] (nO): Not assigned [LI1] (LI1) [...] (...): See the assignment conditions on page 121. The stop is activated when the input changes to 0 or the bit changes to 1 (bit in [I/O profile] (IO) at 0). If the input returns to state 1 and the run command is still active, the motor will only restart if [$2 / 3$ wire control] (tCC) page $86=[2$ wire] (2C) and the [2 wire type] (tCt) $=[$ Level] (LEL) or [Fwd priority] (PFO). If not, a new run command must be sent.
$\begin{gather*} d[F \tag{1}\\ () \end{gather*}$	[Ramp divider] The parameter can be accessed if [Type of stop] (Stt) = [Fast stop] (FSt) and if [Fast stop assign.] (FSt) is not [No] (nO). The ramp that is enabled (dEC or dE2) is then divided by this coefficient when stop requests are sent. Value 0 corresponds to a minimum ramp time.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
(3) Warning: These settings are independent of the [AUTO DC INJECTION] (AdC-) function.

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

0 Parameter that can be modified during operation or when stopped.

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(】 Parameter that can be modified during operation or when stopped.

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

0 Parameter that can be modified during operation or when stopped.

[1.7 APPLICATION FUNCT.] (FUn-)

Preset speeds

$2,4,8$ or 16 speeds can be preset, requiring $1,2,3$ or 4 logic inputs respectively.
Note: You must configure 2 and 4 speeds in order to obtain 4 speeds.
You must configure 2, 4 and 8 speeds in order to obtain 8 speeds. You must configure 2, 4, 8, and 16 speeds in order to obtain 16 speeds.

Combination table for preset speed inputs

16 speeds LI (PS16)	8 speeds LI (PS8)	4 speeds LI (PS4)	2 speeds LI (PS2)	Speed reference
0	0	0	0	Reference (1)
0	0	0	1	SP2
0	0	1	0	SP3
0	0	1	1	SP4
0	1	0	0	SP5
0	1	0	1	SP6
0	1	1	0	SP7
0	1	1	1	SP8
1	0	0	0	SP9
1	0	0	1	SP10
1	0	1	0	SP11
1	0	1	1	SP12
1	1	0	0	SP13
1	1	0	1	SP14
1	1	1	0	SP15
1	1	1	1	SP16

(1) See the diagram on page 115: Reference 1 = (SP1).

[1.7 APPLICATION FUNCT.] (FUn-)

Code	Name/Description \quad Adjustment range	Factory setting
P5 5-	[PRESET SPEEDS] Note: This function cannot be used with certain other functions. Follow the	tions on page 127
$\text { P } 5$	[2 preset speeds] [No] (nO): Function inactive [LII] (LII) [...] (...): See the assignment conditions on page 121.	[No] (nO)
P54	[4 preset speeds] [No] (nO): Function inactive [LII] (LII) [...] (...): See the assignment conditions on page 121. To obtain 4 speeds you must also configure 2 speeds.	[No] (nO)
P5日 n L 1 I	[8 preset speeds] [No] (nO): Function inactive [LII] (LI1) [...] (...): See the assignment conditions on page 121. To obtain 8 speeds you must also configure 2 and 4 speeds.	[No] (nO)
$P 516$	[16 preset speeds] [No] (nO): Function inactive [LII] (LII) [...] (...): See the assignment conditions on page 121. To obtain 16 speeds you must also configure 2,4 and 8 speeds.	[No] (nO)

[1.7 APPLICATION FUNCT.] (FUn-)

Code	Name/Description	Adjustment range	Factory setting
	\square [PRESET SPEEDS] (continued)		
$\begin{gathered} 5 P 2 \\ (2) \end{gathered}$	$\square[$ Preset speed 2]	0 to 1600 Hz	10 Hz
$\begin{gathered} 5 P \exists \\ () \end{gathered}$	$\square[$ Preset speed 3] (1)		15 Hz
$\begin{gathered} 5 P 4 \\ () \end{gathered}$	$\square[$ Preset speed 4]		20 Hz
$5 P 5$ ()	$\square[$ Preset speed 5]		25 Hz
$\begin{gathered} 5 P E \\ () \end{gathered}$	$\square[$ Preset speed 6]		30 Hz
$5 P 7$ (2)	$\square[$ Preset speed 7]		35 Hz
$\begin{gathered} 5 P 日 \\ () \end{gathered}$	$\square[$ Preset speed 8]		40 Hz
$\begin{gathered} 5 P 9 \\ (\boldsymbol{Q} \end{gathered}$	$\square[$ Preset speed 9]		45 Hz
$\begin{gathered} 5 P^{10} \\ ()^{2} \end{gathered}$	$\square[$ Preset speed 10]		50 Hz
$5 P 11$ ()	$\square[$ Preset speed 11]		55 Hz
$\begin{gathered} 5 P I E \\ () \end{gathered}$	$\square[$ Preset speed 12]		60 Hz
$\begin{gathered} 5 P_{1 \exists}^{1 \exists} \\ () \end{gathered}$	$\square[$ Preset speed 13]		70 Hz
$5 P 14$ ()	$\square[$ Preset speed 14]		80 Hz
$\begin{gathered} 5 P^{15} \\ () \end{gathered}$			90 Hz
$5 P I 6$	\square [Preset speed 16] (1)		100 Hz
	The appearance of these [Preset speed x] (SPx) parameters is determined by the number of speeds configured.		

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.

[1.7 APPLICATION FUNCT.] (FUn-)

+/- speed

Two types of operation are available.

1. Use of single action buttons: Two logic inputs are required in addition to the operating direction(s).

The input assigned to the "+ speed" command increases the speed, the input assigned to the "- speed" command decreases the speed.
2. Use of double action buttons: Only one logic input assigned to "+ speed" is required.
+/- speed with double-press buttons:
Description: 1 button pressed twice (2 steps) for each direction of rotation. A contact closes each time the button is pressed.

	Released (- speed)	$1^{\text {st }}$ press (speed maintained)	$2^{\text {nd }}$ press (faster)
Forward button	-	a	a and b
Reverse button	-	c	c and d

Example of wiring:

Do not use this +/-speed type with 3-wire control.

Whichever type of operation is selected, the max. speed is set by [High speed] (HSP) (see page 42).

Note:

If the reference is switched via rFC (see page 123) from any one reference channel to another reference channel with " $+/-$ speed", the value of reference rFr (after ramp) may be copied at the same time in accordance with the [Copy channel 1 --> 2] (COP) parameter, see page 124 . If the reference is switched via rFC (see page 123) from one reference channel to any other reference channel with " $+/$ - speed", the value of reference rFr (after ramp) is always copied at the same time.

This prevents the speed being incorrectly reset to zero when switching takes place.

Code	Name/Description \quad Adjustment range ${ }^{\text {Factory setting }}$
UPd -	[+/- SPEED] Function can be accessed if reference channel [Ref. 2 channel] (Fr2) $=$ [+/-Speed] (UPdt) see page Note: This function cannot be used with certain other functions. Follow the instructions on page \qquad
$U 5 P$ $[101$ \square $\lceil\triangleleft \square \square$	[+ speed assignment] [No] (nO): Function inactive [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C101] (C101) to [C115] (C115): With integrated Modbus in [I/O profile] (IO) [C201] (C201) to [C215] (C215): With integrated CANopen in [I/O profile] (IO) [C301] (C301) to [C315] (C315): With a communication card in [I/O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [I/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [l/O profile] can be switched without logic inputs Function active if the assigned input or bit is at 1.
	[-Speed assignment] [No] (nO): Function inactive [LII] (LII) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C101] (C101) to [C115] (C115): With integrated Modbus in [I/O profile] (IO) [C201] (C201) to [C215] (C215): With integrated CANopen in [I/O profile] (IO) [C301] (C301) to [C315] (C315): With a communication card in [I/O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [I/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [l/O profile] can be switched without logic inputs Function active if the assigned input or bit is at 1.
	[Reference saved] Associated with the "+/-speed" function, this parameter can be used to save the reference: - When the run commands disappear (saved to RAM) - When the line supply or the run commands disappear (saved to EEPROM) Therefore, the next time the drive starts up, the speed reference is the last reference saved. [No] (nO): No save (the next time the drive starts up, the speed reference is [Low speed] (LSP), see page 42) [RAM] (rAM): Saved in RAM [EEprom] (EEP): Saved in EEPROM

[1.7 APPLICATION FUNCT.] (FUn-)

+/- speed around a reference

The reference is given by Fr1 or Fr1b with summing/subtraction/multiplication functions and preset speeds if relevant (see the diagram on page 115). For improved clarity, we will call this reference A. The action of the +speed and -speed buttons can be set as a $\%$ of this reference A. On stopping, the reference ($A+/-$ speed) is not saved, so the drive restarts with reference $A+$ only.
The maximum total reference is always limited by [High speed] (HSP) and the minimum reference by [Low speed] (LSP), see page 42.

Example of 2-wire control:

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to [Ramp increment] (Inr) page 134.

[1.7 APPLICATION FUNCT.] (FUn-)

Save reference

Saving a speed reference value using a logic input command lasting longer than 0.1 s .

- This function is used to control the speed of several drives alternately via a single analog reference and one logic input for each drive.
- It is also used to confirm a line reference (communication bus or network) on several drives via a logic input. This allows movements to be synchronized by getting rid of variations when the reference is set.
- The reference is acquired 100 ms after the rising edge of the request. A new reference is not then acquired until a new request is made.

Code	Name/Description \quad Adjustment range	Factory setting
5РП -	[[MEMO REFERENCE]	
$\begin{array}{cccc} 5 & \text { P } & & \\ & & & \\ & n & \square \\ & L & 1 & 1 \\ & & & - \\ L & 1 & 1 & 4 \end{array}$	\square [Ref. memo ass.] [No] (nO): Function inactive [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted Assignment to a logic input Function active if the assigned input is at 1.	[No] (nO)

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.

[^5]
[1.7 APPLICATION FUNCT.] (FUn-)

Limit switch management

This function can be used to manage trajectory limits using limit switches.

The stop mode is configurable.
When the stop contact is activated, startup in the other direction is authorized.

Example:

The stop is activated when the input is at 0 (contact open).

[1.7 APPLICATION FUNCT.] (FUn-)

Brake logic control

Used to control an electromagnetic brake by the drive, for horizontal and vertical hoisting applications, and for unbalanced machines.

Principle:

Vertical hoisting movement:

Maintain motor torque in the driving load holding direction during brake opening and closing, in order to hold the load, start smoothly when the brake is released and stop smoothly when the brake is engaged.

Horizontal movement:

Synchronize brake release with the build-up of torque during startup and brake engage at zero speed on stopping, to prevent jolting.

Recommended settings for brake logic control for a vertical hoisting application:

WARNING
UNINTENDED EQUIPMENT OPERATION
Check that the selected settings and configurations will not result in the dropping or loss of control of the load being lifted.
Failure to follow these instructions can result in death or serious injury.

1. Brake impulse (bIP): YES. Ensure that the direction of rotation FW corresponds to lifting the load. For applications in which the load being lowered is very different from the load being lifted, set BIP $=2 \mathrm{lbr}$ (e.g., ascent always with a load and descent always without a load).
2. Brake release current (Ibr and Ird if $\mathrm{BIP}=2 \mathrm{lbr}$): Adjust the brake release current to the rated current indicated on the motor. During testing, adjust the brake release current in order to hold the load smoothly.
3. Acceleration time: For hoisting applications it is advisable to set the acceleration ramps to more than 0.5 seconds. Ensure that the drive does not exceed the current limit.
The same recommendation applies for deceleration.
Reminder: For a hoisting movement, a braking resistor should be used.
4. Brake release time (brt): Set according to the type of brake. It is the time required for the mechanical brake to release.
5. Brake release frequency (blr), in open-loop mode only: Leave in [Auto], adjust if necessary.
6. Brake engage frequency (bEn): Leave in [Auto], adjust if necessary.
7. Brake engage time (bEt): Set according to the type of brake. It is the time required for the mechanical brake to engage.

Recommended settings for brake logic control for a horizontal hoisting application:

1. Brake impulse (bIP): No
2. Brake release current (Ibr): Set to 0 .
3. Brake release time (brt): Set according to the type of brake. It is the time required for the mechanical brake to release.
4. Brake engage frequency (bEn), in open-loop mode only: Leave in [Auto], adjust if necessary.
5. Brake engage time (bEt): Set according to the type of brake. It is the time required for the mechanical brake to engage.

[1.7 APPLICATION FUNCT.] (FUn-)

Brake logic control, horizontal movement in open-loop mode

Key:

- (bEn): [Brake engage freq]
- (bEt): [Brake engage time]
- (brt): [Brake Release time]
- (lbr): [Brake release I FW]
- (SdC1): [Auto DC inj. level 1]
- (tbE): [Brake engage delay]
- (ttr): [Time to restart]

[1.7 APPLICATION FUNCT.] (FUn-)

Brake logic control, vertical movement in open-loop mode

Key:

- (bEn): [Brake engage freq]
- (bEt): [Brake engage time]
- (blr): [Brake release freq]
- (brt): [Brake Release time]
- (lbr): [Brake release I FW]
- (JdC): [Jump at reversal]
- (tbE): [Brake engage delay]
- (ttr): [Time to restart]

[1.7 APPLICATION FUNCT.] (FUn-)

Brake logic control, vertical or horizontal movement in closed-loop mode

Key:

- (bEt): [Brake engage time]
- (brt): [Brake Release time]
- (Ibr): [Brake release I FW]
- (tbE): [Brake engage delay]
- (ttr): [Time to restart]

Code	Name/Description \quad Adjustment range \quad Factory setting
bL L -	[BRAKE LOGIC CONTROL] Note: This function cannot be used with certain other functions. Follow the instructions on page \qquad 127.
bLL	[Brake assignment] Note: If the brake is assigned, only a ramp stop is possible. Check the [Type of stop] (Stt) page 137. Brake logic control can only be assigned if [Motor control type] (Ctt) page $\underline{69}=[$ SVC V] (UUC), [SVC I] (CUC) or [FVC] (FUC). Logic output or control relay \square [No] (nO): Function not assigned (in this case, none of the function parameters can be accessed). [R2] (r2) to [R4] (r4): Relay (selection extended to R3 or R4 if one or two I/O cards have been inserted). [LO1] (LO1) to [LO4] (LO4): Logic output (if one or two I/O cards have been inserted, LO1 to LO2 or LO4 can be selected). [dO1] (dO1): Analog output AO1 functioning as a logic output. Selection can be made if [AO1 assignment] (AO1) page $108=[\mathrm{No}](\mathrm{nO})$.
$b 5 t$ Hロr UEr	\square [Movement type] [Hoisting] (UEr) \square [Traveling] (HOr): Resistive-load movement (translational motion of overhead crane, for example). \square [Hoisting] (UEr): Driving-load movement (hoisting winch, for example). \quad If [Weight sensor ass.] (PES) page 163 is not [No] (nO) [Movement type] (bSt) is forced to [Hoisting] (UEr).
b[I $\begin{array}{r} n \square \\ \text { LII } \\ - \\ - \\ - \\ \hline \end{array}$	[Brake contact] If the brake has a monitoring contact (closed for released brake). [No] (nO): Function inactive [LII] (LII) [...] (...): See the assignment conditions on page 121.
b IP (1) $\begin{array}{r} \text { חロ } \\ \text { YES } \\ \text { 2 Ibr } \end{array}$	[Brake impulse] The parameter can be accessed if [Weight sensor ass.] (PES) $=[\mathrm{No}](\mathrm{nO})$ (see page 163) and if [Movement type] (bSt) = [Hoisting] (UEr). [No] (nO): The motor torque is given in the required operating direction, at current Ibr. [Yes] (YES): The motor torque is always Forward (check that this direction corresponds to ascending), at current Ibr. [2 IBR] (2Ibr): The torque is in the required direction, at current Ibr for Forward and Ird for Reverse, for certain specific applications.
lbr (2)	[Brake release I FW] Brake release current threshold for ascending or forward movement The parameter can be accessed if [Weight sensor ass.] (PES) = [No] (nO) (see page 163).
	[Brake release I Rev] Brake release current threshold for descending or reverse movement The parameter can be accessed if [Brake impulse] (bIP) = [2 IBR] (2lbr).

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
() Parameter that can be modified during operation or when stopped.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

[^6]
(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.

Brake control logic expert parameters

Code	Name/Description \quad Adjustment range \quad Factory setting
brHa	[BRH b0] Selection of the brake restart sequence if a run command is repeated while the brake is engaging. [0] (0): The engage/release sequence is executed in full. [1] (1): The brake is released immediately. Use in open-loop and closed-loop mode. - A run command may be requested during the brake engagement phase. Whether or not the brake release sequence is executed depends on the value selected for [BRH b0] (brH0). Note: If a run command is requested during the "ttr" phase, the complete brake control sequence is initialized.
brH I	[BRH b1] Deactivation of the brake contact in steady state fault. $\square[0]$ (0): The brake contact in steady state fault is active (fault if the contact is open during operation). The brF brake contact fault is monitored in all operating phases. [1] (1): The brake contact in steady state fault is inactive. The brF brake contact fault is only monitored during the brake release and engage phases.

Code	Name/Description \quad Adjustment range ${ }^{\text {Factory setting }}$
brH己	[BRH b2] Taking the brake contact into account for the brake control sequence. [0] (0): The brake contact is not taken into account. [1] (1): The brake contact is taken into account. Use in open-loop and closed-loop mode. - If a logic input is assigned to the brake contact. $[\mathrm{BRH} \mathrm{b} 2](\mathrm{brH} 2)=0$: During the brake release sequence, the reference is enabled at the end of the time [Brake Release time] (brt). During the brake engage sequence, the current changes to 0 according to the ramp [Current ramp time] (brr) at the end of the [Brake engage time] (bEt). [BRH b2] (brH2) = 1: When the brake is released, the reference is enabled when the logic input changes to 1 . When the brake is engaged, the current changes to 0 according to the ramp [Current ramp time] (brr) when the logic input changes to 0 .
$\begin{array}{rrr}\text { brH } & \\ & \square \\ & 1\end{array}$	[BRH b3] In closed-loop mode only. Management of the absence of brake contact response, if it is assigned. [0] (0): During the brake engage sequence, the brake contact must be open before the end of [Brake engage time] (bEt), otherwise the drive locks in a brF brake contact fault. [1] (1): During the brake engage sequence, the brake contact must be open before the end of [Brake engage time] (bEt), otherwise a bCA brake contact alarm is triggered and zero speed is maintained.
brH4	[BRH_b4] In closed-loop mode only. Activation of the speed loop at zero if a movement for which no command has been given occurs (measurement of a speed greater than a fixed min. threshold). [0] (0): No action in the event of a movement for which no command has been given. [1] (1): If a movement occurs for which no command has been given, the drive switches to zero speed regulation, with no brake release command, and a bSA alarm is triggered.
brr	\square [Current ramp time] 0 to 5.00 s 0 s Torque current ramp time (increase and decrease) for a current variation equal to [Brake release I FW] (Ibr).

[1.7 APPLICATION FUNCT.] (FUn-)

Load measurement

This function uses the information supplied by a weight sensor to adapt the current [Brake release I FW] (Ibr) of the [BRAKE LOGIC CONTROL] (bLC-) function. The signal from the weight sensor can be assigned to an analog input (usually a $4-20 \mathrm{~mA}$ signal), to the pulse-in input or to the encoder input, according to the type of weight sensor.

Examples:

- Measurement of the total weight of a hoisting winch and its load
- Measurement of the total weight of an elevator winch, the cabin and counterweight

The current [Brake release I FW] (Ibr) is adapted in accordance with the curve below.

This curve can represent a weight sensor on an elevator winch, where zero load on the motor occurs when the load in the cabin is not zero.

