

INSTRUCTION MANUAL ELECTRONIC TOTAL STATION

GTS-230W SERIES

GTS-233W

GTS-235W

GTS-236W

GTS-239W

FOREWORD

Thank you for purchasing the TOPCON Electronic Total Station, GTS-230W series. For the best performance of the instruments, please carefully read these instructions and keep them in a convenient location for future reference.

General Handling Precautions

Before starting work or operation, be sure to check that the instrument is functioning correctly with normal performance.

Do not submerge the instrument into water.

The instrument can not be submerged underwater.

The instrument is designed based on the International Standard IP66, therefore it is protected from the normal rainfall.

Setting the instrument on a tripod

When mounting the instrument on a tripod, use a wooden tripod when possible. The vibrations that may occur when using a metallic tripod can effect the measuring precision.

Installing the tribrach

If the tribrach is installed incorrectly, the measuring precision could be effected.

Occasionally check the adjusting screws on the tribrach. Make sure the base fixing lever is locked and the base fixing screws are tightened.

Guarding the instrument against shocks

When transporting the instrument, provide some protection to minimize risk of shocks.

Heavy shocks may cause the measurement to be faulty.

Carrying the instrument

Always carry the instrument by its handgrip.

Exposing the instrument to extreme heat.

Do not leave the instrument in extreme heat for longer than necessary. It could adversely affect its performance.

Sudden changes of temperature

Any sudden change of temperature to the instrument or prism may result in a reduction of measuring distance range, i.e when taking the instrument out from a heated vehicle. Let instrument acclimate itself to ambient temperature.

Battery level check

Confirm battery level remaining before operating.

Taking the battery out

It is recommended not to take the battery or external battery out during the power is on. All the data stored is possible gone at that time. So please do your assembling or taking the battery out after the power is off.

Do not hold the lower part of display unit

When you take out the instrument from a carrying case, or keep into the case, please hold the hand grip and base of the instrument. Please do not hold the lower part of the display unit.

Display for Safe Use

In order to encourage the safe use of products and prevent any danger to the operator and others or damage to properties, important warnings are put on the products and inserted in the instruction manuals.

We suggest that everyone understand the meaning of the following displays and icons before reading the "Safety Cautions" and text.

Display	Meaning
<u></u> MARNING	Ignoring or disregard of this display may lead to the danger of death or serious injury.
(CAUTION Ignoring or disregard of this display may lead to personal injury or physical damage.	

[•]Injury refers to hurt, burn, electric shock, etc.

Safety Cautions

↑ **WARNING**

•There is a risk of fire, electric shock or physical harm if you attempt to disassemble or repair the instrument yourself.

This is only to be carried out by TOPCON or an authorized dealer, only!

•Cause eye injury or blindness.

Do not look at the sun through a telescope.

•High temperature may cause fire.

Do not cover the charger while it is charging.

•Risk of fire or electric shock.

Do not use damaged power cable, plug and socket.

•Laser beams can be dangerous, and can cause eye injury's if used incorrectly.

Never attempt to repair the instrument yourself. (Only for Laser plummet type)

Cause eye injury or blindness.

Do not stare into beam. (Only for Laser plummet type)

•Risk of fire or electric shock.

Do not use a wet battery or charger.

•May ignite explosively.

Never use an instrument near flammable gas, liquid matter, and do not use in a coal mine.

•Battery can cause explosion or injury.

Do not dispose in fire or heat.

•Risk of fire or electric shock.

Do not use any power voltage except the one given on manufacturers instructions.

•Battery can cause outbreak of fire.

Do not use any other type of charger other than the one specified.

•Risk of fire.

Do not use any other power cable other than the one specified.

•The short circuit of a battery can cause a fire.

Do not short circuit battery when storing it.

[•]Physical damage refers to extensive damage to buildings or equipment and furniture.

A CAUTION

- •Do not connect or disconnect equipment with wet hands, you are at risk of electric shocks if you do!
- •Risk of injury by overturn the carrying case.
- Do not stand or sit on the carrying cases.
- •Please note that the tips of tripod can be hazardous, be aware of this when setting up or carrying the tripod.
- •Risk of injury by falling down the instrument or case.
- Do not use a carrying case with a damaged which belts, grips or latches.
- •Do not allow skin or clothing to come into contact with acid from the batteries, if this does occur then wash off with copious amounts of water and seek medical advice.
- •A plumb bob can cause an injury to a person if used incorrectly.
- •It could be dangerous if the instrument falls over, please ensure you attach a handle battery to the instrument securely.
- •Ensure that you mount the Tribrach correctly, failing to do so may result in injury if the tribrach were to fall over.
- •It could be dangerous if the instrument falls over, please check that you fix the instrument to the tripod correctly.
- •Risk of injury by falling down a tripod and an instrument.
- Always check that the screws of tripod are tightened.

User

- 1) This product is for professional use only!
 - The user is required to be a qualified surveyor or have a good knowledge of surveying, in order to understand the user and safety instructions, before operating, inspecting or adjusting.
- 2) Wear the required protectors (safety shoes, helmet, etc.) when operating.

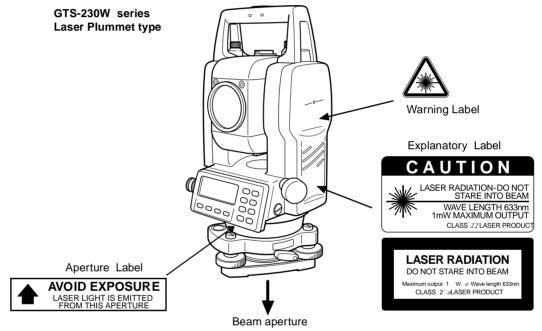
Exceptions from Responsibility

- 1)The user of this product is expected to follow all operating instructions and make periodic checks of the product's performance.
- 2)The manufacturer, or its representatives, assumes no responsibility for results of a faulty or intentional usage or misuse including any direct, indirect, consequential damage, and loss of profits.
- 3)The manufacturer, or its representatives, assumes no responsibility for consequential damage, and loss of profits by any disaster, (an earthquake, storms, floods etc.).
 - A fire, accident, or an act of a third party and/or a usage any other usual conditions.
- 4)The manufacturer, or its representatives, assumes no responsibility for any damage, and loss of profits due to a change of data, loss of data, an interruption of business etc., caused by using the product or an unusable product.
- 5)The manufacturer, or its representatives, assumes no responsibility for any damage, and loss of profits caused by usage except for explained in the user manual.
- 6)The manufacturer, or its representatives, assumes no responsibility for damage caused by wrong movement, or action due to connecting with other products.

Safety Standard for Laser Beam

(Only for GTS-230W series Plumb Laser Type)

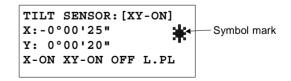
GTS-230W series plumb laser type uses the visible laser beam. The GTS-230W series plumb laser type are manufactured and sold in accordance with "Performance Standards for Light-Emitting Products" (FDA/BRH 21 CFR 1040) or "Radiation Safety of Laser Products, Equipment Classification, Requirements and User's Guide" (IEC Publication 60825-1) provided on the safety standard for laser beam.


As per the said standard, the GTS-230W series plumb laser type is classified as "Class 2 (II) Laser Products".

In case of any failure, do not disassemble the instrument. Contact TOPCON or your TOPCON dealer.

Labels

Find the labels which describes the caution and safety about the laser beam as follows in GTS-230W series.


We request you to replace it one anytime the caution labels are damaged or lost and paste a new one at the same place. You can get the labels from Topcon or your dealer.

Depending on the country where the instrument is sold, either of these labels may be found on the GTS-230W series laser plummet type.

Symbol mark while the laser is emitting.

The following symbol mark will appear at the right side of the second line.