Code	Name／Description ${ }^{\text {a }}$ Adjustment range	Factory setting
$E L \Pi$－	［EXTERNAL WEIGHT MEAS．］	
PE 5 		［Weight sensor ass．］ ［ No ］（nO）
	Function can be accessed if brake logic control is assigned（see page 157）． If［Weight sensor ass．］（PES）is not［No］（nO），［Movement type］（bSt）page 157 is forced to［Hoisting］（UEr）． ［No］（nO）：Function inactive ［AI1］（AI1）：Analog input ［AI2］（AI2）：Analog input ［AI3］（AI3）：Analog input，if VW3A3202 extension card has been inserted ［AI4］（AI4）：Analog input，if VW3A3202 extension card has been inserted ［RP］（PI）：Frequency input，if VW3A3202 extension card has been inserted ［Encoder］（PG）：Encoder input，if encoder card has been inserted ［Network AI］（AIU1）：Virtual input via communication bus，to be configured via［AI net．channel］（AIC1） page 95.	
	A WARNING	
	UNINTENDED EQUIPMENT OPERATION If the equipment switches to forced local mode（see page 237），the virtual input r value transmitted． Do not use the virtual input and forced local mode in the same configuration． Failure to follow these instructions can result in death or serious injury．	nains fixed at the last
$L P$ I		0
	0 to 99.99% of signal on assigned input． ［Point 1x］（LP1）must be less than［Point 2x］（LP2）． The parameter can be accessed if［Weight sensor ass．］（PES）is assigned．	
［P I	$\square[P o i n t ~ 1 Y] ~$	－In
	Current corresponding to load［Point 1 X ］（LP1），in A． The parameter can be accessed if［Weight sensor ass．］（PES）is assigned．	
LP己	［Point 2X］ 0.01 to 100% 50% 0．01 to 100% of signal on assigned input． ［Point $2 \times]$（LP2）must be greater than［Point 1x］（LP1）． The parameter can be accessed if［Weight sensor ass．］（PES）is assigned．	
［P己	［Point 2Y］ Current corresponding to load［Point 2x］（LP2），in A． The parameter can be accessed if［Weight sensor ass．］（PES）is assigned．	
1br月 （）		0
	Brake release current in the event of the loss of the weight sensor information． This parameter can be accessed if the weight sensor is assigned to an analog current input and the 4－20 mA loss fault is deactivated． Recommended settings： － 0 for elevators －Rated motor current for a hoisting application	

（1）In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate．

[1.7 APPLICATION FUNCT.] (FUn-)

High-speed hoisting

This function can be used to optimize the cycle times for hoisting movements for zero or lightweight loads. It authorizes operation at "constant power" in order to reach a speed greater than the rated speed without exceeding the rated motor current.
The speed remains limited by the [High speed] (HSP) parameter, page 42.
The function acts on the speed reference pedestal and not on the reference itself.

Principle:

[1.7 APPLICATION FUNCT.] (FUn-)

There are 2 possible operating modes:

- "Speed reference" mode: The maximum permissible speed is calculated by the drive during a speed step that is set so that the drive can measure the load.
- "Current limitation" mode: The maximum permissible speed is the speed that supports current limitation in motor mode, in the "Ascending" direction only. For the "Descending" direction, operation is always in "Speed reference" mode.

Speed reference mode

OSP: Adjustable speed step for load measurement
tOS: Load measuring time
Two parameters are used to reduce the speed calculated by the drive, for ascending and descending.

[1.7 APPLICATION FUNCT.] (FUn-)

Current limiting mode

SCL: Adjustable speed threshold, above which current limitation is active CLO: Current limitation for high-speed function

[1.7 APPLICATION FUNCT.] (FUn-)

Rope slack

The "rope slack" function can be used to prevent starting up at high speed when a load has been set down ready for lifting but the rope is still slack (as illustrated below).

The speed step (OSP parameters) described on page 165 is used to measure the load. The effective measurement cycle will not be triggered until the load reaches the adjustable threshold rStL , which corresponds to the weight of the hook.

A logic output or a relay can be assigned to the indication of the "rope slack" state in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu.

(1) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

[1.7 APPLICATION FUNCT.] (FUn-)

PID regulator

Block diagram

The function is activated by assigning an analog input to the PID feedback (measurement).

(1) Ramp AC2 is only active when the PID function starts up and during PID "wake-ups".

PID feedback:

The PID feedback must be assigned to one of the analog inputs AI1 to AI4, to the frequency input or the encoder, according to whether any extension cards have been inserted.

PID reference:

The PID reference must be assigned to the following parameters:

- Preset references via logic inputs (rP2, rP3, rP4)
- In accordance with the configuration of [Act. internal PID ref.] (PII) pages 173:
- Internal reference (rPI) or
- Reference A (Fr1 or Fr1b, see page 116)

Combination table for preset PID references

LI (Pr4)	LI (Pr2)	Pr2 = nO	Reference
			rPI or A
0	0	rPI or A	
0	1	rP2	
1	0	$r P 3$	
1	1	$r P 4$	

A predictive speed reference can be used to initialize the speed on restarting the process.

[1.7 APPLICATION FUNCT.] (FUn-)

Scaling of feedback and references:

- PIF1, PIF2 parameters

Can be used to scale the PID feedback (sensor range).
This scale MUST be maintained for all other parameters.

- PIP1, PIP2 parameters

Can be used to scale the adjustment range, i.e., the reference. The adjustment range MUST lie within the sensor range.
The maximum value of the scaling parameters is 32767 . To facilitate installation, we recommend using values as close as possible to this maximum level, while retaining powers of 10 in relation to the actual values.

Example (see graph below): Adjustment of the volume in a tank, between $6 \mathrm{~m}^{3}$ and $15 \mathrm{~m}^{3}$.

- Sensor used 4-20 mA, $4.5 \mathrm{~m}^{3}$ for $4 \mathrm{~mA}, 20 \mathrm{~m}^{3}$ for 20 mA , with the result that PIF1 $=4500$ and PIF2 $=20000$.
- Adjustment range 6 to $15 \mathrm{~m}^{3}$, with the result that PIP1 $=6000$ (min. reference) and PIP2 $=15000$ (max. reference).
- Example references:
- rP1 (internal reference) $=9500$
- rp2 $($ preset reference $)=6500$
- rP3 (preset reference) $=8000$
- rP4 $($ preset reference $)=11200$

The [DISPLAY CONFIG.] menu can be used to customize the name of the unit displayed and its format.

Other parameters:

- rSL parameter:

Can be used to set the PID error threshold, above which the PID regulator will be reactivated (wake-up) after a stop due to the max. time threshold being exceeded at low speed (tLS).

- Reversal of the direction of correction (PIC): If PIC = nO, the speed of the motor will increase when the error is positive, for example: pressure control with a compressor. If PIC = YES, the speed of the motor will decrease when the error is positive, for example: temperature control using a cooling fan.
- The integral gain may be short-circuited by a logic input.
- An alarm on the PID feedback may be configured and indicated by a logic output.
- An alarm on the PID error may be configured and indicated by a logic output.

"Manual - Automatic" operation with PID

This function combines the PID regulator, the preset speeds and a manual reference. Depending on the state of the logic input, the speed reference is given by the preset speeds or by a manual reference input via the PID function.

Manual reference (PIM)

- Analog inputs Al1 to Al4
- Frequency input
- Encoder

Predictive speed reference (FPI)

- [AI1] (AI1): Analog input
- [AI2] (AI2): Analog input
- [AI3] (AI3): Analog input, if VW3A3202 extension card has been inserted
- [AI4] (AI4): Analog input, if VW3A3202 extension card has been inserted
- [RP] (PI): Frequency input, if VW3A3202 extension card has been inserted
- [Encoder] (PG): Encoder input, if encoder card has been inserted
- [HMI] (LCC): Graphic display terminal
- [Modbus] (Mdb): Integrated Modbus
- [CANopen] (CAn): Integrated CANopen
- [Com. card] (nEt): Communication card (if inserted)
- [C.Insid. card] (APP): Controller Inside card (if inserted)

Setting up the PID regulator

1. Configuration in PID mode

See the diagram on page $\underline{169}$.
2. Perform a test in factory settings mode (in most cases, this will be sufficient).

To optimize the drive, adjust rPG or rIG gradually and independently and observe the effect on the PID feedback in relation to the reference.

3. If the factory settings are unstable or the reference is incorrect

- Perform a test with a speed reference in Manual mode (without PID regulator) and with the drive on load for the speed range of the system: - In steady state, the speed must be stable and comply with the reference and the PID feedback signal must be stable.
- In transient state, the speed must follow the ramp and stabilize quickly, and the PID feedback must follow the speed. If this is not the case, see the settings for the drive and/or sensor signal and wiring.
- Switch to PID mode.
- Set brA to no (no auto-adaptation of the ramp).
- Set the PID ramp (PrP) to the minimum permitted by the mechanism without triggering an ObF fault.
- Set the integral gain (rIG) to minimum.
- Leave the derivative gain (rdG) at 0 .
- Observe the PID feedback and the reference.
- Switch the drive ON/OFF a number of times or vary the load or reference rapidly a number of times.
- Set the proportional gain (rPG) in order to ascertain the best compromise between response time and stability in transient phases (slight overshoot and 1 to 2 oscillations before stabilizing).
- If the reference varies from the preset value in steady state, gradually increase the integral gain (rIG), reduce the proportional gain (rPG) in the event of instability (pump applications), find a compromise between response time and static precision (see diagram).
- Lastly, the derivative gain may permit the overshoot to be reduced and the response time to be improved, although this will make it more difficult to obtain a compromise in terms of stability, as it depends on 3 gains.
- Perform in-production tests over the whole reference range.

[1.7 APPLICATION FUNCT.] (FUn-)

The oscillation frequency depends on the system kinematics.

Parameter	Rise time	Overshoot	Stabilization time	Static error
rPG			$=$	
rIG				
raG				

Code	Name/Description \quad Adjustment range	actory setting	
P Id	[PID REGULATOR] Note: This function cannot be used with certain other functions. Follow the instructions on page		
	[PID feedback ass.] $\square[\mathrm{No}](\mathrm{nO})$: Not assigned (function inactive) In this case, none of the function parameters can be accessed [AI1] (AI1): Analog input [AI2] (AI2): Analog input [AI3] (AI3): Analog input, if VW3A3202 extension card has been inserted [AI4] (AI4): Analog input, if VW3A3202 extension card has been inserted [RP] (PI): Frequency input, if VW3A3202 extension card has been inserted [Encoder] (PG): Encoder input, if encoder card has been inserted [Network AI] (AIU1): Virtual input via communication bus Note: If the equipment switches to forced local mode (see page 237), the virtual input remains fixed at the last value transmitted.		
	The parameter can be accessed if [PID feedback ass.] (PIF) $=[$ Network AI] (AIU1). This parameter can also be accessed in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu.[No] (nO): Not assigned[Modbus] (Mdb): Integrated Modbus[CANopen] (CAn): Integrated CANopen[Com. card] (nEt): Communication card (if inserted)[C.Insid. card] (APP): Controller Inside card (if inserted)		
	\square [Min PID feedback] (1) Value for minimum feedback. Adjustment range from 0 to [Max PID feedback] (PIF2) (2).		
	[Max PID feedback] (1) 1000 Value for maximum feedback Adjustment range from [Min PID feedback] (PIF1) to 32767 (2).		
	[Min PID reference] (1) Minimum process value. Adjustment range from [Min PID feedback] (PIF1) to [Max PID reference] (PIP2) (2).		
P \\| 己	[Max PID reference] (1) Maximum process value Adjustment range from [Min PID reference] (PIP1) to [Max PID feedback] (PIF2) (2).		
$\begin{array}{rlrl}\text { P I } \\ & \\ & \text { п } \\ & \\ & \text { YE } 5\end{array}$	[Act. internal PID ref.] Internal PID regulator reference [No] (nO): The PID regulator reference is given by Fr1 or Fr1b with summing/subtraction/multiplication functions (see the diagram on page 115). [Yes] (YES): The PID regulator reference is internal via parameter rPI.		
$r P 1$	[Internal PID ref.] Internal PID regulator reference This parameter can also be accessed in the [1.2 MONITORING] (SUP-) menu. Adjustment range from [Min PID reference] (PIP1) to [Max PID reference] (PIP2) (2).		
	ID prop. gain] $\begin{array}{l}\text { Proportional gain }\end{array}$ 0.01 to 100	1	

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g., 15.65 for 15650.

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4-digit display with a period mark after the thousand digit,
e.g., 15.65 for 15650.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4-digit display with a period mark after the thousand digit,
e.g., 15.65 for 15650.
(3) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 6000 s according to [Ramp increment] (Inr) page 134.

0 Parameter that can be modified during operation or when stopped.

Code	Name/Description	Adjustment range	Factory setting
	- [PID REGULATOR] (continued)		
t L 5	\square [Low speed time out] (1)	0 to 999.9 s	0 s
()	Maximum operating time at [Low speed] (LSP) (see page 42) Following operation at LSP for a defined period, a motor stop is requested automatically. The motor restarts if the reference is greater than LSP and if a run command is still present. Caution: Value 0 corresponds to an unlimited period. Note: If [Low speed time out] (tLS) is not 0 , [Type of stop] (Stt) page 137 is forced to [Ramp stop] (rMP) (only if a ramp stop can be configured).		
r 5L	[PID wake up thresh.] If the "PID" and "Low speed operating time" tLS functions are configured at the same time, the PID regulator may attempt to set a speed lower than LSP. This results in unsatisfactory operation, which consists of starting, operating at low speed then stopping, and so on... Parameter rSL (restart error threshold) can be used to set a minimum PID error threshold for restarting after a stop at prolonged LSP. The function is inactive if $\mathrm{tLS}=0$ or if $\mathrm{rSL}=0$.		
	UNINTENDED EQUIPMENT OPERATION Check that unintended restarts will not present any danger. Failure to follow these instructions can result in death or serious injury.		

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
() Parameter that can be modified during operation or when stopped.

Code	Name/Description	Adjustment range	Factory setting
Pr 1-	[PID PRESET REFERENCES] Function can be accessed if [PID feedback ass.] (PIF) is assigned.		
Pre $\begin{array}{cc} n & \square \\ L & 1 \\ & 1 \\ & - \\ & - \\ & - \end{array}$	[2 preset PID ref.] [No] (nO): Function inactive [LII] (LII) [...] (...): See the assignment conditions on page 121. If the assigned input or bit is at 0 , the function is inactive. If the assigned input or bit is at 1 , the function is active.		[No] (nO)
$\text { Pr } 4$ $\begin{array}{ccc} n & \square \\ L & 1 & 1 \\ & - \\ & - \\ & - \end{array}$	[4 preset PID ref.] Make sure that [2 preset PID ref.] (Pr2) has been assigne [No] (nO): Function inactive [LII] (LII) [...] (...): See the assignment conditions on page \qquad 121. If the assigned input or bit is at 0 , the function is inactive. If the assigned input or bit is at 1 , the function is active.	before assigning this	$[\mathrm{No}](\mathrm{nO})$ nction.
$\begin{gather*} r P 己 \tag{1}\\ () \end{gather*}$	[2 preset PID ref.] The parameter can be accessed if [Preset ref. PID 2] (Pr2) Adjustment range from [Min PID reference] (PIP1) to [Ma	is assigned. PID reference] (PIP2)	300
$\begin{equation*} r^{P \exists} \tag{1} \end{equation*}$	[3 preset PID ref.] The parameter can be accessed if [Preset ref. PID 4] (Pr4) is Adjustment range from [Min PID reference] (PIP1) to [Max	is assigned. PID reference] (PIP2)	600
$\begin{gathered} r p 4 \\ () \end{gathered}$	[4 preset PID ref.] The parameter can be accessed if [Preset ref. PID 4] (Pr4) Adjustment range from [Min PID reference] (PIP1) to [Max	is assigned. PID reference] (PIP2)	$\begin{equation*} 900 \tag{1} \end{equation*}$

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g., 15.65 for 15650.

[1.7 APPLICATION FUNCT.] (FUn-)

Torque regulation

The function can be used to switch between operation in speed regulation mode and operation in torque control mode. In torque control mode, the speed may vary within a configurable "deadband". When it reaches a lower or upper limit, the drive automatically reverts to speed regulation mode (fallback) and remains at this limit speed. The regulated torque is therefore no longer maintained and two scenarios may occur.

- If the torque returns to the required value, the drive will return to torque control mode.
- If the torque does not return to the required value at the end of a configurable period of time, the drive will switch to fault or alarm mode.

WARNING
UNINTENDED EQUIPMENT OPERATION
Check that the changes in the behavior of the motor do not present any danger.
Failure to follow these instructions can result in death or serious injury.

- $A B$ and CD: "Fallback" to speed regulation
- BC: Torque control zone
- E: Ideal operating point

The torque sign and value can be transmitted via a logic output and an analog output.

［1．7 APPLICATION FUNCT．］（FUn－）

Code	Name／Description	Adjustment range	Factory setting
	［［TORQUE CONTROL］（continued）		
$\begin{gathered} d b p \\ \text { (}) \end{gathered}$	［Positive deadband］ Positive deadband． Value added algebraically to the speed reference． Example for dbP＝10： －If reference $=+50 \mathrm{~Hz}:+50+10=60$ －If reference $=-50 \mathrm{~Hz}:-50+10=-40$	0 to $2 \times[\mathrm{Max}$ frequency］（tFr）	10 Hz
dbп （2）	［Negative deadband］ Negative deadband． Value subtracted algebraically from the speed reference． Example for dbn＝10： －If reference $=+50 \mathrm{~Hz}:+50-10=40$ －If reference $=-50 \mathrm{~Hz}$ ：$-50-10=-60$	0 to $2 \times[\mathrm{Max}$ frequency］（tFr）	10 Hz
$r \in \square$	\square［Torque ctrl time out］	$0 \text { to } 999.9 \mathrm{~s}$	60
	Time following automatic exit of torque control mode in the event of a fault or alarm．		
ヒロレ	\square［Torq．ctrl fault mgt］ Response of drive once time［Torque ctrl time out］（rtO）h	as elapsed．	［Alarm］（ALrM）
$\begin{array}{r} \text { FLr } \\ F L E \\ \hline \end{array}$	［Alarm］（ALrM） ［Fault］（FLt）：Fault with freewheel stop．		

[1.7 APPLICATION FUNCT.] (FUn-)

Torque limitation

There are two types of torque limitation:

- With a value that is fixed by a parameter
- With a value that is set by an analog input (AI, pulse or encoder)

If both types are enabled, the lowest value is taken into account. The two types of limitation can be configured or switched remotely using a logic input or via the communication bus.

\begin{tabular}{|c|c|c|c|}
\hline Code \& Name/Description \& Adjustment range \& Factory setting \\
\hline t \(\square 1-\) \& \multicolumn{3}{|l|}{\begin{tabular}{l}
- [TORQUE LIMITATION] \\
This function cannot be accessed in V/F profile mode.
\end{tabular}} \\
\hline \& \multicolumn{3}{|l|}{\(\square\) [Torque limit. activ.]
[No] (nO): Function inactive
[Yes] (YES): Function always active
[LII] (LII)
[...] (...): See the assignment conditions on page 121. If the assigned input or bit is at 0 , the function is inactive. If the assigned input or bit is at 1 , the function is active.} \\
\hline \(\begin{array}{cr}\text { IntP } \& \\ \\ \square \& \\ \& 1\end{array}\) \& \multicolumn{3}{|l|}{\begin{tabular}{l}
[Torque increment] \\
The parameter cannot be accessed if [Torque limit. activ.] (tLA) \(=[\mathrm{No}](\mathrm{nO})\) \\
Selection of units for the [Motoring torque lim] (tLIM) and [Gen. torque lim] (tLIG) parameters.
[0,1\%] (0.1) : unit 0.1\%.
[1\%] (1): unit 1\%.
\end{tabular}} \\
\hline セLI \({ }_{\text {¢ }}\) \& \begin{tabular}{l}
[Motoring torque lim] \\
The parameter cannot be accessed if [Torque limit. activ.] Torque limitation in motor mode, as a \(\%\) or in \(0.1 \%\) increm [Torque increment] (IntP) parameter.
\end{tabular} \& \begin{tabular}{l}
\[
\begin{equation*}
0 \text { to } 300 \% \tag{1}
\end{equation*}
\]
\[
(\mathrm{tLA})=[\mathrm{No}](\mathrm{nO})
\] \\
ents of the rated torqu
\end{tabular} \& \begin{tabular}{l}
100\% \\
in accordance with the
\end{tabular} \\
\hline ヒLIL \& \begin{tabular}{l}
[Gen. torque lim] \\
The parameter cannot be accessed if [Torque limit. activ.] Torque limitation in generator mode, as a \% or in \(0.1 \%\) incre the [Torque increment] (IntP) parameter.
\end{tabular} \& \begin{tabular}{l}
\[
\begin{equation*}
0 \text { to } 300 \% \tag{1}
\end{equation*}
\]
\[
(\mathrm{tLA})=[\mathrm{No}](\mathrm{nO})
\] \\
ements of the rated
\end{tabular} \& \begin{tabular}{l}
100\% \\
ue in accordance with
\end{tabular} \\
\hline ERA

r \& \begin{tabular}{l}
[Torque ref. assign.]

If the function is assigned, the limitation varies between 0% the 0% to 100% signal applied to the assigned input. Examples:

- 12 mA on a $4-20 \mathrm{~mA}$ input results in limitation to 150%

- 2.5 V on a 10 V input results in 75% of the rated torqu
[No] (nO): Not assigned (function inactive)
[AI1] (AI1)

to

[AI4] (AI4): Analog input, if VW3A3202 I/O card has been
[RP] (PI): Frequency input, if VW3A3202 I/O card has be
[Encoder] (PG): Encoder input, if encoder card has been
[Network AI] (AIU1): Virtual input via communication bus, page 95.
\square

WARNIN

UNINTENDED EQUIPMENT OPERATION

If the equipment switches to forced local mode (see page 237), value transmitted.

Do not use the virtual input and forced local mode in the sam Failure to follow these instructions can result in death or

 \&

and 300% of the rat

of the rated torque.

inserted

n inserted

inserted

s, to be configured via

G

, the virtual input rem

configuration.

serious injury.

 \&

$$
\text { [} \mathrm{No} \text {] (nO) }
$$

torque on the basis of

Al net. channel] (AIC1)

fixed at the last
\end{tabular}

\hline
\end{tabular}

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.

Code

Name/Description
Adjustment range
Factory setting

[TORQUE LIMITATION] (continued)

- [Analog limit. act.]

The parameter can be accessed if [Torque ref. assign.] (tAA) is not [No] (nO).
YE 5
LII[Yes] (YES): The limitation depends on the input assigned by [Torque ref. assign.] (tAA).[LII] (LI1)
$\square\ldots$: See the assignment conditions on page 121 . If the assigned input or bit is at 0 :

- The limitation is specified by the [Motoring torque lim] (tLIM) and [Gen. torque lim.] parameters (tLIG) if [Torque limit. activ.] (tLA) is not [No] (nO).
- No limitation if [Torque limit. activ.] (tLA) $=[\mathrm{No}](\mathrm{nO})$.

If the assigned input or bit is at 1 :

- The limitation depends on the input assigned by [Torque ref. assign.] (tAA).

Note: If [Torque limitation] (tLA) and [Torque ref. assign.] (tAA) are enabled at the same time, the lowest value will be taken into account.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
(】 Parameter that can be modified during operation or when stopped.

[1.7 APPLICATION FUNCT.] (FUn-)

Line contactor command

The line contactor closes every time a run command (forward or reverse) is sent and opens after every stop, as soon as the drive is locked. For example, if the stop mode is stop on ramp, the contactor will open when the motor reaches zero speed.

Note: The drive control power supply must be provided via an external 24 V source.

Example circuit:

CAUTION

This function can only be used for a small number of consecutive operations with a cycle time longer than $\mathbf{6 0} \mathbf{s}$ (in order to avoid premature aging of the filter capacitor charging circuit).

Failure to follow this instruction can result in equipment damage.

[1.7 APPLICATION FUNCT.] (FUn-)

Output contactor command

This allows the drive to control a contactor located between the drive and the motor. The request for the contactor to close is made when a run command is sent. The request for the contactor to open is made when there is no longer any current in the motor.

CAUTION

If a DC injection braking function has been configured it should not be left operating too long in stop mode, as the contactor only opens at the end of braking.

Failure to follow this instruction can result in equipment damage.

Output contactor feedback

The corresponding logic input should be at 1 when there is no run command and at 0 during operation.
In the event of an inconsistency, the drive trips on an FCF2 fault if the output contactor fails to close (LIx at 1) and on an FCF1 fault if it is stuck (LIx at 0).
The parameter [Delay to motor run] (dbS) can be used to delay tripping in fault mode when a run command is sent and the [Delay to open cont.] (dAS) parameter delays the fault when a stop command is set.

Note:

Fault FCF2 (contactor failing to close) can be reset by the run command changing state from 1 to 0 (0 --> 1 --> 0 in 3 -wire control).

The [Out. contactor ass.] (OCC) and [Output contact. fdbk] (rCA) functions can be used individually or together.

[1.7 APPLICATION FUNCT.] (FUn-)

Positioning by sensors or limit switches

This function is used for managing positioning using position sensors or limit switches linked to logic inputs or using control word bits:

- Slowing down
- Stopping

The action logic for the inputs and bits can be configured on a rising edge (change from 0 to 1) or a falling edge (change from 1 to 0). The example below has been configured on a rising edge:

The slowdown mode and stop mode can be configured.
The operation is identical for both directions of operation. Slowdown and stopping operate according to the same logic, described below.

Example: Forward slowdown, on rising edge

- Forward slowdown takes place on a rising edge (change from 0 to 1) of the input or bit assigned to forward slowdown if this rising edge occurs in forward operation. The slowdown command is then memorized, even in the event of a power outage. Operation in the opposite direction is authorized at high speed. The slowdown command is deleted on a falling edge (change from 1 to 0) of the input or bit assigned to forward slowdown if this falling edge occurs in reverse operation.
- A bit or a logic input can be assigned to disable this function.
- Although forward slowdown is disabled while the disable input or bit is at 1 , sensor changes continue to be monitored and saved.

[1.7 APPLICATION FUNCT.] (FUn-)

Example: Positioning on a limit switch, on rising edge

Operation with short cams:

In this instance, when operating for the first time or after restoring the factory settings, the drive must initially be started outside the slowdown and stop zones in order to initialize the function.

Operation with long cams:

In this instance, there is no restriction, which means that the function is initialized across the whole trajectory.

[1.7 APPLICATION FUNCT.] (FUn-)

Stop at distance calculated after deceleration limit switch

This function can be used to control the stopping of the moving part automatically once a preset distance has been traveled after the slowdown limit switch.

On the basis of the rated linear speed and the speed estimated by the drive when the slowdown limit switch is tripped, the drive will induce the stop at the configured distance.
This function is useful in applications where one manual-reset overtravel limit switch is common to both directions. It will then only respond to ensure safety if the distance is exceeded. The stop limit switch retains priority in respect of the function.

The [Deceleration type] (dSF) parameter can be configured to obtain either of the functions described below:

Note:

- If the deceleration ramp is modified while stopping at a distance is in progress, this distance will not be observed.
- If the direction is modified while stopping at a distance is in progress, this distance will not be observed.

DANGER

UNINTENDED EQUIPMENT OPERATION

- Check that the parameters configured are consistent (in particular, you should check that the required distance is possible).
- This function does not replace the stop limit switch, which remains necessary for safety reasons.

Failure to follow these instructions will result in death or serious injury.

Code	Name／Description \quad Adjustment range \quad Factory setting
LPD－	［POSITIONING BY SENSORS］ Note：This function cannot be used with certain other functions．Follow the instructions on page
	［Stop FW limit sw．］ ［No］（nO）：Not assigned ［LII］ （LI1）to［LI6］（LI6） ［LI7］ （LI7）to［LI10］（LI10）：If VW3A3201 logic I／O card has been inserted ［LI11］ ［C101］ （L \square （C101）to ［C115］ （C115）：With integrated Modbus in［I／O profile］（IO） ［C201］ （C201）to \square C215］（C215）：With integrated CANopen in［I／O profile］（IO） ［C301］ （C301）to （C315）：With a communication card in［I／O profile］（IO） ［C401］ ［CD00］（Cd00）to［CD13］（ （Cd13）：In［I／O profile］（IO）can be switched with possible logic inputs ［CD14］（Cd14）to［CD15］（ （Cd15）：In［I／O profile］（IO）can be switched without logic inputs
5 R r	［Stop RV limit sw．］ Same assignments possible as for［Stop FW limit sw．］（SAF）above．
$5 \text { AL }$ $\begin{array}{r} L \square \\ H \quad I G \end{array}$	［Stop limit config．］ The parameter can be accessed if at least one limit switch or one stop sensor has been assigned．It defines the positive or negative logic of the bits or inputs assigned to the stop． ［Active low］（LO）：Stop controlled on a falling edge（change from 1 to 0）of the assigned bits or inputs． ［Active high］（HIG）：Stop controlled on a rising edge（change from 0 to 1 ）of the assigned bits or inputs．
d ${ }^{\text {F }}$	［Slowdown forward］ Same assignments possible as for［Stop FW limit sw．］（SAF）above．
d $\mathrm{Hr}^{\text {r }}$	［Slowdown reverse］ Same assignments possible as for［Stop FW limit sw．］（SAF）above．
$\begin{array}{r} \therefore A L \\ \\ \text { LI } \\ \text { H IL } \end{array}$	［Slowdown limit cfg．］ The parameter can be accessed if at least one limit switch or one slowdown sensor has been assigned．It defines the positive or negative logic of the bits or inputs assigned to the slowdown． ［Active low］（LO）：Slowdown controlled on a falling edge（change from 1 to 0 ）of the assigned bits or inputs． ［Active high］（HIG）：Slowdown controlled on a rising edge（change from 0 to 1 ）of the assigned bits or inputs．

Code	Name/Description \quad Adjustment range ${ }^{\text {F }}$ Factory setting
	[POSITIONING BY SENSORS] (continued)
[LS $\begin{gathered} n \square \\ \llcorner 11 \end{gathered}$	[Disable limit sw.] The parameter can be accessed if at least one limit switch or one sensor has been assigned. [No] (nO): Not assigned [LII] (LII) [...] (...): See the assignment conditions on page 121. The action of the limit switches is disabled when the assigned bit or input is at 1. If, at this time, the drive is stopped or being slowed down by limit switches, it will restart up to its speed reference.
$\text { PA } 5$ $\begin{aligned} & r \Pi P \\ & F 5 t \\ & \text { YE } \end{aligned}$	[Stop type] The parameter can be accessed if at least one limit switch or one sensor has been assigned. [Ramp stop] (rMP): On ramp [Fast stop] (FSt): Fast stop (ramp time reduced by [Ramp divider] (dCF), see page 137) [Freewheel] (YES): Freewheel stop
$\begin{aligned} & d 5 F \\ & 5 E d \\ & \text { ロPE } \end{aligned}$	\square [Deceleration type] The parameter can be accessed if at least one limit switch or one sensor has been assigned. [Standard] (Std): Uses the [Deceleration] (dEC) or [Deceleration 2] (dE2) ramp (depending on which has been enabled). [Optimized] (OPt): The ramp time is calculated on the basis of the actual speed when the slowdown contact switches, in order to limit the operating time at low speed (optimization of the cycle time: the slowdown time is constant regardless of the initial speed).
5td	[Stop distance] The parameter can be accessed if at least one limit switch or one sensor has been assigned. Activation and adjustment of the "Stop at distance calculated after the slowdown limit switch" function. [No] (nO): Function inactive (the next two parameters will, therefore, be inaccessible). 0.01 yd to 10.94 yd: Stop distance range in yards.
$n<5$	\square [Rated linear speed] The parameter can be accessed if at least one limit switch or one sensor has been assigned. Rated linear speed in meters/second.
5 Fd	\square [Stop corrector] The parameter can be accessed if at least one limit switch or one sensor has been assigned. Scaling factor applied to the stop distance to compensate, for example, a non-linear ramp.

Parameter set switching [PARAM. SET SWITCHING]

A set of 1 to 15 parameters from the [1.3 SETTINGS] (SEt-) menu on page 52 can be selected and 2 or 3 different values assigned. These 2 or 3 sets of values can then be switched using 1 or 2 logic inputs or control word bits. This switching can be performed during operation (motor running).
It can also be controlled on the basis of one or two frequency thresholds, whereby each threshold acts as a logic input ($0=$ threshold not reached, 1 = threshold reached).

	Values 1	Values 2	Values 3
Parameter 1	Parameter 1	Parameter 1	Parameter 1
Parameter 2	Parameter 2	Parameter 2	Parameter 2
Parameter 3	Parameter 3	Parameter 3	Parameter 3
Parameter 4	Parameter 4	Parameter 4	Parameter 4
Parameter 5	Parameter 5	Parameter 5	Parameter 5
Parameter 7	Parameter 6	Parameter 6	Parameter 6
Parameter 8	Parameter 7	Parameter 7	Parameter 7
Parameter 9	Parameter 8	Parameter 8	Parameter 8
Parameter 10	Parameter 9	Parameter 9	Parameter 9
Parameter 11	Parameter 10	Parameter 10	Parameter 10
Parameter 13	Parameter 11	Parameter 11	Parameter 11
Parameter 14	Parameter 12	Parameter 12	Parameter 12
Parameter 15	Parameter 13	Parameter 13	Parameter 13
Parameter 14	Parameter 14	Parameter 14	
Input LI or bit or frequency threshold	Parameter 15	0	Parameter 15
2 values			0 or 1
Input LI or bit or frequency threshold			
3 values	0	0	

Note: Do not modify the parameters in the [1.3 SETTINGS] (SEt-) menu, because any modifications made in this menu ([1.3 SETTINGS] (SEt-)) will be lost on the next power-up. The parameters can be adjusted during operation in the [PARAM. SET SWITCHING] (MLP-) menu, on the active configuration.

Note: Parameter set switching cannot be configured from the integrated display terminal.
Parameters can only be adjusted on the integrated display terminal if the function has been configured previously via the graphic display terminal, by PowerSuite or via the bus or communication network. If the function has not been configured, the MLP- menu and the PS1-, PS2-, PS3- submenus will not appear.

Code	Name/Description \quad Adjustment range \quad Factory setting
$\Pi L P-$	[PARAM, SET SWITCHING]
	[2 parameter sets] [No] (nO): Function inactive. [Freq. Th.att.] (FtA): Switching via [Freq. threshold] (Ftd) page 65. [Freq. Th. 2 attain.] (F2A): Switching via [Freq. threshold 2] (Ftd) page 65. [LII] (LII) [...] (...): See the assignment conditions on page 121. Switching 2 parameter sets
	[3 parameter sets] [No] (nO): Function inactive. [Freq. Th.att.] (FtA): Switching via [Freq. threshold] (Ftd) page 65. [Freq. Th. 2 attain.] (F2A): Switching via [Freq. threshold 2] (Ftd) page 65. [LII] (LII) [...] (...): See the assignment conditions on page 121. Switching 3 parameter sets Note: In order to obtain 3 parameter sets, [2 parameter sets] must also be configured.
	[PARAMETER SELECTION] The parameter can only be accessed on the graphic display terminal if [2 parameter sets] is not [No]. Making an entry in this parameter opens a window containing all the adjustment parameters that can be accessed. Select 1 to 15 parameters using ENT (a tick then appears next to the parameter). Parameter(s) can also be deselected using ENT. Example:
P5 I-	[SET 1] The parameter can be accessed if at least 1 parameter has been selected in [PARAMETER SELECTION]. Making an entry in this parameter opens a settings window containing the selected parameters in the order in which they were selected. With the graphic display terminal : With the integrated display terminal: Proceed as in the Settings menu using the parameters that appear.

Code	Name/Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
	[[PARAM. SET SWITCHING] (continued)
P52-	[SET 2] The parameter can be accessed if at least 1 parameter has been selected in [PARAMETER SELECTION]. Procedure identical to [SET 1] (PS1-).
P5ヨ-	[SET 3] The parameter can be accessed if [3 parameter sets] is not [No] and if at least 1 parameter has been selected in [PARAMETER SELECTION]. Procedure identical to [SET 1] (PS1-).

Note: We recommend that a parameter set switching test is carried out while stopped and a check is made to ensure that it has been performed correctly.
Some parameters are interdependent and in this case may be restricted at the time of switching.
Interdependencies between parameters must be respected, even between different sets.
Example: The highest [Low speed] (LSP) must be below the lowest [High speed] (HSP).

[1.7 APPLICATION FUNCT.] (FUn-)

Motor or configuration switching [MULTIMOTORS/CONFIG.]

The drive may contain up to 3 configurations, which can be saved using the [1.12 FACTORY SETTINGS] (FCS-) menu, page 241.
Each of these configurations can be activated remotely, enabling adaptation to:

- 2 or 3 different motors or mechanisms (multimotor mode)
- 2 or 3 different configurations for a single motor (multiconfiguration mode)

The two switching modes cannot be combined.
Note: The following conditions MUST be observed:

- Switching may only take place when stopped (drive locked). If a switching request is sent during operation, it will not be executed until the next stop.
- In the event of motor switching, the following additional conditions apply:
- When the motors are switched, the power and control terminals concerned must also be switched as appropriate.
- The maximum power of the drive must not be exceeded by any of the motors.
- All the configurations to be switched must be set and saved in advance in the same hardware configuration, this being the definitive configuration (option and communication cards). Failure to follow this instruction can cause the drive to lock on an [Incorrect config.] (CFF) fault.

Menu and parameters switched in multimotor mode

- [1.3 SETTINGS] (SEt-)
- [1.4 MOTOR CONTROL] (drC-)
- [1.5 INPUTS / OUTPUTS CFG] (I-O-)
- [1.6 COMMAND] (CtL-)
- [1.7 APPLICATION FUNCT.] (FUn-) with the exception of the [MULTIMOTORS/CONFIG.] function (to be configured once only)
- [1.8 FAULT MANAGEMENT] (FLt)
- [1.13 USER MENU]
- [USER CONFIG.]: The name of the configuration specified by the user in the [1.12 FACTORY SETTINGS] (FCS-) menu

Menu and parameters switched in multiconfiguration mode

As in multimotor mode, except for the motor parameters that are common to the three configurations:

- Rated current
- Thermal current
- Rated voltage
- Rated frequency
- Rated speed
- Rated power
- IR compensation
- Slip compensation
- Synchronous motor parameters
- Type of thermal protection
- Thermal state
- The auto-tuning parameters and motor parameters that can be accessed in expert mode
- Type of motor control

Note: No other menus or parameters can be switched.

[1.7 APPLICATION FUNCT.] (FUn-)

Switching command

Depending on the number of motors or selected configuration (2 or 3), the switching command is sent using one or two logic inputs. The table below lists the possible combinations.

LI 2 motors or configurations	3 motors or configurations	Number of configuration or active motor
0	0	0
1	0	1
0	1	2
1	1	2

Schematic diagram for multimotor mode

Configuration 0 if the 2 contacts are open

Auto-tuning in multimotor mode

This auto-tuning can be performed:

- Manually using a logic input when the motor changes
- Automatically each time the motor is activated for the $1^{\text {st }}$ time after switching on the drive, if the [Automatic autotune] (AUt) parameter on page $68=[Y e s](Y E S)$.

Motor thermal states in multimotor mode:

The drive protects the three motors individually. Each thermal state takes into account all stop times, including drive shutdowns. It is, therefore, not necessary to perform auto-tuning every time the power is switched on. It is sufficient to auto-tune each motor at least once.

Configuration information output

In the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu, a logic output can be assigned to each configuration or motor (2 or 3) for remote information transmission.

Note: As the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu is switched, these outputs must be assigned in all configurations in which information is required.