Contents

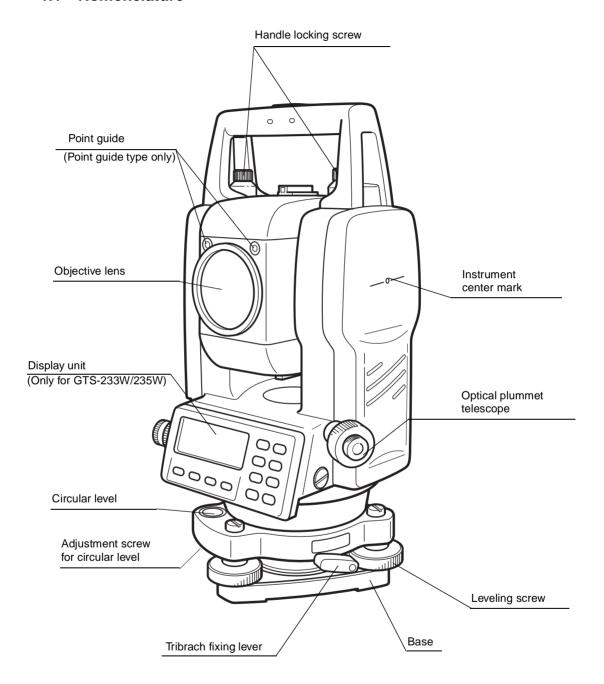
F	OREWORD	. 1
	General Handling Precautions	1
	Display for Safe Use	
	Safety Cautions	
	User	
	Exceptions from Responsibility	
	Safety Standard for Laser Beam	
	Symbol mark while the laser is emitting.	
	Contents	
	Standard Set Composition	
1	NOMENCLATURE AND FUNCTIONS	
•	1.1 Nomenclature	
	1.2 Display	
	1.3 Operating Key	
	1.4 Function Key (Soft Key)	
	1.5 Star key mode	
	1.6 Serial signal RS-232C connector	
	1.7 Bluetooth [™] communication	
	1.8 Laser Plummet ON/OFF (Only for Laser Plummet type)	. 1-9
2	PREPARATION FOR MEASUREMENT	2-1
	2.1 Power Connection	. 2-1
	2.2 Setting Instrument Up For Measurement	
	2.3 Power Switch Key ON	
	2.4 Battery Power Remaining Display	
	2.5 Vertical and Horizontal Angle Tilt Correction	
	2.6 How to Enter Alphanumeric characters	. 2-7
3	ANGLE MEASUREMENT	
3	3.1 Measuring Horizontal Angle Right and Vertical Angle	. 3-1
3	3.1 Measuring Horizontal Angle Right and Vertical Angle	. 3-1 . 3-2
3	 3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 	. 3-1 . 3-2 . 3-2
3	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting by Holding the Angle	. 3-1 . 3-2 . 3-2 . 3-2
3	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys.	. 3-1 . 3-2 . 3-2 . 3-3
3	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode	. 3-1 . 3-2 . 3-2 . 3-3 . 3-3
3	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement.	. 3-1 . 3-2 . 3-2 . 3-2 . 3-3 . 3-3
3	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode	. 3-1 . 3-2 . 3-2 . 3-3 . 3-3 . 3-4 . 3-5
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle)	. 3-1 . 3-2 . 3-2 . 3-3 . 3-3 . 3-4 . 3-5 . 3-6
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT	. 3-1 . 3-2 . 3-2 . 3-3 . 3-3 . 3-4 . 3-5 . 3-6
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction	. 3-1 . 3-2 . 3-2 . 3-3 . 3-3 . 3-4 . 3-5 . 3-6 4-1
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT	. 3-1 . 3-2 . 3-2 . 3-3 . 3-3 . 3-4 . 3-5 . 3-6 . 4-1 . 4-1
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant	. 3-1 . 3-2 . 3-2 . 3-3 . 3-3 . 3-4 . 3-5 . 3-6 4-1 . 4-1 . 4-1
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement). 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode	. 3-1 . 3-2 . 3-2 . 3-3 . 3-3 . 3-5 . 3-6 4-1 . 4-1 . 4-2 . 4-3
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement) 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O)	. 3-1 3-2 . 3-2 . 3-3 . 3-3 . 3-5 . 3-6 4-1 . 4-1 . 4-1 . 4-2 . 4-3 . 4-4
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement). 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O) 4.7 Offset Measurement	. 3-1 3-2 . 3-2 . 3-3 . 3-3 . 3-4 . 3-5 . 3-6 4-1 . 4-1 . 4-1 . 4-2 . 4-3 . 4-4
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement). 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O) 4.7 Offset Measurement 4.7.1 Angle Offset	. 3-1 3-2 . 3-2 . 3-2 . 3-3 . 3-3 . 3-5 . 3-6 4-1 . 4-1 . 4-2 . 4-3 . 4-4 . 4-5 . 4-6
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement). 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O) 4.7 Offset Measurement 4.7.1 Angle Offset 4.7.2 Distance Offset Measurement	. 3-1 3-2 3-2 3-2 3-3 3-3 3-4 3-5 3-6 4-1 4-1 4-1 4-2 4-3 4-4 4-5 4-6 4-8