Code	Name/Description \quad Adjustment range	Factory setting
ПП - -	[[MULTIMOTORS/CONFIG.]	
$\begin{array}{r} \text { Г H П } \\ \text { пロ } \\ \text { ЧE } \end{array}$	- [Multimotors] [No] (nO): Multiconfiguration possible [Yes] (YES): Multimotor possible	[No] (nO)
$[n F \mid$ $\left.\begin{array}{ccc} & n & n \\ L & 1 & 1 \\ & & - \\ & & \\ {[} & 1 & 1 \\ & & - \\ & & - \\ & & - \end{array} \right\rvert\,$	[2 Configurations] [No] (nO): No switching [LI1] (LII) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C111] (C111) to [C115] (C115): With integrated Modbus [C211] (C211) to [C215] (C215): With integrated CANopen [C311] (C311) to [C315] (C315): With a communication card [C411] (C411) to [C415] (C415): With a Controller Inside card Switching of 2 motors or 2 configurations	[No] (nO)
$[\cap F 己$	\square [3 Configurations] [No] (nO): No switching [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C111] (C111) to [C115] (C115): With integrated Modbus [C211] (C211) to [C215] (C215): With integrated CANopen [C311] (C311) to [C315] (C315): With a communication card [C411] (C411) to [C415] (C415): With a Controller Inside card Switching of 3 motors or 3 configurations Note: In order to obtain 3 motors or 3 configurations, [2 Configurations] (CnF1) mus	$[\mathrm{No}](\mathrm{nO})$ st also be configured.
$t \cap L-$	- [AUTO TUNING BY LI]	
$\begin{array}{llll} \in U L & & \\ & & & \\ & \cap & \square \\ L & 1 & 1 \\ & & - \\ & & - \\ & & - \\ & & & \end{array}$	[Auto-tune assign.] [No] (nO): Not assigned [LII] (LII) [...] (...): See the assignment conditions on page 121. Auto-tuning is performed when the assigned input or bit changes to 1. Note: Auto-tuning causes the motor to start up.	$[\mathrm{No}](\mathrm{nO})$

[1.7 APPLICATION FUNCT.] (FUn-)

Traverse control

Function for winding reels of yarn (in textile applications)

The speed of rotation of the cam must follow a precise profile to ensure that the reel is steady, compact and linear:

The function starts when the drive has reached its base reference and the traverse control command has been enabled.
When the traverse control command is disabled, the drive returns to its base reference, following the ramp determined by the traverse control function. The function then stops, as soon as it has returned to this reference.
Bit 15 of word LRS1 is at 1 while the function is active.

[1.7 APPLICATION FUNCT.] (FUn-)

Function parameters:

These define the cycle of frequency variations around the base reference, as shown in the diagram below:

- trC: [Yarn control]: Assignment of the traverse control command to a logic input or to a communication bus control word bit
- tdn: [Traverse ctrl. decel] time, in seconds
- tUP: [Traverse ctrl. accel.] time, in seconds
- trH: [Traverse freq. high], in Hertz
- trL: [Traverse Freq. Low], in Hertz
- qSH: [Quick step High], in Hertz
- qSL: [Quick step Low], in Hertz

Reel parameters:

- tbO: [Reel time]: Time taken to make a reel, in minutes.

This parameter is intended to signal the end of winding. When the traverse control operating time since command trC reaches the value of tbO, the logic output or one of the relays changes to state 1, if the corresponding function EbO has been assigned.
The traverse control operating time EbOt can be monitored online by a communication bus and in the Monitoring menu.

- dtF: [Decrease ref. speed]: Decrease in the base reference.

In certain cases, the base reference has to be reduced as the reel increases in size. The dtF value corresponds to time tbO. Once this time has elapsed, the reference continues to fall, following the same ramp. If low speed LSP is at 0 , the speed reaches 0 Hz , the drive stops and must be reset by a new run command.
If low speed LSP is not 0 , the traverse control function continues to operate above LSP.

[1.7 APPLICATION FUNCT.] (FUn-)

- rtr:
[Init. traverse ctrl] Reinitialize traverse control.
This command can be assigned to a logic input or to a communication bus control word bit. It resets the EbO alarm and the EbOt operating time to zero and reinitializes the reference to the base reference. As long as rtr remains at 1, the traverse control function is disabled and the speed remains the same as the base reference.
This command is used primarily when changing reels.

[1.7 APPLICATION FUNCT.] (FUn-)

Counter wobble

The "Counter wobble" function is used in certain applications to obtain a constant yarn tension when the "Traverse control" function is producing considerable variations in speed on the yarn guide motor (trH and trL, see page 205).

Two motors must be used (one master and one slave).

The master controls the speed of the yarn guide, the slave controls the winding speed. The function assigns the slave a speed profile, which is in antiphase to that of the master. This means that synchronization is required, using one of the master's logic outputs and one of the slave's logic inputs.

[1.7 APPLICATION FUNCT.] (FUn-)

Connection of synchronization I/O

The starting conditions for the function are:

- Base speeds reached on both drives
- [Yarn control] (trC) input activated
- Synchronization signal present

Note: On the slave drive, the [Quick step High] (qSH) and [Quick step Low] (qSL) parameters should generally be left at zero.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-)menu.

Code	Name/Description	Adjustment range	Factory setting
	[TRAVERSE CONTROL] (continued)		
$\begin{array}{cccc}5 n L & \\ \\ & n & \square \\ L & 1 & 1 \\ & & - \\ & & \\ & & -\end{array}$	[Counter wobble][No] (nO): Function not assigned.[LII] (LII)[...] (...): See the assignment conditions on page 121. Synchronization input. To be configured on the winding drive (slave) only.		[No] (nO)
t54	[Sync. wobble] [No] (nO): Function not assigned. [LO1] (LO1) to [LO4] (LO4): Logic output (if one or two I/O cards have been inserted, LO1 to LO2 or LO4 can be selected). [R2] (r2) to [R4] (r4): Relay (selection of R2 extended to R3 or R4 if one or two I/O cards have been inserted). [dO1] (dO1): Analog output AO1 functioning as a logic output. Selection can be made if [AO1 assignment] (AO1) page $108=[\mathrm{No}](\mathrm{nO})$. Synchronization output. To be configured on the yarn guide drive (master) only.		
$\begin{array}{rrr}n \\ L & \square & 1 \\ L & - \\ \square & 4 \\ r & 2 \\ - \\ r & 4 \\ d & \square & 1\end{array}$			
$\begin{gathered} d t F \\ \text { () } \end{gathered}$	[Decrease ref. speed] Decrease in the base reference during the traverse co	$0 \text { to } 1600 \mathrm{~Hz}$ cycle.	0 Hz
	\square [Init. traverse ctrl] [No] (nO): Function not assigned. [LII] (LII) [...] (...): See the assignment conditions on page 121. When the state of the assigned input or bit changes to 1 along with [Decrease ref. speed] (dtF).	traverse control ope	[No] (nO) g time is reset to

[1.7 APPLICATION FUNCT.] (FUn-)

Evacuation function

The evacuation function is designed for "elevator" applications. It is only accessible for ATV71•00N4 (380/480 V) drives, up to 75 kW (100 HP) only.
When an elevator is stuck between 2 floors due to a power outage, it must be possible to evacuate its occupants within a reasonable period of time.
This function requires an emergency power supply to be connected to the drive.
This power supply is at a reduced voltage, and only allows a derated operating mode, at reduced speed, but with full torque.
The function requires:

- One logic input to control "evacuation" operation
- Reduction of the voltage monitoring threshold
- An appropriate low speed reference

Following a power outage and turning off of the drive, the latter can be powered up again without going into [Undervoltage] (USF) fault mode if the corresponding control bit or logic input is at 1 at the same time. It is then possible to control ascent (FW) or descent (RV).

CAUTION

- This input must not be at 1 when the drive is powered from the line supply. To ensure this and also avoid any short-circuits, supply changeover contactors must be used.
- Set this input to 0 before connecting the emergency power supply to the line supply.

Failure to follow these instructions can result in equipment damage.

0 Parameter that can be modified during operation or when stopped.

[1.7 APPLICATION FUNCT.] (FUn-)

Half floor

The "half floor" function is designed for "elevator" applications.
When an elevator sets off from floors and half floors, the cycle time for half floors can be too long, as the elevator does not have time to reach full speed before crossing the slowdown limit switch. As a result, the slowdown time is unnecessarily long.
The "half floor" function can be used to compensate this by not triggering slowdown until the speed reaches a preset threshold [Half-floor speed] (HLS) in order that the final part of the path will be the same as for a standard floor.

The graphs below illustrate the various operating scenarios with and without the function:

A: Slowdown limit switch reached
B: Stop limit switch reached

The function is only activated if, when the slowdown limit switch is tripped, the motor frequency is less than [Half-floor speed] (HLS). Acceleration is then maintained up to this value prior to slowing down.
The final part of the path is identical to that of the standars floor.

［1．7 APPLICATION FUNCT．］（FUn－）

Direct power supply via DC bus

Direct power supply via the DC bus requires a protected direct current source with adequate power and voltage as well as a suitably dimensioned resistor and capacitor precharging contactor．Consult Schneider Electric for information about specifying these components．

The＂direct power supply via DC bus＂function can be used to control the precharging contactor via a relay or a logic input on the drive．
Example circuit using R2 relay：

\begin{tabular}{|c|c|}
\hline Code \& Name／Description \({ }^{\text {a }}\) Adjustment range \({ }^{\text {a }}\) Factory setting \\
\hline d［ \(\square^{\text {－}}\) \& \begin{tabular}{l}
［DC BUS SUPPLY］ \\
This function is only accessible for ATV71॰⿰㇒M3 drives \(\geqslant 18.5 \mathrm{~kW}(25 \mathrm{HP})\) and ATV71॰⿰七N4 drives 18.5 kW （ 25 HP ）．
\end{tabular} \\
\hline d［0 \& \begin{tabular}{l}
［Precharge cont．ass．］ \\
Logic output or control relay
［No］（nO）：Function not assigned．

[LO1] (LO1)

to

［LO4］（LO4）：Logic output（if one or two I／O cards have been inserted，LO1 to LO2 or LO4 can be selected）． ［R2］（r2）

to

［R4］（r4）：Relay（selection of R2 extended to R3 or R4 if one or two I／O cards have been inserted）．
［dO1］（dO1）：Analog output AO1 functioning as a logic output．Selection can be made if［AO1 assignment］ （AO1）page $108=[\mathrm{No}(\mathrm{nO})$ ．
\end{tabular}

\hline
\end{tabular}

［1．8 FAULT MANAGEMENT］（FLt－）

With graphic display terminal：

With integrated display terminal：

Summary of functions：

Code	Name	Page
Pt［－	［PTC MANAGEMENT］	$\underline{212}$
r 5t－	［FAULT RESET］	$\underline{213}$
Atr－	［AUTOMATIC RESTART］	$\underline{214}$
FLr－	［CATCH ON THE FLY］	$\underline{215}$
EHE－	［MOTOR THERMAL PROT．］	$\underline{217}$
$\square P L-$	［OUTPUT PHASE LOSS］	$\underline{217}$
IPL－	［INPUT PHASE LOSS］	$\underline{218}$
ロHL－	［DRIVE OVERHEAT］	$\underline{218}$
5月t－	［THERMAL ALARM STOP］	$\underline{219}$
EtF－	［EXTERNAL FAULT］	$\underline{220}$
U5女－	［UNDERVOLTAGE MGT］	$\underline{221}$
E1t－	［IGBT TESTS］	$\underline{222}$
LFL－	［4－20mA LOSS］	$\underline{223}$
$1 \mathrm{nH-}$	［FAULT INHIBITION］	$\underline{224}$
［LL－	［COM．FAULT MANAGEMENT］	$\underline{225}$
5dd－	［ENCODER FAULT］	$\underline{226}$
t1d－	［TORQUE OR I LIM．DETECT］	$\underline{226}$
F 9 F－	［FREQUENCY METER］	$\underline{228}$
dLd－	［DYNAMIC LOAD DETECT．］	$\underline{230}$
brP－	［DB RES．PROTECTION］	$\underline{231}$
bUF－	［BU PROTECTION］	$\underline{231}$
$t \cap F-$	［AUTO TUNING FAULT］	$\underline{231}$
PP I－	［CARDS PAIRING］	$\underline{232}$
LFF－	［FALLBACK SPEED］	$\underline{233}$
F5t－	［RAMP DIVIDER］	$\underline{233}$
d［1－	［DC INJECTION］	$\underline{233}$

[1.8 FAULT MANAGEMENT] (FLt-)

The parameters in the [1.8 FAULT MANAGEMENT] (FLt-) menu can only be modified when the drive is stopped and there is no run command, except for parameters with a () symbol in the code column, which can be modified with the drive running or stopped.

PTC probes

3 sets of PTC probes can be managed by the drive in order to protect the motors:

- 1 on logic input LI6 converted for this use by switch "SW2" on the control card.
- 1 on each of the 2 option cards VW3A3201 and VW3A3202.

Each of these sets of PTC probes is monitored for the following faults:

- Motor overheating
- Sensor break fault
- Sensor short-circuit fault

Protection via PTC probes does not disable protection via $I^{2} t$ calculation performed by the drive (the two types of protection can be combined).

Code	Name/Description \quad Adjustment range	Factory setting
Atr-	[AUTOMATIC RESTART]	
AtrnロYE 5	\square [Automatic restart]	[No] (nO)
	[No] (nO): Function inactive [Yes] (YES): Automatic restart, after locking on a fault, if the fault has disappeare conditions permit the restart. The restart is performed by a series of automatic a increasingly longer waiting periods: $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$, then 1 minute for the following The drive fault relay remains activated if this function is active. The speed refere direction must be maintained. Use 2-wire control ([2/3 wire control] (tCC) $=[2$ wire] (2C) and [2 wire type] (tCt) 86).	and the other operating mpts separated by empts. and the operating Level] (LEL) see page
	UNINTENDED EQUIPMENT OPERATION Check that an automatic restart will not endanger personnel or equipment Failure to follow these instructions can result in death or serious injury.	n any way.
	If the restart has not taken place once the configurable time tAr has elapsed, the procedure is aborted and the drive remains locked until it is turned off and then on again. The faults, which permit this function, are listed on page 264:	
ERr	\square [Max. restart time]	[5 minutes] (5)
5	$\square[5 \mathrm{~min}]$ (5): 5 minutes	
$1 \square$	\square [10 minutes] (10): 10 minutes	
$\exists \square$	\square [30 minutes] (30): 30 minutes	
1 h	\square [1 hour] (1h): 1 hour	
こh	\square [2 hours] (2h): 2 hours	
\exists ¢	\square [3 hours] (3h): 3 hours	
[This parameter appears if [Automatic restart] (Atr) $=$ [Yes] (YES). It can be used to limit the number of consecutive restarts on a recurrent fault.	

[^7]
[1.8 FAULT MANAGEMENT] (FLt-)

Motor thermal protection

Function:

Thermal protection by calculating the $\mathrm{I}^{2} \mathrm{t}$.
Note:The memory of the motor thermal state is saved when the drive is switched off. The power-off time is used to recalculate the thermal state the next time the drive is switched on.

- Naturally-cooled motors:

The tripping curves depend on the motor frequency.

- Force-cooled motors:

Only the 50 Hz tripping curve needs to be considered, regardless of the motor frequency.

Trip time in seconds

Code	Name／Description \quad Adjustment range	Factory setting
EHE－	［MOTOR THERMAL PROT．］	
	［Motor protect．type］ ［No］（nO）：No protection． ［Self cooled］（ACL）：For self－cooled motors ［Force－cool］（FCL）：For force－cooled motors Note：A fault trip will occur when the thermal state reaches 118% of the rated occur when the state falls back below 100% ．	［Self cooled］（ACL） and reactivation will
$\begin{gathered} t \in d \\ \mathbf{Q} \end{gathered}$	Trip threshold for motor thermal alarm（logic output or relay）	100\％
$\begin{aligned} & t \in d z \\ & \mathbf{Q} \end{aligned}$	［Motor2 therm．level］ 0 to 118\％ Trip threshold for motor 2 thermal alarm（logic output or relay）	100\％
$\begin{gathered} \operatorname{ttd} \exists \\ \mathbf{~} \end{gathered}$	［Motor3 therm．level］ 0 to 118\％ Trip threshold for motor 3 thermal alarm（logic output or relay）	100\％
	\square［Overload fault mgt］ Type of stop in the event of a motor thermal fault． ［Ignore］（nO）：Fault ignored． ［Freewheel］（YES）：Freewheel stop． ［Per STT］（Stt）：Stop according to configuration of［Type of stop］（Stt）page 13 this case the fault relay does not open and the drive is ready to restart as soon a according to the restart conditions of the active command channel（e．g．，according and［2 wire type］（ tCt ）page 86 if control is via the terminals）．Configuring an alarm recommended（assigned to a logic output，for example）in order to indicate the ［fallback spd］（LFF）：Change to fallback speed，maintained as long as the faut command has not been removed（2）． ［Spd maint．］（rLS）：The drive maintains the speed being applied when the fault fault is present and the run command has not been removed（2）． ［Ramp stop］（rMP）：Stop on ramp． ［Fast stop］（FSt）：Fast stop． ［DC injection］（dCl）：DC injection stop．This type of stop cannot be used with cer table on page 127.	［Freewheel］（YES） vithout fault tripping．In he fault disappears， ［2／3 wire control］（tCC） or this fault is e of the stop． persists and the run ccurred，as long as the in other functions．See
पPL－	［OUTPUT PHASE LOSS］	
$\begin{array}{r} \square P L \\ \text { חロ } \\ \text { YES } \\ \text { ロ月 } \end{array}$	［Output Phase Loss］ ［No］（nO）：Function inactive ［Yes］（YES）：Tripping on OPF fault with freewheel stop． ［Output cut］（OAC）：No fault triggered，but management of the output voltage overcurrent when the link with the motor is re－established and catch on the fly pe function has not been configured）． Note：［Output Phase Loss］（OPL）is forced to［Yes］（YES）if brake logic control is	［Yes］（YES） order to avoid an rmed（even if this figured（see page 157）．
पdt （）	\square［OutPh time detect］ Time delay for taking the［Output Phase Loss］（OPL）fault into account．	0.5 s

（1）The parameter can also be accessed in the［1．3 SETTINGS］（SEt－）menu．
（2）Because，in this case，the fault does not trigger a stop，it is essential to assign a relay or logic output to its indication．

(】 Parameter that can be modified during operation or when stopped.
(1) Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

[1.8 FAULT MANAGEMENT] (FLt-)

Deferred stop on thermal alarm

This function is designed in particular for elevator applications. It prevents the elevator stopping between two floors if the drive or motor overheats, by authorizing operation until the next stop. At the next stop, the drive is locked until the thermal state falls back to a value, which undershoots the set threshold by 20%. Example: A trip threshold set at 80% enables reactivation at 60%.
One thermal state threshold must be defined for the drive, and one thermal state threshold for the motor(s), which will trip the deferred stop.

Code	Name/Description \quad Adjustment range \quad Factory setting
E EF-	[EXTERNAL FAULT]
$E \in F$ $\begin{array}{r} n \\ \text { L } \\ 1 \\ 1 \\ - \\ - \\ \\ - \\ \end{array}$	[External fault ass.] [No] (nO): Function inactive [LII] (LII) [...] (...) : See the assignment conditions on page 121. If the assigned bit is at 0 , there is no external fault. If the assigned bit is at 1 , there is an external fault. Logic can be configured via [External fault config] (LEt) if a logic input has been assigned.
$\begin{array}{ll}\text { LEE } & \\ \\ \text { H } & \\ \text { L I I }\end{array}$	[External fault config] Parameter can be accessed if the external fault has been assigned to a logic input. It defines the positive or negative logic of the input assigned to the fault. [Active low] (LO): Fault on falling edge (change from 1 to 0) of the assigned input. [Active high] (HIG): Fault on rising edge (change from 0 to 1) of the assigned input.
	[External fault mgt] Type of stop in the event of an external fault [Ignore] (nO): Fault ignored. [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt) page 137, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [2/3 wire control] (tCC) and [2 wire type] (tCt) page 86 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed (1). [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed (1). [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop. [DC injection] (dCI): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 127.

(1) Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

0 Parameter that can be modified during operation or when stopped.

[IGBT TESTS]

5trt
[IGBT test]
\square [No] (nO): No test
\square [Yes] (YES): The IGBTs are tested on power up and every time a run command is sent. These tests cause a slight delay (a few ms). In the event of a fault, the drive will lock. The following faults can be detected:

- Drive output short-circuit (terminals U-V-W): SCF display
- IGBT faulty: xtF , where x indicates the number of the IGBT concerned
- IGBT short-circuited: x2F, where x indicates the number of the IGBT concerned

Code	Name/Description \quad Adjustment range \quad Factory setting
LFL-	4-20mA LOSS
	[AI2 4-20mA loss] [Ignore] (nO): Fault ignored. This configuration is the only one possible if [Al2 min. value] (CrL2) page 92 is not greater than 3 mA or if [AI2 Type] (AI2t) page $\underline{92}=[$ Voltage $](10 \mathrm{U})$. [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt) page 137, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [$2 / 3$ wire control] (tCC) and [2 wire type] (tCt) page 86 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed (1). [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed (1). [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop. [DC injection] (dCI): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 127.
	[AI3 4-20mA loss] \square [Ignore] (nO): Fault ignored. This configuration is the only one possible if [AI3 min. value] (CrL3) page 93 is not greater than 3 mA . \square [Freewheel] (YES): Freewheel stop. \square [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt) page 137, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [2/3 wire control] (tCC) and [2 wire type] (tCt) page 86 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed (1). [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed (1). [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop. [DC injection] (dCI): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 127.
	[AI4 4-20mA loss] [Ignore] (nO): Fault ignored. This configuration is the only one possible if [AI4 min. value] (CrL4) page 94 is not greater than 3 mA or if [AI4 Type] (AI4t) page $94=$ [Voltage] (10U). [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt) page 137, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [2/3 wire control] (tCC) and [2 wire type] (tCt) page 86 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed (1). [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed (1). [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop. [DC injection] (dCI): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 127.

[^8]
[1.8 FAULT MANAGEMENT] (FLt-)

Parameter can be accessed in [Expert] mode.

Code	Name/Description	Adjustment range	Factory setting

InH-
[FAULT INHIBITION]
1 nH

[Fault inhibit assign.]

To assign fault inhibit, press and hold down the "ENT" key for 2 s .

CAUTION

Inhibiting faults results in the drive not being protected. This invalidates the warranty. Check that the possible consequences do not present any risk. Failure to follow this instruction can result in equipment damage.[No] (nO): Function inactive[LII] (LII)[...] (...) : See the assignment conditions on page 121.
If the assigned input or bit is at 0 , fault monitoring is active. If the assigned input or bit is at 1 , fault monitoring is inactive. Active faults are reset on a rising edge (change from 0 to 1) of the assigned input or bit.

Note: The "Power Removal" function and any faults that prevent any form of operation are not affected by this function.
A list of faults affected by this function appears on pages 261 to 266 .

[^9]| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $5 d d-$ | - [ENCODER FAULT]
 Can be accessed if the encoder option card has been inserted and the encoder is used for speed feedback (see page 76). | | |
| Sdd | [Load slip detection] [No] (nO): Fault not monitored. Only the alarm may be assigned to a logic output or a relay. [Yes] (YES): Fault monitored.
 The fault is triggered by comparison with the ramp output and the speed feedback, and is only effective for speeds greater than 10% of the [Rated motor freq.] (FrS), see page 67 .
 In the event of a fault, the drive will switch to a freewheel stop, and if the brake logic control function has been configured, the brake command will be set to 0 . | | |
| | [Encoder coupling] [No] (nO): Fault not monitored. [Yes] (YES): Fault monitored.
 If the brake logic control function has been configured, the factory setting changes to [Yes] (YES).
 [Encoder coupling] (ECC) $=$ [Yes] (YES) is only possible if [Load slip detection] (Sdd) $=$ [Yes] (YES) and [Motor control type] (Ctt) page $\underline{69}=[\mathrm{FVC}]$ (FUC) and [Brake assignment] (bLC) page 157 is not [No] (nO). The fault monitored is the break in the mechanical coupling of the encoder.
 In the event of a fault, the drive will switch to a freewheel stop, and if the brake logic control function has been configured, the brake command will be set to 0 . | | |
| E [| Encoder faults filtering time.
 The parameter can be accessed if [Encoder coupling] (ECC) $=[$ Yes] (YES) | | |
| tld- | [TORQUE ORILIM.DETECT] | | |
| 556 | \square [Trq/I limit. stop]
 Behavior in the event of switching to torque or current limitation [lgnore] (nO): Fault ignored. [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt) page 137, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [2/3 wire control] (tCC) and [2 wire type] (tCt) page 86 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed (1).
 \square [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command has not been removed (1).
 \square [Ramp stop] (rMP): Stop on ramp.
 \square [Fast stop] (FSt): Fast stop.
 \square [DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 127. | | |
| n \quad E 5 5 Et | | | |
| | [Trq/l limit. time out]
 (If fault has been configured)
 Time delay for taking SSF "Limitation" fault into account | 0 to 9999 ms | 1000 ms |

[^10][^11]
Use of the "Pulse input" input to measure the speed of rotation of the motor.

This function uses the "Pulse input" input from the VW3A3202 extension card and can, therefore, only be used if this card has been inserted and if the "Pulse input" input is not being used for another function.

Example of use

An indexed disk driven by the motor and connected to a proximity sensor can be used to generate a frequency signal that is proportional to the speed of rotation of the motor.

When applied to the "Pulse input" input, this signal supports:

- Measurement and display of the motor speed: signal frequency $=1 / T$. This frequency is displayed by means of the [Pulse in. work. freq.] (FqS) parameter, page 49 or 51.
- Overspeed detection (if the measured speed exceeds a preset threshold, the drive will trip on a fault).
- Brake failure detection, if brake logic control has been configured: If the speed does not drop sufficiently quickly following a command to engage the brake, the drive will trip on a fault. This function can be used to detect worn brake linings.
- Detection of a speed threshold that can be adjusted using [Pulse warning thd.] (FqL) page $\underline{65}$ and is assignable to a relay or logic output, see page 100.

Code	Name／Description	Adjustment range	Factory setting
F 9 F－	［FREQUENCY METER］ Can be accessed if a VW3A3202 option card has been inserted		
FЯF $\begin{array}{r} \cap \square \\ Y E 5 \end{array}$	［Frequency meter］ Activation of the speed measurement function． ［No］（nO）：Function inactive，In this case，none of the function parameters can be accessed． ［Yes］（YES）：Function active，assignment only possible if no other functions have been assigned to the ＂Pulse input＂input．		
F 7［	\square［Pulse scal．divisor］ －Scaling factor for the＂Pulse input＂input（divisor）．The freq in．work．freq．］（FqS）parameter，page $\underline{49}$ or $\underline{51}$ ．	$1.0 \text { to } 100.0$ measured is displa	1.0 by means of the［Pulse
F9月 $\begin{aligned} & \\ & \\ & \\ & \square \square \\ &-\end{aligned}$	［Overspd．pulse thd．］ Activation and adjustment of overspeed monitoring： ［No］（nO）：No overspeed monitoring． 1 Hz to 30.00 Hz ：Adjustment of the frequency tripp ［Pulse scal．divisor］（FqC）．	peed］（SOF）fault． reshold on the＂Puls	$[\mathrm{No}](\mathrm{nO})$ ut＂input divided by
td 5	［Pulse overspd delay］ Time delay for taking overspeed fault into account	$0.0 \mathrm{~s} \text { to } 10.0 \mathrm{~s}$	$0.0 \mathrm{~s}$
$F \begin{array}{rrr}\text { Fdt } & \\ \\ & n \square \\ & -\end{array}$	\square［Level fr．pulse ctrl］ Activation and adjustment of monitoring for the input （SPF）fault． ［No］（nO）：No monitoring of speed feedback． 0．1 Hz to 500.0 Hz ：Adjustment of the motor freque （difference between the estimated frequency and the	nput（speed feedback） reshold for tripping a red speed）．	［ No ］（nO） Speed fdback loss］ eed feedback fault
Fタt $\begin{aligned} \\ \\ \text { n ロ } \\ \\ -\end{aligned}$	［Pulse thd．wo Run］ Activation and adjustment of brake failure monitoring： assignment］（bLC）page 157 is not configured，this p ［No］（nO）：No brake monitoring． 1 Hz to 1000 Hz ：Adjustment of the motor frequency speeds other than zero）．	e feedback］（brF）．If ter is forced to［No］ hold for tripping abra	［ No ］（nO） e logic control［Brake ailure fault（detection of
ヒタレ	［Pulse thd．wo Run］ Time delay for taking brake failure fault into account．	$0.0 \mathrm{~s} \text { to } 10.0 \mathrm{~s}$	0.0 s

[1.8 FAULT MANAGEMENT] (FLt-)

Load variation detection

This detection is only possible with the "high-speed hoisting" function. It can be used to detect if an obstacle has been reached, triggering a sudden (upward) increase or (downward) decrease in the load.
Load variation detection triggers a [Dynamic load fault] fault (dLF). The [Dyn. load Mgt.] (dLb) parameter can be used to configure the response of the drive in the event of this fault.
Load variation detection can also be assigned to a relay or a logic output.
There are two possible detection modes, depending on the configuration of high-speed hoisting:

"Speed reference" mode

[High speed hoisting] (HSO) page $168=$ [Speed ref] (SSO).
Torque variation detection.
During high-speed operation, the load is compared to that measured during the speed step. The permissible load variation and its duration can be configured. If exceeded, the drive switches to fault mode.

"Current limitation" mode

[High speed hoisting] (HSO) page $168=$ [Current Limit] (CSO).
On ascend, during high-speed operation, an increase in load will result in a drop in speed. Even if high-speed operation has been activated, if the motor frequency drops below the [I Limit Frequency] (SCL) threshold page 168 the drive will switch to fault mode.
On descend, operation takes the form of "speed reference" mode.

Code	Name/Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
dL d -	[DYNAMIC LOAD DETECT.] Load variation detection. This can be accessed if [High speed hoisting] (HSO) page 168 is not [No] (nO).
$t L d$ $\because \square$	[Dynamic load time] Activation of load variation detection and adjustment of time delay for taking load variation fault[Dynamic load fault] (dLF) into account. [No] (nO): No load variation detection. 0.00 s to $\mathbf{1 0 . 0 0} \mathbf{s}$: Adjustment of the time delay for taking fault into account.
$d L d$	\square [Dynamic load time] Adjustment of the trip threshold for load variation detection, as a \% of rated motor torque.
$d L b$ $\begin{aligned} & \text { חロ } \\ & \text { YES } \\ & 5 E t \end{aligned}$ LFF $r L 5$ г П Р F5t	[Dyn. load Mgt.] Behavior of the drive in the event of a load variation fault. [Ignore] (nO): Fault ignored. [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of[Type of stop] (Stt) page 137, without tripping fault. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel, (e.g. according to [2/3 wire control] (tCC) and [2 wire type] (tCt) page 86 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [Fallback spd.] (LFF): Change to fallback speed, maintained as long as the fault persists and the run command has not been removed (1). [Spd maint.] (rLS): The drive maintains the speed at the time the fault occurred, as long as the fault persists and the run command has not been removed (1). [Ramp stop] (rMP): Stop on ramp. [Fast stop] (FSt): Fast stop.

(1) Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

Card pairing

Function can only be accessed in [Expert] mode.

This function is used to detect whenever a card has been replaced or the software has been modified in any way.
When a pairing password is entered, the parameters of the cards currently inserted are stored. On every subsequent power-up these parameters are verified and, in the event of a discrepancy, the drive locks in HCF fault mode. Before the drive can be restarted you must revert to the original situation or re-enter the pairing password.

The following parameters are verified:

- The type of card for: all cards.
- The software version for: the two control cards, the VW3A3202 extension card, the Controller Inside card and the communication cards.
- The serial number for: the two control cards.

Code	Name/Description	Adjustment range	Factory setting
PP I-	- [CARDS PAIRING]		
PPI	\square [Pairing password]	OFF to 9999	[OFF] (OFF)
	The [OFF] (OFF) value signifies that the card pairing function is inactive. The [ON] (On) value signifies that card pairing is active and that an access code must be entered in order to start the drive in the event of a card pairing fault. As soon as the code has been entered the drive is unlocked and the code changes to [ON] (On). - The PPI code is an unlock code known only to Schneider Electric Product Support.		

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) and [1.7 APPLICATION FUNCT.] (FUn-) menus.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
(3) Warning: These settings are independent of the [AUTO DC INJECTION] (AdC-) function.

[1.9 COMMUNICATION] (COM-)

With graphic display terminal:

With integrated display terminal:

[1.9 COMMUNICATION] (COM-)

Code	Name／Description \quad Adjustment range	Factory setting
Пd己－	－［MODBUS HMI］ Communication with the graphic display terminal	
ヒbr己	\square［HMI baud rate］ 9.6 or 19.2 kbps via the integrated display terminal． 9600 or 19200 bauds via the graphic display terminal． The graphic display terminal only operates if［HMI baud rate］（tbr2）＝ 19200 bau In order for any change in the assignment of［HMI baud rate］（tbr2）to be taken in －Provide confirmation in a confirmation window if using the graphic display term －Press the ENT key for 2 s if using the integrated display terminal	19.2 kbps （19．2 kbps）． account you must：
ヒFロ己	［HMI format］ Read－only parameter，cannot be modified．	8E1
Пd 1－	－［MODBUS NETWORK］	
Add	［Modbus Address］ OFF to 247	OFF
АПロ	［Modbus add Prg C．］ Modbus address of the Controller Inside card OFF at 247 The parameter can be accessed if the Controller Inside card has been inserted configuration（please consult the specific documentation）．	OFF depending on its
АПロ	［Modbus add Com．C．］ Modbus address of the communication card OFF to 247 The parameter can be accessed if a communication card has been inserted and configuration（please consult the specific documentation）．	OFF pending on its
tbr	［Modbus baud rate］ 4．8－9．6－19．2－38．4 kbps on the integrated display terminal． $4800,9600,19200$ or 38400 bauds on the graphic display terminal．	19.2 kbps
EFD	［Modbus format］ $801-8 E 1-8 n 1,8 n 2$	8E1
ヒヒロ	［Modbus time out］ $0.1 \text { to } 30 \mathrm{~s}$	$10.0 \mathrm{~s}$
［ п ロ－	［CANopen］	
Ad［	\square［CANopen address］ OFF to 127	OFF
bd［ $]$	［CANopen bit rate］ $50-125-250-500 \mathrm{kbps}-1 \mathrm{Mbps}$	125 kbps
$E r[\square$	［Error code］ Read－only parameter，cannot be modified．	

Code	Name/Description \quad Adjustment range ${ }^{\text {Factory setting }}$
-	[COMMUNICATION CARD]
	See the specific documentation for the card used.
L [F -	[[FORCED LOCAL]
$\begin{array}{ccc} F L D \\ & & \\ & \cap & \square \\ & L & 1 \\ & & 1 \\ L & 1 & 1 \\ \hline \end{array}$	[Forced local assign.] [No] (nO): Function inactive [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted Forced local mode is active when the input is at state 1. [Forced local assign.] (FLO) is forced to [No] (nO) if [Profile] (CHCF) page $122=[1 / \mathrm{O}$ profile] (IO).
	[Forced local Ref.] [No] (nO): Not assigned (control via the terminals with zero reference). [AI1] (AI1): Analog input [AI2] (AI2): Analog input [AI3] (AI3): Analog input, if VW3A3202 extension card has been inserted [AI4] (AI4): Analog input, if VW3A3202 extension card has been inserted [HMI] (LCC): Assignment of the reference and command to the graphic display terminal. Reference: [HMI Frequency ref.] (LFr), page 49, command: RUN/STOP/FWD/REV buttons. [RP] (PI): Frequency input, if VW3A3202 extension card has been inserted [Encoder] (PG): Encoder input, if encoder card has been inserted If the reference is assigned to an analog input, [RP] (PI) or [Encoder] (PG) the command is automatically assigned to the terminals as well (logic inputs)
$F L \square E$	\square [Time-out forc. local] 0.1 to 30 s The parameter can be accessed if [Forced local assign.] (FLO) is not [No] (nO). Time delay before communication monitoring is resumed on leaving forced local mode.

[1.10 DIAGNOSTICS]

This menu can only be accessed with the graphic display terminal.

RDY	Term	$+0.00 \mathrm{~Hz}$	0A	ENT	1.8 FAULT MANAGEMENT	ENT	RUN	Term	+50.00Hz	80A
MAIN MENU					1.9 COMMUNICATION		1.10 DIAGNOSTICS			
1 DRIVE MENU					1.10 DIAGNOSTICS		FAULT HISTORY			
2 ACCESS LEVEL					1.11 IDENTIFICATION		CURRENT FAULT LIST			
3 OPEN / SAVE AS					1.12 FACTORY SETTINGS		MORE FAULT INFO			
4 PASSWORD					1.13 USER MENU		TEST PROCEDURES			
5 LANGUAGE					1.14 PROGRAMMABLE CARD		SERVICE MESSAGE			
Code			Quick				Code	<<	>>	Quick

Output frequency
Elapsed time
Line voltage
Motor thermal state
Command Channe
Channel ref. active

RUN \quad Term	+50.00 Hz
MORE FAULT INFO	
Network fault	0
Application fault	0
Internal link fault 1	0
Internal link fault 2	0
Code	Quick

This screen indicates the number of communication faults, for example, with the option cards.
Number: from 0 to 65535

[1.10 DIAGNOSTICS]

[THYRISTORS TEST] is only accessible for ATV71ゃe๓M3 $\geqslant 18.5 \mathrm{~kW}(25 \mathrm{HP})$ and ATV71ゃe๓N4 18.5 kW (25 HP) drives.

Note: To start the tests, press and hold down (2 s) the ENT key.

The [1.11 IDENTIFICATION] menu can only be accessed on the graphic display terminal.
This is a read-only menu that cannot be configured. It enables the following information to be displayed:

- Drive reference, power rating and voltage
- Drive software version
- Drive serial number
- Type of options present, with their software version

With graphic display terminal:

With integrated display terminal:

The [1.12 FACTORY SETTINGS] (FCS-) menu is used to:

- Replace the current configuration with the factory configuration or a previously saved configuration. All or part of the current configuration can be replaced: select a group of parameters in order to select the menus you wish to load with the selected source configuration.
- Save the current configuration to a file.

Selection of source configuration

Selection of the menus to be replaced

Note: In factory configuration and after a return to "factory settings", [PARAMETER GROUP LIST] will be empty.