	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement). 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O) 4.7 Offset Measurement 4.7.1 Angle Offset 4.7.2 Distance Offset Measurement 4.7.3 Plane Offset Measurement	. 3-1 3-2 . 3-2 . 3-3 . 3-3 . 3-3 . 3-5 . 3-6 4-1 . 4-1 . 4-2 . 4-3 . 4-4 . 4-5 . 4-6 . 4-10
4	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement). 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O) 4.7 Offset Measurement 4.7.1 Angle Offset 4.7.2 Distance Offset Measurement 4.7.3 Plane Offset Measurement 4.7.4 Column Offset Measurement	. 3-1 3-2 . 3-2 . 3-3 . 3-3 . 3-3 . 3-5 . 3-6 4-1 . 4-1 . 4-2 . 4-3 . 4-4 . 4-5 . 4-6 . 4-8 4-10 4-12
4	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement). 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O) 4.7 Offset Measurement 4.7.1 Angle Offset 4.7.2 Distance Offset Measurement 4.7.3 Plane Offset Measurement 4.7.4 Column Offset Measurement COORDINATE MEASUREMENT	. 3-1 3-2 . 3-2 . 3-3 . 3-3 . 3-5 . 3-6 4-1 . 4-1 . 4-2 . 4-3 . 4-4 . 4-5 . 4-6 . 4-12 5-1
4	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement) 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O) 4.7 Offset Measurement 4.7.1 Angle Offset 4.7.2 Distance Offset Measurement 4.7.3 Plane Offset Measurement 4.7.4 Column Offset Measurement 4.7.4 Column Offset Measurement 5.1 Setting Coordinate Values of Occupied Point	. 3-1 3-2 . 3-2 . 3-3 . 3-3 . 3-3 . 3-5 . 3-6 4-1 . 4-1 . 4-2 . 4-3 . 4-4 . 4-5 . 4-6 . 4-10 4-12 5-1
4	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys. 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement. 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement). 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O) 4.7 Offset Measurement 4.7.1 Angle Offset 4.7.2 Distance Offset Measurement 4.7.3 Plane Offset Measurement 4.7.4 Column Offset Measurement 5.1 Setting Coordinate Values of Occupied Point 5.2 Setting Height of the Instrument	. 3-1 3-2 . 3-2 . 3-3 . 3-3 . 3-3 . 3-5 . 3-6 4-1 . 4-1 . 4-2 . 4-3 . 4-4 . 4-5 . 4-6 . 4-10 5-1 . 5-2
4	3.1 Measuring Horizontal Angle Right and Vertical Angle 3.2 Switching Horizontal Angle Right/Left 3.3 Measuring from the Required Horizontal Angle 3.3.1 Setting by Holding the Angle 3.3.2 Setting a Horizontal Angle from the Keys 3.4 Vertical Angle Percent Grade(%) Mode 3.5 Repetition Angle Measurement 3.6 Buzzer Sounding for Horizontal Angle 90° Increments 3.7 Compasses (vertical angle) DISTANCE MEASUREMENT 4.1 Setting of the Atmospheric Correction 4.2 Setting of the Correction for Prism Constant 4.3 Distance Measurement (Continuous Measurement) 4.4 Distance Measurement (N-time Measurement/Single Measurement) 4.5 Fine Mode/Tracking Mode/Coarse Mode 4.6 Stake Out (S.O) 4.7 Offset Measurement 4.7.1 Angle Offset 4.7.2 Distance Offset Measurement 4.7.3 Plane Offset Measurement 4.7.4 Column Offset Measurement 4.7.4 Column Offset Measurement 5.1 Setting Coordinate Values of Occupied Point	. 3-1 3-2 3-2 3-2 3-3 3-3 3-4 3-5 3-6 4-1 4-1 4-1 4-2 4-3 4-4 4-5 4-1 4-1 5-1 5-2 5-2

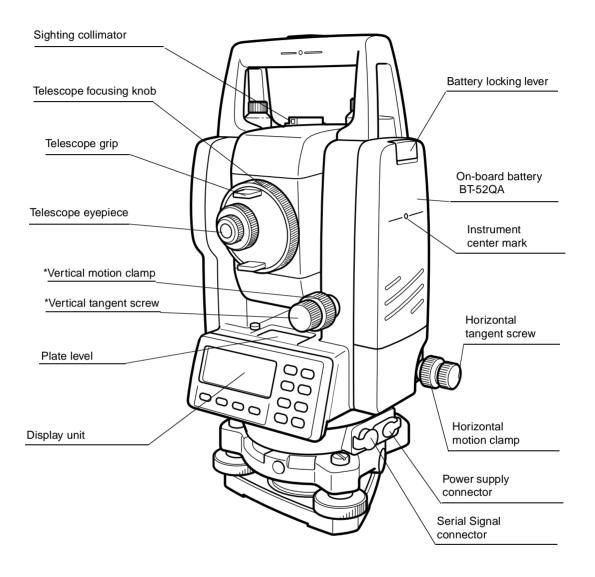
6	SPECIAL MODE (Menu Mode)	6-1
	6.1 Application Measurement (PROGRAMS)	6-2
	6.1.1 Remote Elevation measurement (REM)	. 6-2
	6.1.2 Missing Line Measurement (MLM)	6-5
	6.1.3 Setting Z Coordinate of Occupied Point	
	6.1.4 Area Calculation	
	6.1.5 Point to Line Measurement	
	6.2 Setting the GRID FACTOR	
	6.3 Setting Illumination of Display and Cross Hairs	
	6.4 Setting Mode 1	
	6.4.1 Setting Minimum Reading	
	6.4.3 Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF)	
	6.4.4 Systematic Error of Instrument Correction (only for GTS-233W/235W/236W)	
	6.4.5 Selecting Battery Type	
	6.4.6 Heater ON/OFF	
	6.4.7 Selecting Communication Port	
	6.4.8 Confirming the Bluetooth™ Device Address and Setting the PIN code	
	6.5 Setting Contrast of Display	6-23
7		
	7.1 Preparation	
	7.1.1 Selecting a File for Data Collection	
	7.1.2 Selecting a Coordinate File for Data Collection	
	7.1.3 Occupied Point and Backsight Point	
	7.2 Operational Procedure of DATA COLLECT	
	7.3.1 Angle Offset Measurement	
	7.3.2 Distance Offset Measurement	
	7.3.3 Plane Offset Measurement	
	7.3.4 Column Offset Measurement	. 7-16
	7.4 NEZ Auto Calculation	
	7.5 Editing PCODE Library [PCODE INPUT]	
	7.6 Setting Parameter of Data Collect [CONFIG.]	. 7-19
8	LAYOUT	
	8.1 Preparation	8-3
	8.1.1 Setting the GRID FACTOR	
	8.1.2 Selecting Coordinate Data File	
	8.1.3 Setting Occupied Point	
	8.1.4 Setting Backsight Point	
	8.2 Executing a Layout	
	8.3 Setting a New Point	
	8.3.2 Resection Method	
a	MEMORY MANAGER MODE	
9	9.1 Display Internal Memory Status	
	9.2 Searching Data	
	9.2.1 Measured Data Searching	
	9.2.2 Coordinate Data Searching	
	9.2.3 PCODE LIBRARY Searching	
	9.3 FILE MAINTENANCE	
	9.3.1 Rename a File	
	9.3.2 Searching Data in a File	
	9.3.3 Deleting a File	
	9.4 Coordinate Data Direct Key Input	
	9.5 Delete a Coordinate Data from a File	
	- 0.0 Edition OODE LIDION	0.12