Command to return to "factory settings"

This window appears if no group of parameters is selected.

\begin{tabular}{|c|c|}
\hline Code \& Name／Description \\
\hline \[
\begin{gathered}
\text { FC5 1 } \\
\\
\begin{array}{c}
I n \\
C F G 1 \\
C F L 2
\end{array}
\end{gathered}
\] \& \begin{tabular}{l}
［Config．Source］ \\
Choice of source configuration．
［Macro－Conf］（Inl）Factory configuration，return to selected macro configuration．
［Config 1］（CFG1）
［Config 2］（CFG2） \\
If the configuration switching function is configured，it will not be possible to access［Config 1］（CFG1）and ［Config 2］（CFG2）．
\end{tabular} \\
\hline \begin{tabular}{l}
\[
F r y-
\] \\
F L L \\
drா \\
SEt \\
Пロ \\
ᄃ ロ \\
PL \([\) \\
Пロா \\
d 15
\end{tabular} \& \begin{tabular}{l}
［PARAMETER GROUP LIST］ \\
Selection of menus to be loaded
［AII］（ALL）：All parameters．
［Drive menu］（drM）：The［1 DRIVE MENU］menu without［1．9 COMMUNICATION］and［1．14 PROGRAMMABLE CARD］．In the［7 DISPLAY CONFIG．］menu，［Return std name］page 255 returns to［No］．
［Settings］（SEt）：The［1．3 SETTINGS］menu without the［IR compensation］（UFr），［Slip compensation（SLP） and［Mot．therm．current］（ItH）parameters
［Motor param］（MOt）：motor parameters，see list below． The following selections can only be accessed if［Config．Source］（FCSI）＝［Macro－Conf．］（InI）：
［Comm．menu］（COM）：The［1．9 COMMUNICATION］menu without either［Scan．In1 address］（nMA1）to ［Scan．In8 address］（nMA8）or［Scan．Out1 address］（nCA1）to［Scan．Out8 address］（nCA8）．
［Prog．card menu］（PLC）：the［1．14 PROGRAMMABLE CARD］menu．
［Monitor config．］（MOn）：the［6 MONITORING CONFIG．］menu．
［Display config．］（dIS）：the［7 DISPLAY CONFIG．］menu． \\
See the multiple selection procedure on page \(\underline{28}\) for the integrated display terminal and page \(\underline{19}\) for the graphic display terminal． \\
Note：In factory configuration and after a return to＂factory settings＂，［PARAMETER GROUP LIST］ will be empty．
\end{tabular} \\
\hline LF 5

n

YE 5 \& | ［Goto FACTORY SETTINGS］ |
| :--- |
| It is only possible to revert to the factory settings if at least one group of parameters has previously been selected． |
| With the integrated display terminal： |
| －No |
| －Yes：The parameter changes back to nO automatically as soon as the operation is complete． |
| With the graphic display terminal：see previous page |

\hline \[
$$
\begin{aligned}
& 5[51 \\
& n \square \\
& 5 \operatorname{tar} \\
& 5 \operatorname{tr} 1 \\
& 5 \operatorname{tar}
\end{aligned}
$$

\] \& | ［Save config］ ［No］（nO）： |
| :--- |
| \square［Config 0］（Str0）：Press and hold down the＂ENT＂key for 2 s ． |
| －［Config 1］（Str0）：Press and hold down the＂ENT＂key for 2 s ． |
| －［Config 2］（Str0）：Press and hold down the＂ENT＂key for 2 s ． |
| The active configuration to be saved does not appear for selection．For example，if it is［Config 0］（Str0），only ［Config 1］（Str1）and［Config 2］（Str2）appear．The parameter changes back to［No］（nO）as soon as the operation is complete． |

\hline
\end{tabular}

List of motor parameters

［1．4 MOTOR CONTROL］（drC－）menu：

［Rated motor power］（nPr）－［Rated motor volt．］（UnS）－［Rated mot current］（nCr）－［Rated motor freq．］（FrS）－［Rated motor speed］（nSP）－ ［Auto tuning］（tUn）－［Auto tuning status］（tUS）－［U0］（U0）to［U5］（U5）－［F1］（F1）to［F5］（F5）－［V．constant power］（UCP）－［Freq．Const Power］（FCP）－［Nominal I sync］（nCrS）－［Nom motor spdsync］（nSPS）－［Pole pairs．］（PPnS）－［Syn．EMF constant］（PHS）－［Autotune L d－ axis］（LdS）－［Autotune L q－axis］（LqS）－［Cust．stator R syn］（rSAS）－［IR compensation］（UFr）－［Slip compensation］（SLP）－motor parameters that can be accessed in［Expert］mode page 73.
［1．3 SETTINGS］（SEt－）menu：
［Mot．therm．current］（ItH）

Example of total return to factory settings

1．［Config．Source］（FCSI）$=$［Macro－Conf］（InI）
2．［PARAMETER GROUP LIST］（FrY－）$=[$ All］（ALL）
3．［Goto FACTORY SETTINGS］（GFS＝YES）

[1.13 USER MENU] (USr-)

This menu contains the parameters selected in the [7 DISPLAY CONFIG.] menu on page 254.

With graphic display terminal:

With integrated display terminal:

Power-up

[1.14 PROGRAMMABLE CARD] (PLC-)

This menu can only be accessed if a Controller Inside card has been inserted. Please refer to the documentation specific to this card.

With graphic display terminal:

With integrated display terminal:

[3. OPEN/SAVE AS]

This menu can only be accessed with the graphic display terminal.

[Open]: To download one of the 4 files from the graphic display terminal to the drive. [SAVE AS]: To download the current drive configuration to the graphic display terminal.

Various messages may appear when the download is requested:

- [IN PROGRESS]
- [DONE]
- Error messages if download not possible
- [Motor parameters are NOT COMPATIBLE. Do you want to continue?]: In this case the download is possible, but the parameters will be restricted.

[3. OPEN/SAVE AS]

[DOWNLOAD GROUP]

[None] :		No parameters
[AII]:		All parameters in all menus
[Drive menu] :		The entire [1 DRIVE MENU] without [1.9 COMMUNICATION] and [1.14 PROGRAMMABLE CARD].
[Motor parameters]:	[Rated motor power] (nPr)	in the [1.4 MOTOR CONTROL] (drC-) menu
	[Rated motor volt.] (UnS)	
	[Rated mot. current] (nCr)	
	[Rated motor freq.] (FrS)	
	[Rated motor speed] (nSP)	
	[Auto tuning] (tUn)	
	[Auto tuning status] (tUS)	
	[U0] (U0) to [U5] (U5)	
	[F1] (F1) to [F5] (F5)	
	[V. constant power] (UCP)	
	[Freq. Const Power] (FCP)	
	[Nominal I sync.] (nCrS)	
	[Nom motor spdsync] (nSPS)	
	[Pole pairs] (PPnS)	
	[Syn. EMF constant] (PHS)	
	[Autotune L d-axis] (LdS)	
	[Autotune L q-axis] (LqS)	
	[Cust. stator R syn] (rSAS)	
	[IR compensation] (UFr)	
	[Slip compensation] (SLP)	
	The motor parameters that can be accessed in [Expert] mode, page 73	
	[Mot. therm. current] (ItH)	in the [1.3 SETTINGS] (SEt-) menu
[Communication] :		All the parameters in the [1.9 COMMUNICATION] menu
[Prog. control. inside card]		All the parameters in the [1.14 PROGRAMMABLE CARD] menu

With graphic display terminal:

With integrated display terminal:

Enables the configuration to be protected with an access code or a password to be entered in order to access a protected configuration.
Example with graphic display terminal:

- The drive is unlocked when the PIN codes are set to [unlocked] (OFF) (no password) or when the correct code has been entered.
- Before protecting the configuration with an access code, you must:
- Define the [Upload rights] (ULr) and [Download rights] (dLr).
- Make a careful note of the code and keep it in a safe place where you will always be able to find it.
- The drive has 2 access codes, enabling 2 access levels to be set up.
- PIN code 1 is a public unlock code: 6969.
- PIN code 2 is an unlock code known only to Schneider Electric Product Support. It can only be accessed in [Expert] mode.
- Only one PIN1 or PIN2 code can be used - the other must remain set to [OFF] (OFF).

Note: When the unlock code is entered, the user access code appears.
The following items are access-protected:

- Return to factory settings ([1.12 FACTORY SETTINGS] (FCS-) menu.
- The channels and parameters protected by the [1.13 USER MENU] as well as the menu itself.
- The custom display settings ([7 DISPLAY CONFIG.] menu).

Code	Name／Description	Adjustment range	Factory setting
c5t $\begin{array}{r} L[\\ U L E \end{array}$	［Status］ Information parameter，cannot be modified． ［Locked］（LC）：The drive is locked by a password． ［Unlocked］（ULC）：The drive is not locked by a password．		
［口d	\square［PIN code 1］ $1^{\text {st }}$ access code．The value［OFF］（OFF）indicates that no pass ［ON］（On）indicates that the drive is protected and an access cod the correct code has been entered，it remains on the display power supply is disconnected． －PIN code 1 is a public unlock code： 6969.	OFF to 9999 word has been set［U ode must be entered and the drive is unlock	［OFF］（OFF） cked］．The value order to unlock it．Once until the next time the
「ロd己	\square［PIN code 2］ Parameter can only be accessed in［Expert］mode． $2^{\text {nd }}$ access code．The value［OFF］（OFF）indicates that no pas ［ON］（On）indicates that the drive is protected and an access the correct code has been entered，it remains on the display power supply is disconnected． －PIN code 2 is an unlock code known only to Schneider	OFF to 9999 word has been set［U de must be entered nd the drive is unlock ectric Product Suppo	［OFF］（OFF） cked］．The value rder to unlock it．Once until the next time the
$\begin{aligned} & U L r \\ & U L r \square \\ & U L r I \end{aligned}$	［Upload rights］ Read or copy the current configuration to the drive． ［Permitted］（ULrO）：The current drive configuration can alw or PowerSuite． ［Not allowed］（ULr1）：The current drive configuration can or PowerSuite if the drive is not protected by an access code	ays be uploaded to th nly be uploaded to th or if the correct code	［Permitted］（ULrO） raphic display terminal raphic display terminal been entered．
$\begin{aligned} & d L r \\ & d L r \square \\ & d L r \quad 1 \\ & d L r e \\ & d L r \exists \end{aligned}$	\square［Download rights］ Writes the current configuration to the drive or downloads a con ［Locked drv］（dLr0）：A configuration file can only be down access code，which is the same as the access code for the c ［Unlock．drv］（dLr1）：A configuration file can be downloade be modified if the drive is unlocked（access code entered）or ［Not allowed］（dLr2）：Download not authorized． ［Lock／unlock］（dLr3）：Combination of［Locked drv．］（dLr0）	nfiguration to the drive aded to the drive if the nfiguration to be dow d to the drive or a con not protected by an	［Unlock．drv］（dLr1） rive is protected by an aded． uration in the drive can cess code．

[6 MONITORING CONFIG.]

This menu can only be accessed with the graphic display terminal.

This can be used to configure the information displayed on the graphic display screen during operation.

[6.1. PARAM. BAR SELECT]: Selection of 1 to 2 parameters displayed on the top line (the first 2 cannot be modified).
[6.2. MONITOR SCREEN TYPE]: Selection of parameters displayed in the centre of the screen and the display mode (digital values or bar graph format).
[6.3. COM. MAP CONFIG.]: Selection of the words displayed and their format.

Name/Description

[6.1 PARAM. BAR SELECT]

[Alarm groups][Frequency ref.]in Hz : parameter displayed in factory configuration.[Torque reference]
as a \%
[Output frequency]
in Hz
[Motor current]
in A: parameter displayed in factory configuration.
[ENA avg speed]
in Hz
[Motor speed] in rpm
[Motor voltage]
in V[Motor power] in W[Motor torque] as a \%[Mains voltage] in V[Motor thermal state]
as a \%
[Drv. thermal state]
as a \%
[DBR thermal state]
as a \%
[Consumption]
in Wh or kWh depending on drive rating[Run time] in hours (length of time the motor has been switched on)[Power on time] in hours (length of time the drive has been switched on)
[IGBT alarm counter] in seconds (total time of IGBT overheating alarms)[PID reference] as a $\%$[PID feedback] as a \%
[PID error]
[PID Output]
as a \%
[-- - 02]
to[-- - 06] Word generated by the Controller Inside card (can be accessed if the card has been inserted)
[Config. active]
CNFO, 1 or 2 (see page 197)[Utilised param. set]
Select the parameter using ENT (a $\square \checkmark$ then appears next to the parameter). Parameter(s) can also be deselected using ENT. 1 or 2 parameters can be selected.

Example:

Name/Description

[6.2. MONITOR SCREEN TYPE]

- [Display value type]

\square [Digital]: Display of one or two digital values on the screen (factory configuration).

[Bar graph]: Display of one or two bar graphs on the screen.
\square [List]: Display a list of between one and five values on the screen.

- [PARAMETER SELECTION]

\square [Alarm groups]	can only be accessed if [Display value type] = [List]
\square [Frequency ref.]	in Hz : parameter displayed in factory configuration.
\square [Torque reference]	as a \%
\square [Output frequency]	in Hz
\square [Motor current]	in A
\square [ENA avg speed]	in Hz
\square [Motor speed]	in rpm
\square [Motor voltage]	in V
\square [Motor power]	in W
\square [Motor torque]	as a \%
\square [Mains voltage]	in V
\square [Motor thermal state]	as a \%
\square [Drv. thermal state]	as a \%
\square [DBR thermal state]	as a \%
\square [Consumption]	in Wh or kWh depending on drive rating
\square [Run time]	in hours (length of time the motor has been switched on)
\square [Power on time]	in hours (length of time the drive has been switched on)
\square [IGBT alarm counter]	in seconds (total time of IGBT overheating alarms)
\square [PID reference]	as a \%
\square [PID feedback]	as a \%
\square [PID error]	as a \%
\square [PID Output]	in Hz
$\begin{aligned} & \square[----02] \\ & \text { to } \end{aligned}$	Word generated by the Controller Inside card (can be accessed if the card has been inserted)
$\square[---06]$	Word generated by the Controller Inside card (can be accessed if the card has been inserted)
\square [Config. active]	CNFO, 1 or 2 (see page 197), can only be accessed if [Display value type] = [List]
\square [Utilised param. set]	SET1, 2 or 3 (see page 195), can only be accessed if [Display value type] = [List]

Examples include:

Display of 2 digital values

RUN	Term $+35.00 \mathrm{~Hz} \quad$ 80A
Motor speed	
1250 rpm	
Motor current	
80 A	
	Quick

Display of 2 bar graphs

Display of a list of 5 values

RUN	Term	
MONITORING		
Frequency ref.	$:$	50.1 Hz
Motor current:		80 A
Motor speed:		1250 rpm
Motor thermal state:		80%
Drv thermal state	$:$	80%
		Quick

Name/Description

[6.3. COM. MAP CONFIG.]

[Word 1 add. select.]

Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

[Format word 1]

Format of word 1.

-

\square [Signed] : Decimal with sign
\square [Unsigned] : Decimal without sign
[Word 2 add. select.]
Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

[Format word 2]

Format of word 2.
\square [Hex](Hexadecimal): Hexadecimal
\square [Signed] : Decimal with sign
\square [Unsigned] : Decimal without sign
[Word 3 add. select.]
Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

- [Format word 3]

Format of word 3.[Hex](Hexadecimal): Hexadecimal[Signed] : Decimal with sign
\square [Unsigned] : Decimal without sign
[Word 4 add. select.]
Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

- [Format word 4]

Format of word 4.[Hex](Hexadecimal): Hexadecimal[Signed] : Decimal with sign
\square [Unsigned] : Decimal without sign
It will then be possible to view the selected words in the [COMMUNICATION MAP] submenu of the [1.2 MONITORING] menu.
Example:

RUN	Term	+35.00Hz	80A
COMMUNICATION MAP			

W3141:		Hex	
	<<	>>	Quick

[7 DISPLAY CONFIG.]

This menu can only be accessed with the graphic display terminal. It can be used to customize parameters or a menu and to access parameters.

7.1: USER PARAMETERS: Customization of 1 to 15 parameters.
7.2 USER MENU: Creation of a customized menu.
7.3 PARAMETER ACCESS: Customization of the visibility and protection mechanisms of menus and parameters.
7.4 KEYPAD PARAMETERS: Adjustment of the contrast and stand-by mode of the graphic display terminal (parameters stored in the terminal rather than in the drive).

If [Return std name] $=[\mathrm{Yes}]$ the display reverts to standard but the custom settings remain stored.

Offsets and coefficients are numerical values. Do not use too high a multiplier (99999max display).

Use F1 to change to $A B C, a b c, 123, *[-$
Use the navigation selector button to increment the character (alphabetical order) and \ll and >> (F2 and F3) to switch to the next or previous character respectively.

ENT

- Standard: use of the factory set unit
- Customized: customization of the unit
- \%, mA, etc.: select from dropdown list

Once you have entered the unit, if you press ENT, the Ramp increment screen will re-appear in order to display the name. Press ESC to return to Unit.

Names (USER MENU NAME, DRIVE NAME, configuration, serial no., lines of messages, names of units, etc.) are customized as in the example of the parameter name shown opposite.
If no custom settings have been made, the standard value appears (names, units, etc.).
Display on 1 or 2 lines of characters.
Use F1 to change to ABC, abc, 123, *[-.
Use the navigation selector button to increment the character (alphabetical order) and << and >> (F2 and F3) to switch to the next or previous character respectively.

RDY	Term	+0.00 Hz	OA
USER MENU NAME			
FLOW REFERENCE			
Nb characters max.	18		
ABC	\ll	\gg	Quick

Use the F2 and F3 keys to arrange the parameters in the list (example below using F3).

RDY	Term	+0.00 Hz	OA
SELECTED LIST			
Acceleration			
Ramp increment			
Speed prop. gain			
Delete	Up	Down	

Note: The protected parameters are no longer accessible and are not, therefore, displayed for the selected channels.

RDY	Term	+0.00 Hz	OA
7.4 KEYPAD PARAMETERS			
Contrast			
Keypad stand-by			
Code	\ll	\gg	Quick

Name/Description	Adjustment range	Factory setting
\square [Keypad contrast]	0 to 100%	50%
Adjustment of contrast on graphic display unit.		
\square [Keypad stand-by]		
Configures and adjusts the stand-by mode of the graphic display unit. \square [No]: No stand-by mode. [1] to [10]: Adjusts the time during which the terminal is to remain idle before stand-by mode is triggered, in minutes. After this idle time, the display backlight turns off and the contrast is reduced. The screen returns to normal operation when a key or the navigation button is pressed. It also returns to normal operation if the terminal exits the normal display mode, for example, if a fault occurs.		

Communication is possible between a graphic display terminal and a number of drives connected on the same bus. The addresses of the drives must be configured in advance in the [1.9 COMMUNICATION] menu using the [Modbus Address] (Add) parameter, page 236.

When a number of drives are connected to the same display terminal, the terminal automatically displays the following screens:

In multipoint mode, the command channel is not displayed. From left to right, the state, then the 2 selected parameters and finally the drive address appear.

All menus can be accessed in multipoint mode. Only drive control via the graphic display terminal is not authorized, apart from the Stop key, which locks all the drives.
If there is a fault on a drive, this drive is displayed.

Servicing

The Altivar 71 does not require any preventive maintenance. It is nevertheless advisable to perform the following regularly:

- Check the condition and tightness of the connections.
- Ensure that the temperature around the unit remains at an acceptable level and that ventilation is effective (average service life of fans: 3 to 5 years, depending on the operating conditions).
- Remove any dust from the drive.

Assistance with maintenance, fault display

If a problem arises during setup or operation, first check that the recommendations relating to the environment, mounting and connections have been observed.

The first fault detected is saved and displayed, and the drive locks.
The drive switching to fault mode can be indicated remotely via a logic output or a relay, which can be configured in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu, see, for example, [R1 CONFIGURATION] (r1-) page 100.

Menu [1.10 DIAGNOSTICS]

This menu can only be accessed with the graphic display terminal. It displays faults and their cause in plain text and can be used to carry out tests, see page 238 .

Clearing the fault

Disconnect the drive power supply in the event of a non-resettable fault.
Wait for the display to disappear completely.
Find the cause of the fault in order to correct it.
The drive is unlocked after a fault:

- By switching off the drive until the display disappears completely, then switching on again
- Automatically in the scenarios described for the[AUTOMATIC RESTART] (Atr-) function, page 214
- By means of a logic input or control bit assigned to the [FAULT RESET] (rSt-) function, page 213
- By pressing the STOP/RESET button on the graphic display terminal

Menu [1.2 MONITORING] (SUP-):

This is used to prevent and find the causes of faults by displaying the drive state and its current values. It can be accessed with the integrated display terminal.

Spares and repairs:

Consult Schneider Electric product support.

Drive does not start, no fault displayed

- If the display does not light up, check the power supply to the drive.
- The assignment of the "Fast stop" or "Freewheel" functions will prevent the drive starting if the corresponding logic inputs are not powered up. The ATV71 then displays [Freewheel] (nSt) in freewheel stop and [Fast stop] (FSt) in fast stop. This is normal since these functions are active at zero so that the drive will be stopped safely if there is a wire break.
- Make sure that the run command input or inputs are activated in accordance with the selected control mode ([2/3 wire control] (tCC) and [2 wire type] (tCt) parameters, page 86).
- If an input is assigned to the limit switch function and this input is at zero, the drive can only be started up by sending a command for the opposite direction (see pages 151 and 189).
- If the reference channel or command channel is assigned to a communication bus, when the power supply is connected, the drive will display [Freewheel] (nSt) and remain in stop mode until the communication bus sends a command.

Faults, which cannot be reset automatically

The cause of the fault must be removed before resetting by turning off and then back on.
AnF, brF, ECF, EnF, SOF, SPF and tnF faults can also be reset remotely by means of a logic input or control bit ([Fault reset] (rSF) parameter, page 213).
AnF, EnF, InFA, InFb, SOF, SPF, and tnF faults can be inhibited and cleared remotely by means of a logic input or control bit ([Fault inhibit assign.] (InH) parameter, page 224).

Fault	Name	Probable cause	Remedy
- 12F	[AI2 input]	- Non-conforming signal on analog input Al2	- Check the wiring of analog input AI2 and the value of the signal.
$A \cap F$	[Load slipping]	- The encoder speed feedback does not match the reference	- Check the motor, gain and stability parameters. - Add a braking resistor. - Check the size of the motor/drive/load. - Check the encoder's mechanical coupling and its wiring.
b \quad F	[DBR overload]	- The braking resistor is under excessive stress	- Check the size of the resistor and wait for it to cool down - Check the [DB Resistor Power] (brP) and [DB Resistor value] (brU) parameters, page 231.
br F	[Brake feedback]	- The brake feedback contact does not match the brake logic control - The brake does not stop the motor quickly enough (detected by measuring the speed on the "Pulse input" input).	- Check the feedback circuit and the brake logic control circuif - Check the mechanical state of the brake - Check the brake linings
bUF	[DB unit sh. Circuit]	- Short-circuit output from braking unit - Braking unit not connected	- Check the wiring of the braking unit and the resistor. - Check the braking resistor - The monitoring of this fault must be disabled by the [Brake res. fault Mgt.] (bUb) parameter, page 231 if there is no resistor or braking unit connected to the drive, at and above 55 kW (75 HP) for ATV71 000 M 3 X and at and above 90 kW (120 HP) for ATV71••0N4.
[rFl	[Precharge]	- Charging relay control fault or charging resistor damaged	- Turn the drive off and then back on again - Check the internal connections
[rF己	[Thyr. soft charge]	- DC bus charging fault (thyristors)	- Inspect/repair the drive
$E[F$	[Encoder coupling]	- Break in encoder's mechanical coupling	- Check the encoder's mechanical coupling
EEFI	[Control Eeprom]	- Internal memory fault, control card	- Check the environment (electromagnetic compatibility) - Turn off, reset, return to factory settings
EEF 2	[Power Eeprom]	- Internal memory fault, power card	- Inspect/repair the drive
$E \cap F$	[Encoder]	- Encoder feedback fault	- Check [Number of pulses] (PGI) and [Encoder type] (EnS) page 75. - Check that the encoder's mechanical and electrical operation, its power supply and connections are all correct - If necessary, reverse the direction of rotation of the motor ([Output Ph rotation] ($\mathrm{PHr} \mathrm{)} \mathrm{parameter} ,\mathrm{page} \mathrm{68)} \mathrm{or} \mathrm{the}$ encoder signals
F[F I	[Out. contact. stuck]	- The output contactor remains closed although the opening conditions have been met	- Check the contactor and its wiring - Check the feedback circuit

Faults, which cannot be reset automatically (continued)

Fault	Name	Probable cause	Remedy
$H d F$	[IGBT desaturation]	- Short-circuit or grounding at the drive output	- Check the cables connecting the drive to the motor, and the motor insulation. - Perform the diagnostic tests via the [1.10 DIAGNOSTICS] menu.
ILF	[internal com. link]	- Communication fault between option card and drive	- Check the environment (electromagnetic compatibility) - Check the connections - Check that no more than 2 option cards (max. permitted) have been installed on the drive - Replace the option card - Inspect/repair the drive
$\operatorname{InF} 1$	[Rating error]	- The power card is different from the card stored	- Check the reference of the power card
$\operatorname{InF} 2$	[Incompatible PB]	- The power card is incompatible with the control card	- Check the reference of the power card and its compatibility.
$\operatorname{InF\exists }$	[Internal serial link]	- Communication fault between the internal cards	- Check the internal connections - Inspect/repair the drive
$\operatorname{InF} 4$	[Internal-mftg zone]	- Internal data inconsistent	- Recalibrate the drive (performed by Schneider Electric Product Support).
$1 \cap F E$	[Internal - fault option]	- The option installed in the drive is not recognized	- Check the reference and compatibility of the option.
InF7	[Internal-hard init.]	- Initialization of the drive is incomplete	- Turn off and reset.
$1 \cap F B$	[Internal-ctrl supply]	- The control power supply is incorrect	- Check the control section power supply
$\operatorname{InF} 9$	[Internal- I measure]	- The current measurements are incorrect	- Replace the current sensors or the power card. - Inspect/repair the drive
InFA	[Internal-mains circuit]	- The input stage is not operating correctly	- Perform the diagnostic tests via the [1.10 DIAGNOSTICS] menu. - Inspect/repair the drive
$1 \cap F b$	[Internal- th. sensor]	- The drive temperature sensor is not operating correctly - The braking unit's temperature sensor is not operating correctly.	- Replace the drive temperature sensor - Inspect/repair the drive - Replace the braking unit's temperature sensor - Inspect/repair the braking unit - The monitoring of this fault must be disabled by the [Brake res. fault Mgt.] (bUb) parameter, page 231 if there is no braking unit connected to the drive.
InF	[Internal-time meas.]	- Fault on the electronic time measurement component	- Inspect/repair the drive
InFE	[internal- CPU]	- Internal microprocessor fault	- Turn off and reset. Inspect/repair the drive.
$\square[F$	[Overcurrent]	- Parameters in the [SETTINGS] (SEt-) and [1.4 MOTOR CONTROL] (drC-) menus are not correct. - Inertia or load too high - Mechanical locking	- Check the parameters. - Check the size of the motor/drive/load. - Check the state of the mechanism.
PrF	[Power removal]	- Fault with the drive's "Power removal" safety function	- Inspect/repair the drive
$5\left[\begin{array}{l}\text { F }\end{array}\right.$	[Motor short circuit]	- Short-circuit or grounding at the drive output - Significant earth leakage current at the drive output if several motors are connected in parallel	- Check the cables connecting the drive to the motor, and the motor insulation. - Perform the diagnostic tests via the [1.10 DIAGNOSTICS] menu. - Reduce the switching frequency. - Connect chokes in series with the motor.
$5[F 2$	[Impedant sh. circuit]		
$5[F \exists$	[Ground short circuit]		
$5 \square F$	[Overspeed]	- Instability or driving load too high	- Check the motor, gain and stability parameters. - Add a braking resistor. - Check the size of the motor/drive/load. - Check the parameters settings for the [FREQUENCY METER] (FqF-) function, page 228, if it is configured

Faults - Causes - Remedies

Faults, which cannot be reset automatically (continued)

Fault	Name	Probable cause	Remedy
$5 P F$	[Speed fdback loss]	- Encoder feedback signal missing - Signal on "Pulse input" missing, if the input is used for speed measurement	- Check the wiring between the encoder and the drive - Check the encoder - Check the wiring of the input cable and the detector used
$t \cap F$	[Auto-tuning]	- Special motor or motor whose power is not suitable for the drive - Motor not connected to the drive	- Check that the motor/drive are compatible - Check that the motor is present during auto-tuning - If an output contactor is being used, close it during autotuning

Faults that can be reset with the automatic restart function，after the cause has disappeared

These faults can also be reset by turning on and off or by means of a logic input or control bit（［Fault reset］（rSF）parameter，page 213）． APF，CnF，COF，EPF1，EPF2，FCF2，LFF2，LFF3，LFF4，ObF，OHF，OLF，OPF1，OPF2，OSF，OtF1，OtF2，OtFL，PHF，PtF1，PtF2，PtFL， SLF1，SLF2，SLF3，SrF，SSF and tJF faults can be inhibited and cleared remotely by means of a logic input or control bit（［Fault inhibit assign．］（InH）parameter，page 224）．

Fault	Name	Probable cause	Remedy
APF	［Application fault］	－Controller Inside card fault	－Please refer to the card documentation
$b L F$	［Brake control］	－Brake release current not reached －Brake engage frequency threshold ［Brake engage freq］（bEn）only regulated when brake logic control is assigned	－Check the drive／motor connection －Check the motor windings －Check the［Brake release I FW］（Ibr）and［Brake release I Rev］（Ird）settings，page 157 －Apply the recommended settings for［Brake engage freq］ （bEn）．
$\square \cap F$	［Com．network］	－Communication fault on communication card	－Check the environment（electromagnetic compatibility） －Check the wiring． －Check the time－out －Replace the option card －Inspect／repair the drive
C पF	［CANopen com．］	－Interruption in communication on the CANopen bus	－Check the communication bus． －Check the time－out －Refer to the CANopen User＇s Manual
EPF I	［External flt－LI／Bit］	－Fault triggered by an external device， depending on user	－Check the device which caused the fault，and reset
EPF己	［External fault com．］	－Fault triggered by a communication network	－Check for the cause of the fault and reset
F［F己	［Out．contact． open．］	－The output contactor remains open although the closing conditions have been met	－Check the contactor and its wiring －Check the feedback circuit
$L[F$	［input contactor］	－The drive is not turned on even though ［Mains V．time out ］（LCt）has elapsed．	－Check the contactor and its wiring －Check the time－out －Check the line／contactor／drive connection
$\begin{aligned} & \text { LFFZ } \\ & \text { LFF } \\ & \text { LFFY } \end{aligned}$	［AI2 4－20mA loss］ ［AI3 4－20mA loss］ ［Al4 4－20mA loss］	－Loss of the 4－20 mA reference on analog input AI2，AI3 or AI4	－Check the connection on the analog inputs．
ロレF	［Overbraking］	－Braking too sudden or driving load	－Increase the deceleration time －Install a braking resistor if necessary －Activate the［Dec ramp adapt．］（brA）function，page 136，if it is compatible with the application
ロHF	［Drive overheat］	－Drive temperature too high	－Check the motor load，the drive ventilation and the ambient temperature．Wait for the drive to cool down before restarting．
BLF	［Motor overload］	－Triggered by excessive motor current	－Check the setting of the motor thermal protection，check the motor load．Wait for the drive to cool down before restarting．
DPF I	［1 output phase loss］	－Loss of one phase at drive output	－Check the connections from the drive to the motor

Faults that can be reset with the automatic restart function，after the cause has disappeared （continued）

Fault	Name	Probable cause	Remedy
$\square P F 2$	［3 motor phase loss］	－Motor not connected or motor power too low －Output contactor open －Instantaneous instability in the motor current	－Check the connections from the drive to the motor －If an output contactor is being used，parameterize［Output Phase Loss］（OPL）＝［Output cut］（OAC），page 217 ． －Test on a low power motor or without a motor：In factory settings mode，motor phase loss detection is active［Output Phase Loss］（OPL）$=[\mathrm{Yes}]$（YES）．To check the drive in a test or maintenance environment，without having to use a motor with the same rating as the drive（in particular for high power drives），deactivate motor phase loss detection［Output Phase Loss］（OPL）$=[\mathrm{No}](\mathrm{nO})$ －Check and optimize the following parameters：［IR compensation］（UFr），page 72，［Rated motor volt．］（UnS）and ［Rated mot．current］（ nCr ）page $\underline{67}$ and perform［Auto－tuning］ （tUn）page 68.
प5 F	［Mains overvoltage］	－Line voltage too high －Disturbed mains supply	－Check the line voltage
－ $\mathrm{F}_{\text {F }}$	［PTC1 overheat］	－Overheating of the PTC1 probes detected	－Check the motor load and motor size． －Check the motor ventilation． －Wait for the motor to cool before restarting －Check the type and state of the PTC probes
ロヒF 己	［PTC2 overheat］	－Overheating of the PTC2 probes detected	
ロヒFL	［LI6＝PTC overheat］	－Overheating of PTC probes detected on input LI6	
PtFl	［PTC1 probe］	－PTC1 probes open or short－ circuited	－Check the PTC probes and the wiring between them and the motor／drive
PEF己	［PTC2 probe］	－PTC2 probes open or short－ circuited	
PEFL	［LI6＝PTC probe］	－PTC probes on input LI6 open or short－circuited	
5［F4	［IGBT short circuit］	－Power component fault	－Perform a test via the［1．10 DIAGNOSTICS］menu． －Inspect／repair the drive
5LF5	［Motor short circuit］	－Short－circuit at drive output	－Check the cables connecting the drive to the motor，and the motor＇s insulation －Perform tests via the［1．10 DIAGNOSTICS］menu． －Inspect／repair the drive
5LFI	［Modbus com．］	－Interruption in communication on the Modbus bus	－Check the communication bus． －Check the time－out －Refer to the Modbus User＇s Manual
5LF	［PowerSuite com．］	－Fault communicating with PowerSuite	－Check the PowerSuite connecting cable． －Check the time－out
5LFヨ	［HMI com．］	－Fault communicating with the graphic display terminal	－Check the terminal connection －Check the time－out
5 r F	［TORQUE TIME OUT FLT］	－The time－out of the torque control function is attained	－Check the function＇s settings －Check the state of the mechanism
55 F	［Torque／current lim］	－Switch to torque limitation	－Check if there are any mechanical problems －Check the parameters of［TORQUE LIMITATION］ （tLA－）page 182 and the parameters of the ［TORQUE OR I LIM．DETECT．］（tld－）fault，page 226）．
$t\lrcorner F$	［IGBT overheat］	－Drive overheated	－Check the size of the load／motor／drive． －Reduce the switching frequency． －Wait for the motor to cool before restarting

Faults that can be reset as soon as their causes disappear

The USF fault can be inhibited and cleared remotely by means of a logic input or control bit ([Fault inhibit assign.] (InH) parameter, page 224).

Fault	Name	Probable cause	Remedy
L F F	[Incorrect config.]	- Option card changed or removed - Control card replaced by a control card configured on a drive with a different rating - The current configuration is inconsistent	- Check that there are no card errors. - In the event of the option card being changed/removed deliberately, see the remarks below - Check that there are no card errors. - In the event of the control card being changed deliberately, see the remarks below - Return to factory settings or retrieve the backup configuration, if it is valid (see page 243)
[F I	[Invalid config.]	- Invalid configuration The configuration loaded in the drive via the bus or communication network is inconsistent.	- Check the configuration loaded previously. - Load a compatible configuration
dLF	[Dynamic load fault]	- Abnormal load variation	- Check that the load is not blocked by an obstacle - Removal of a run command causes a reset
HCF	[Cards pairing]	- The [CARDS PAIRING] (PPI-) function, page 232, has been configured and a drive card has been changed	- In the event of a card error, reinsert the original card - Confirm the configuration by entering the [Pairing password] (PPI) if the card was changed deliberately
PHF	[Input phase loss]	- Drive incorrectly supplied or a fuse blown - Failure of one phase - 3-phase ATV71 used on a singlephase line supply - Unbalanced load This protection only operates with the drive on load	- Check the power connection and the fuses. - Use a 3 -phase line supply. - Disable the fault by[Input phase loss] (IPL) $=[\mathrm{No}](\mathrm{nO})$. (page 218)
U5F	[Undervoltage]	- Line supply too low - Transient voltage dip	- Check the voltage and the parameters of [UNDERVOLTAGE MGT] (USb-), page 221

Option card changed or removed

When an option card is removed or replaced by another, the drive locks in [Incorrect config.] (CFF) fault mode on power-up. If the card has been deliberately changed or removed, the fault can be cleared by pressing the ENT key twice, which causes the factory settings to be restored (see page 243) for the parameter groups affected by the card. These are as follows:

Card replaced by a card of the same type

- I/O cards: [Drive menu] (drM)
- Encoder cards: [Drive menu] (drM)
- Communication cards: only the parameters that are specific to communication cards
- Controller Inside cards: [Prog. card menu] (PLC)

Card removed (or replaced by a different type of card)

- I/O card: [Drive menu] (drM)
- Encoder card: [Drive menu] (drM)
- Communication card: [Drive menu] (drM) and parameters specific to communication cards
- Controller Inside card: [Drive menu] (drM) and [Prog. card menu] (PLC)

Control card changed

When a control card is replaced by a control card configured on a drive with a different rating, the drive locks in [Incorrect config.] (CFF) fault mode on power-up. If the card has been deliberately changed, the fault can be cleared by pressing the ENT key twice, which causes all the factory settings to be restored.

User settings tables

Menu [1.1 SIMPLY START] (SIM-)

Code	Name	Factory setting	Customer setting
t [[[2/3 wire control]	[2 wire] (2C)	
LFL	[Macro configuration]	[Start/Stop] (StS)	
$b F r$	[Standard mot. freq]	[50 Hz] (50)	
nPr	[Rated motor power]	According to drive rating	
Un5	[Rated motor volt.]	According to drive rating	
	[Rated mot. current]	According to drive rating	
Fr 5	[Rated motor freq.]	50 Hz	
$\square 5 P$	[Rated motor speed]	According to drive rating	
t Fr	[Max frequency]	60 Hz	
PHr	[Output Ph rotation]	ABC	
It H	[Mot. therm. current]	According to drive rating	
A [[[Acceleration]	3.0 s	
$d E[$	[Deceleration]	3.0 s	
L5P	[Low speed]	0	
H 5 P	[High speed]	50 Hz	

Functions assigned to I/O

Inputs Outputs	Functions assigned
LI1	
LI2	
LI3	
LI4	
LI5	
LI6	
LI7	
LI8	
LI9	
LI10	
LI11	
LI12	
LI13	
LI14	

Inputs Outputs	Functions assigned
LO1	
LO2	
LO3	
LO4	
AI1	
Al2	
Al3	
Al4	
R1	
R2	
R3	
R4	
RP	
Encoder	

User settings tables

Other parameters (table to be created by the user)

Code	Name	Customer setting	Code	Name	Customer setting

Index of functions

[2 wire] (2C)	39
[2nd CURRENT LIMIT.]	184
[3 wire] (3C)	39
+/- speed	145
+/- speed around a reference	147
[AUTO DC INJECTION]	139
[AUTOMATIC RESTART]	$\underline{214}$
[Auto tuning]	41
[AUTO TUNING BY LI]	$\underline{199}$
Brake logic control	153
[CATCH ON THE FLY]	$\underline{215}$
Command and reference channels	114
Deferred stop on thermal alarm	219
Direct power supply via DC bus	$\underline{209}$
[DRIVE OVERHEAT]	$\underline{218}$
[ENA SYSTEM]	77
[ENCODER CONFIGURATION]	98
[EVACUATION]	$\underline{207}$
[1.12 FACTORY SETTINGS] (FCS-)	$\underline{241}$
[FAULT RESET]	$\underline{213}$
[FLUXING BY LI]	150
Half floor	$\underline{208}$
High-speed hoisting	164
[JOG]	141
Limit switch management	$\underline{151}$
Line contactor command	185
Load measurement	162
[Load sharing]	82
Load variation detection	229
Motor or configuration switching [MULTIMOTORS/CONFIG.]	197
Motor thermal protection	216
[Noise reduction]	80
Output contactor command	187
Parameter set switching [PARAM. SET SWITCHING]	194
[4. PASSWORD] (COd-)	$\underline{248}$
PID regulator	169
Positioning by sensors or limit switches	$\underline{189}$
Preset speeds	142
PTC probes	$\underline{211}$
[RAMP]	134
[REFERENCE SWITCH.]	132
Rope slack	167
[RP CONFIGURATION]	96
Save reference	149
[STOP CONFIGURATION]	$\underline{137}$
Stop at distance calculated after deceleration limit switch	$\underline{191}$
Summing input/Subtracting input/Multiplier	131
Synchronous motor	74
Torque limitation	181
Torque regulation	178
Traverse control	$\underline{200}$
Use of the "Pulse input" input to measure the speed of rotation of the motor.	227