		FOREWORD
	9.7 Data Communications. 9.7.1 Sending Data 9.7.2 Loading Data 9.7.3 Setting Parameter of Data Communications 9.7.4 Confirming the parameters for Bluetooth™ communication. 9.8 Initialization. SET AUDIO MODE	9-13 9-14 9-15 9-16 9-16
11	SETTING THE PRISM CONSTANT VALUE	. 11-1
12	SETTING ATMOSPHERIC CORRECTION	
	12.1 Calculation of Atmospheric Correction	
40	12.2 Setting of Atmospheric Correction Value	
13	CORRECTION FOR REFRACTION AND EARTH CURVATURE 13.1 Distance Calculation Formula	
4 4	POWER SOURCE AND CHARGING	
14	14.1 On-board Battery BT-52QA	
15	DETACH/ATTACH OF TRIBRACH	
	SELECTING MODE	
10	16.1 Items of the Selecting Mode	
	16.2 How to Set Selecting Mode	
17	CHECK AND ADJUSTMENT	
	17.1 Checking and adjusting of instrument constant	17-1
	17.2 Checking the Optical Axis	
	17.3 Checking/Adjusting the Theodolite Functions	
	17.3.2 Checking /Adjusting the Circular Level	
	17.3.3 Adjustment of the Vertical Cross-hair	
	17.3.4 Collimation of the Instrument	
	17.3.5 Checking / Adjusting the Optical Plummet Telescope	
	17.3.7 Adjustment of Vertical Angle 0 Datum	17-9
	17.4 How to Set the Instrument Constant Value	
	17.5 Adjustment of Compensation Systematic Error of Instrument	
18	PRECAUTIONS	
	SPECIAL ACCESSORIES	
	BATTERY SYSTEM	
	PRISM SYSTEM	
	ERROR DISPLAYS	
	SPECIFICATIONS	
	PPENDIX Appe	
	Dual Axis Compensation	
	Trocation whom onarging or otoning batteries	POLIGIA-0

Standard Set Composition

1)	GTS-230W series (with lens cap)1	each
2)	On-board Battery BT-52QA	each
3)	Battery charger BC-27BR or BC-27CR	each
	Tool kit with case [2 rod pins, screwdriver, 1 hexagonal wrench cleaning brush, silicon cloth]	set
5)	Plastic carrying case	each
6)	Sun shade	each
7)	Plastic rain cover	each
8)	Instruction manual	each


(Make sure that all of the above items are with the instrument when purchased.)


Remarks:

- 1) Battery charger BC-27CR is for AC 230V use and BC-27BR is for AC 120V use.
- 2) Plumb bob set and plumb bob hook are supplied for certain markets.

1 NOMENCLATURE AND FUNCTIONS

1.1 Nomenclature

^{*}The position of vertical motion clamp and Vertical tangent screw will differ depending on the market.

1.2 Display

Display

The display uses a dot matrix LCD which has 4 lines and 20 characters per line. In general, the upper three lines display measured data, and the bottom line displays the soft key function which changes with the measuring mode.

Contrast and Illumination

The contrast and illumination of display window are adjusted. see Chapter 6 "SPECIAL MODE (Menu Mode)" or section 1.5 "Star key mode" (page 1 -6).