Index of parameter codes

Code	Page										
						0 2 \sum_{1}^{a} \sum_{0} 0 0 0 i i					
A IL－					112						
A己－					112						
คヨ－					112						
月5			53				$\frac{136148}{\underline{175}}$				
R［［	42		53				134				
R $\boldsymbol{H}^{\text {c }}$							$\underline{139}$				
F ${ }_{\text {cla }}$									$\underline{236}$		
Add									$\underline{236}$		
A I I ${ }^{\text {a }}$		50			$\underline{91}$						
A I IE					91						
R I IF					91						
H 115					$\underline{91}$						
－11t					$\underline{91}$						
－12 ${ }^{\text {（ }}$		50			92						
A İE					92						
A İF					92						
\＆İL					$\underline{92}$						
A 125					$\underline{92}$						
\＆12t					$\underline{92}$						
月 1 ヨ		50			93						
В I ヨ					$\underline{93}$						
A I $ヨ$ F					$\underline{93}$						
\＆1 $ヨ$ L					$\underline{93}$						
ค 1 ヨ 5					$\underline{93}$						
A 1 ヨ					$\underline{93}$						
А 14\％		50			$\underline{94}$						
（ 14 E					$\underline{94}$						
A 14%					$\underline{94}$						
A 14 L					94						
A 145					94						
（ 14t					94						
H IL I					95		173				
ALLr		49，$\underline{51}$									
АПロ									$\underline{236}$		
คПロ［									236		
F 1					108						

Index of parameter codes

Code	Page										
						0 2 i i 0 0 0 0 0 i					
Fロ IF					109						
FロIt					108						
－${ }^{\text {¢ }}$					110						
－${ }^{\text {a }}$					110						
＊ロこも					110						
カロヨ					111						
FロヨF					111						
ーロヨヒ					111						
AロH I					108						
RロH己					110						
FロHヨ					111						
FロL I					108						
FロL 2					110						
FロL ${ }^{\text {a }}$					111						
APH		49， 51									
－ 5 H I					109						
H5 H					110						
R 5 H ${ }^{\text {f }}$					111						
H SL					109						
H5L					110						
－5L ${ }^{\text {c }}$					111						
Atr								$\underline{214}$			
A ${ }^{\text {l－}}$					$\underline{95}$						
R \square^{5}		49， 51									
RUt				68							
bロ ${ }^{\text {b }}$				82							
b［ I							157				
bd［口									236		
becd							158				
b Ed							159				
bEп			63				158				
bet			64				158				
bFr	40		67								
b IP							157				
b Ir			63				158				
$b L[$							157				

Index of parameter codes

Code	Page										
						0 2 \sum_{1}^{a} \sum_{0} 0 0 0 i i					$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \sum_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
br ${ }^{\text {b }}$							136				
brHO							160				
brH I							160				
brH己							161				
brHヨ							161				
brH4							161				
bra								$\underline{231}$			
$b r P$								231			
brr							161				
brt			63				158				
brU								231			
b 5 P					89						
b 5t							157				
ロリレ								231			
［LFL	39										
［ ¢ 5						123					
［dI						123					
［d己						123					
［FL	39										
［FP5		49， 51									
［ H \｜I							195				
［ H月己							195				
［ H［ F						122					
ᄃ Н П							199				
［L 己			59				184				
CL I			59	79			184				
cLL								$\underline{225}$			
CLD							168				
［L5							193				
［ n F I							199				
［nF							199				
LnF5		49， 51									
C0d											$\underline{249}$
C0d己											$\underline{249}$
CDF							168				
［QL								$\underline{225}$			

Index of parameter codes

Code	Page										
						0 2 2 2 0 0 0 0 0 i i					$\begin{aligned} & \square \\ & 0 \\ & 0 \\ & 0 \\ & 30 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
LロP						124					
［日r							168				
［PI							163				
ᄃPこ							163				
［rH己					$\underline{92}$						
［rHヨ					$\underline{93}$						
［rH4					$\underline{94}$						
crle					92						
CrLヨ					$\underline{93}$						
crL4					$\underline{94}$						
［5t											$\underline{249}$
Ctd			64								
くヒヒ				$\underline{69}$							
d月							133				
d月 ${ }^{\text {f }}$							133				
d ${ }^{\text {F }}$							192				
d ${ }^{\text {d }}$							192				
$d^{\text {d }}$ r							192				
d ${ }^{\text {d }} 5$							188				
dロп							180				
dbP							180				
db 5							188				
$d[F$			$\underline{57}$				137	$\underline{233}$			
d［ I							138				
d［0							$\underline{209}$				
dE 2			$\underline{53}$				$\begin{aligned} & \frac{136}{148} \\ & \underline{148} \end{aligned}$				
dE	42		53				134				
dLb								$\underline{230}$			
dLd								230			
$d L^{\text {r }}$											$\underline{249}$
d ${ }^{\text {l }}$					105						
dロId					105						
dロIH					105						
dロ15					$\underline{105}$						
d 5 F							193				
d 51							148				

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 5 0 0 5 0 0 2 10 \vdots	0 2 \sum_{n}^{n} \sum_{0} 0 0 0 i i					
d $5 P$							146				
$d t F$							206				
Eレロ							$\underline{205}$				
EL[$\underline{226}$			
ELt								$\underline{226}$			
EFI					$\underline{99}$						
EFr					$\underline{99}$						
EIL					99						
$E \cap A$				78							
$E \cap L$				$\underline{76}$	$\underline{98}$						
En5				$\underline{75}$	$\underline{98}$						
$E \cap U$				76	$\underline{99}$						
$E P L$								$\underline{220}$			
Erco									$\underline{236}$		
Et F								$\underline{220}$			
F I				70							
F2				70							
F2d			$\underline{65}$								
F \exists				$\underline{70}$							
F 4				$\underline{70}$							
F 5				$\underline{70}$							
F [P				71							
F[5I										$\underline{243}$	
$F d t$								$\underline{228}$			
FFE			65				137				
FL I							$\underline{150}$				
FL									$\underline{237}$		
FL \quad [$\underline{237}$		
FLDE									$\underline{237}$		
FLr								$\underline{215}$			
FLU			60				$\underline{150}$				
FP I							$\underline{175}$				
F9 ${ }^{\text {F }}$								$\underline{228}$			
F 9 [$\underline{228}$			
FqF								$\underline{228}$			
F9L			65								

Index of parameter codes

Code	Page										
						0 2 \sum_{0}^{1} \sum_{0}^{1} 0 0 0 i i					$\begin{aligned} & \overline{0} \\ & 0 \\ & 00 \\ & 00 \\ & 00 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
F95		49， 51									
F9t								228			
Fr I						122					
Fr lb							$\underline{132}$				
Fre						123					
FrH		49， 51									
Fr 5	40		67								
Fr 55				74							
Frt							$\underline{136}$				
Fry－										$\underline{243}$	
F5t							137				
Ftd			65								
LF5										$\underline{243}$	
L IE			57	78							
LPE			57	78							
HFF－							$\underline{208}$				
HLS							208				
H50							168				
HSP	42		$\underline{54}$								
lbr			63				157				
1bra							163				
IdA				73							
1dL			57				138	233			
1dL			57				$\underline{138}$	$\underline{233}$			
1d7				73							
1 nH								$\underline{224}$			
1 rr			$\underline{53}$				134				
1 n 5 P				67							
IntP							$\underline{182}$				
$1 P L$	40							$\underline{218}$			
Ird			63				157				
It H	42		54								
」d［			64				159				
$\lrcorner G F$			60				141				
」Lt			60				141				
」ロL							141				

Index of parameter codes

Code	Page										
					0 0 0 0 0 0 5 0 0 0 0 0 0 1 \vdots				2 0 1 0 0 0 1 i 0 0 0 0 i i		
		50			87						
LId to L 14d					87						
L AF							152				
LAr							152				
L A 5							152				
Lb				82							
Lbし			65	82							
LbLI				84							
Lbくこ				84							
しもくヨ				84							
LbF				84							
L ¢							184				
L Lr		49， 51									
LLt							$\underline{186}$				
Ld5				72							
LES							186				
LEt								220			
LFA				73							
LFF								233			
$\begin{aligned} & L F L 己 \\ & L F L \exists \\ & L F L Y \end{aligned}$								$\underline{223}$			
LF \quad				73							
L 151		50									
L 152		50									
LL［							$\underline{186}$				
Lロ I					103						
LロId					103						
L－IH					103						
L－15					103						
Lロ己					103						
Lロこを					103						
LロこH					103						
Lロこ5					103						
しロヨ					104						
Lロヨd					104						
Lロヨ					104						

Index of parameter codes

Code	Page										
						0 2 i i 0 0 0 0 0 i					0 0 0 0 0 0 0 0 0 0
Lロヨ5					104						
Lロ					104						
Lロ4d					104						
Lロ ${ }^{\text {H }}$					104						
Lロ45					104						
LP I							163				
LPこ							163				
L 95				72							
L 5 P	42		$\underline{54}$								
ПН己							$\underline{133}$				
ПНヨ							133				
MFr		49，$\underline{51}$	62								
ППF		49， 51									
n［月 I									235		
									$\underline{235}$		
									$\underline{235}$		
п［ ${ }^{\text {¢ }}$									235		
n［ 55									235		
п［乐									$\underline{235}$		
п［ 77									235		
пLA日									$\underline{235}$		
	40		67								
nLr 5				72							
nLS							193				
пП 1									$\underline{235}$		
пП ${ }^{\text {¢ }}$									$\underline{235}$		
пПНヨ									$\underline{235}$		
пПНЧ									235		
пПН5									$\underline{235}$		
пПНБ									$\underline{235}$		
пПН 7									$\underline{235}$		
пПН日									$\underline{235}$		
nPr	40		67								
nrd				80							
n5L				73							
$\square 5 P$	40		67								

Index of parameter codes

Code	Page										
						0 2 \sum_{n}^{n} \sum_{0} 0 0 0 i i					$\begin{aligned} & \text { [4 PASSWORD] } \\ & \left(\begin{array}{c} \text { Cd } \end{array}\right) \end{aligned}$
п 5 P 5				72							
n5t							137				
－0		49，$\underline{51}$									
－ロヨ		49， 51									
－04		49， 51									
－05		49，$\underline{51}$									
－ 06		49， 51									
－［ L							$\underline{188}$				
ロdt								$\underline{217}$			
DFI				$\underline{79}$							
$\square H L$								218			
QLL								$\underline{217}$			
$\square P L$								$\underline{217}$			
－P_{r}		49， 51									
－5P							168				
PRH			62				174				
PRL			62				174				
PR5							$\underline{193}$				
PRU							175				
PEr			$\underline{63}$				174				
PES							$\underline{163}$				
PFI					$\underline{96}$						
PFr					$\underline{96}$						
PGA					$\underline{99}$						
PGI				75	99						
PH5				72							
PHr	41			68							
P I ${ }^{\text {P }}$					$\underline{96}$						
P IL							174				
P IF							$\underline{173}$				
P IF I							$\underline{173}$				
PIFE							173				
Pl｜							173				
PIL					$\underline{96}$						
P 1 п							175				
PIPI							173				

Index of parameter codes

Code	Page										
						0 2 i i 0 0 0 0 0 i					0 0 0 0 0 0 0 0 0 0
PIPZ							$\underline{173}$				
P 15							$\underline{174}$				
$P \square H$			62				174				
$P \square L$			62				174				
PPI								$\underline{232}$			
PPn				73							
$P P \cap 5$				72							
Pre							177				
Pr 4							177				
PrP			62				174				
P5 1－							195				
P52－							196				
P5ヨ－							196				
P5 2							143				
P54							143				
P5日							143				
P5 IG							143				
P5r			63				175				
P5t						122					
Pt［ I								$\underline{212}$			
Pヒとこ								212			
Pt［L								212			
Pt H		49， 51									
१5 H			64				$\underline{205}$				
95L			64				$\underline{205}$				
$r 1$					100						
r ld					101						
r IH					101						
r 15					101						
$r 2$					101						
red					101						
reH					101						
re 5					101						
rヨ					102						
rヨd					102						
r $\exists \mathrm{H}$					102						

Index of parameter codes

Code	Page										
						0 2 i 2 0 0 0 0 0 i 1					
$r \exists 5$					102						
$r 4$					102						
r 4 d					102						
r 4 H					102						
r 45					102						
r ${ }^{\text {P }}$				78							
r $¢$ H							188				
r 5 b							132				
$r d L$			62				174				
rFL						123					
$r r^{\prime}$		49， 51									
rFt－							207				
r IL			62				174				
$r 1 n$						122					
$r P$								$\underline{213}$			
$r P$ P			63				177				
rPヨ			63				177				
$r P 4$			63				177				
rPA								$\underline{213}$			
$r P[$		49， 51									
rPE		49， 51									
$r P F$		49， 51									
$r P G$			62				173				
rPI							173				
$r P \square$		49， 51									
$r P 5$							136				
rPt							134				
r r 5					86						
$r 5 月$				73							
r 5 \％ 5				72							
$r 5 d$							168				
r 5F								$\underline{213}$			
r 5L							176				
r 5 п				73							
r 5 П 5				74							
r $5 P$							207				

Index of parameter codes

Code	Page										
						$\begin{aligned} & \overline{0} \\ & \sum_{1}^{1} \\ & \sum_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & i \\ & i \end{aligned}$					$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 30 \\ & \text { No } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$r 5 t L$							168				
r 54							$\underline{207}$				
r t H		49， 51									
r ¢							180				
rtr							$\underline{206}$				
5月己							133				
5月ヨ							133				
5 \boldsymbol{F} F							192				
5月L							192				
5 \％r							192				
5月t								219			
5［L							168				
5¢5 1										$\underline{243}$	
$5 \pm[1$			58				$\frac{139,}{\underline{158}}$				
$5 d[$ 2			58				139				
5dd								$\underline{226}$			
5 F［			$\underline{54}$								
5 Fd							193				
5 Fr			59	79							
$51 t$			54								
5LL								$\underline{225}$			
$5 L P$			57	72							
							$\underline{206}$				
$5 \square P$				80							
5 P			61				144				
5 Pヨ			61				144				
$5 P 4$			61				144				
$5 P 5$			61				144				
5 P6			61				144				
5 P7			61				144				
5 P日			61				144				
5 P9			61				144				
5 ¢ Iロ			61				144				
5P11			61				144				
5 PI2			61				144				
5 Р1ヨ			61				144				

Index of parameter codes

Code	Page											
						\square 2 i \sum_{0}^{1} 0 0 0 i i			z 0 1 1 0 0 1 i 0 0 0 0 i i			
$5 P 14$			61				144					
5 P15			62				144					
5 5 Í			62				144					
$5 P d$		49， 51										
$5 P \square$			54									
$5 Р \square$							149					
5Pt							179					
$5 r P$			62				148					
55b								$\underline{226}$				
5td							$\underline{193}$					
5ヒП								221				
5tロ								$\underline{226}$				
5 ¢ P								$\underline{221}$				
5tr							$\underline{146}$					
5trt								$\underline{222}$				
5tt							137					
$5 \\| L$				80								
ヒ \＆I			53				$\underline{135}$					
t日己			$\underline{53}$				$\underline{135}$					
ヒ 月 ヨ			$\underline{53}$				$\underline{135}$					
t月4			$\underline{54}$				$\underline{135}$					
t $\boldsymbol{A R}$							182					
t AL		49， 51										
thr								$\underline{214}$				
ヒbE			63				158					
ヒロロ							$\underline{205}$					
tbr									$\underline{236}$			
tbrz									$\underline{236}$			
tb5								$\underline{221}$				
	39				86							
$t[t$					86							
tdI			$\underline{57}$				$\underline{138}$	$\underline{233}$				
$t d[$			$\underline{57}$				138	$\underline{233}$				
$t d[1$			58				139					
$t d[]$			58				140					
$t d n$							$\underline{205}$					

Index of parameter codes

Code	Page										
					0 0 0 0 0 0 0 0 0 0 0 10 10	0 2 \sum_{0}^{1} \sum_{0} 0 0 0 i i					
$t d 5$								228			
tFO									$\underline{236}$		
ヒFロ己									236		
EFr	40		68								
tHA								$\begin{aligned} & \underline{218}, \\ & \underline{219} \end{aligned}$			
tHd		49， 51									
thr		49， 51									
tHt								217			
tL ${ }^{\text {c }}$							182				
$t L[$							183				
tLd								$\underline{230}$			
tLIL			64				182				
ヒLIワ			64				$\underline{182}$				
tL5			60				176				
$t \cap L$								$\underline{231}$			
ヒロレ							180				
ヒロ5							168				
ヒワレ								$\underline{228}$			
tr I							179				
tr ${ }^{\text {r }}$				73							
tr［							$\underline{205}$				
tr H			64				$\underline{205}$				
tr L			64				$\underline{205}$				
tr \quad				73							
$t r P$							179				
trr		49， 51									
trt							179				
t5d							179				
ヒ 5 П								$\underline{221}$			
$t 55$							179				
$t 5 t$							179				
t5 ${ }^{\text {b }}$							$\underline{206}$				
ヒヒロ			65					$\underline{217}$			
ヒヒd己								$\underline{\underline{217}} \underline{\underline{219}}$			

Index of parameter codes

Code	Page										
					0 0 0 0 5 0 5 0 0 0 0 0 0 1 1	0 0 \sum_{1}^{1} \sum_{0}^{1} 0 0 0 i i					
ヒヒをヨ								$\underline{\underline{217},}$			
t \quad H			64								
$t \in L$			64								
ヒヒロ								$\underline{236}$			
tヒr			64				159				
$t U L$							199				
ヒUn	41			68							
$t \cup P$							205				
$t \cup 5$	41			68							
Uロ				70							
41				70							
U				70							
リヨ				70							
44				70							
45				70							
Ubr				82							
U［己				71							
U「も								$\underline{215}$			
U［P				71							
$U F_{r}$			57	72							
UIHI					91						
U IHE					92						
UIH4					$\underline{94}$						
UIL I					$\underline{91}$						
UIL					$\underline{92}$						
U IL 4					94						
UL п		49， 51									
$U L r$											$\underline{249}$
$U \cap 5$	40		$\underline{67}$								
UロHI					108						
UロH己					110						
UロHヨ					111						
UQL I					108						
UロL					110						
UロLヨ					111						

Index of parameter codes

Code	Page										
						$\begin{aligned} & \square \\ & \vdots \\ & i \\ & \sum_{0}^{1} \\ & 0 \\ & 0 \\ & 0 \\ & i \\ & i \end{aligned}$					
UロP		49, 51									
$U P L$								221			
UrES								221			
U5								$\underline{221}$			
U5 I							148				
USL								221			
U 5 P							146				
U5t								221			

[^0]: \square In 3-wire control, the assignment of inputs LI1 to LI6 shifts.

[^1]: (1) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

[^2]:

 These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

[^3]: （1）Parameter that can be modified during operation or when stopped．

[^4]: 雨
 Note : In [//O profile] (IO) configuration, LI1 cannot be accessed and if [2/3 wire control] (tCC) page $86=[3$ wire $](3 \mathrm{C}), \mathrm{LI} 2, \mathrm{C} 101$, C201, C301 and C401 cannot be accessed either.

[^5]: 0 Parameter that can be modified during operation or when stopped.

[^6]: ()

 Parameter that can be modified during operation or when stopped.

[^7]: 0
 Parameter that can be modified during operation or when stopped.

[^8]: (1) Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

[^9]: (1) Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

[^10]: () Parameter that can be modified during operation or when stopped.

[^11]: (1)Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