Heater (Automatic)

The built-in automatic heater functions when the temperature is below 0°C. This keeps the display's speed up at temperatures lower than 0°C.To set the heater ON/OFF, see section 6.4.6 "Heater ON/OFF" (page 6 -21). The operating time will become short if a heater is used.

Example

V: 90°10'20" HR: 120°30'40"

OSET HOLD HSET P1

Angle measurement mode

V-angle : 90°10'20" H-angle :120°30'40"

Feet unit

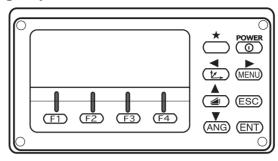
HR: 120°30'40" HD* 123.45 f VD: 12.34 f MEAS MODE S/A P1↓

Horizontal-angle : 120°30'40" Horizontal distance : 123.45ft Relative elevation : 12.34ft HR: 120°30'40" HD* 65.432 m VD: 12.345 m MEAS MODE S/A P1↓

Distance measurement mode

Horizontal-angle :120°30'40" Horizontal distance : 65.432m Relative elevation :12.345m

Feet and inch unit

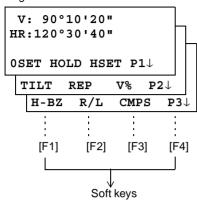

HR: 120°30'40" HD* 123.04.6f VD: 12.03.4f MEAS MODE S/A P1↓

Horizontal-angle : 120°30'40" Horizontal distance : 123ft4in6/8in Relative elevation : 12ft3in4/8in

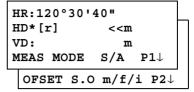
Display marks

Display	Contents	Display	Content
V	V-angle	*	EDM working
HR	H-angle right	m	Meter unit
HL	H-angle left	f	Feet and inch unit
HD	Horizontal distance	*	Bluetooth™ is under com- munication.
VD	Relative elevation		(This symbol mark of the Blue-
SD	Slope distance		tooth [™] will be displayed above the battery mark when the total station is in the state which can be communicated by Bluetooth [™] .)
N	N coordinate		
Е	E coordinate		
Z	Z coordinate		

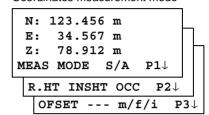
1.3 Operating Key



Keys	Name of Key	Function
*	Star key	Star key mode is used for each presetting or displaying as follows. 1 Contrast of the display 2 Reticle illumination 3 Back Light 4 Tilt correction 5 Point guide (Only for point guide model) 6 Set audio mode
\bowtie	Coordinate meas.key	Coordinate measurement mode
4	Distance meas.key	Distance measurement mode.
ANG	Angle meas.key	Angle measurement mode
POWER	Power source key	ON/OFF of power source
MENU	Menu key	Switches menu mode and normal mode. To set application measurements and adjust in the menu mode.
ESC	Escape key	 Returning to the measurement mode or previous layer mode from the mode set. To be DATA COLLECTION mode or LAYOUT mode directly from the normal measurement mode. It is also possible to use as Record key in normal measurement mode. To select function of Escape key, see Chapter 16 "SELECTING MODE"
ENT	Enter key	Press at the end of inputting values.
F1-F4	Soft key (Function key)	Responds to the message displayed.


1.4 Function Key (Soft Key)

The Soft Key message is displayed at the bottom line of display. The functions are according to the displayed message.


Angle measurement mode

Distance measurement mode

Coordinates measurement mode

Angle measurement

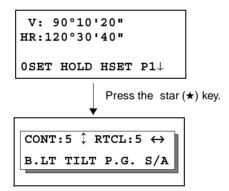
Page	Soft key	Display mark	Function
	F1	0SET	Angle of Horizontal is set to 0°00'00"
1	F2	HOLD	Hold the horizontal angle
'	F3	HSET	Sets a required horizontal angle by entering numerals.
	F4	P1↓	The function of soft keys is shown on next page (P2).
	F1	TILT	Setting Tilt Correction If ON, the display shows tilt correction value.
2	F2	REP	Repetition angle measurement mode
	F3	V%	Vertical angle percent grade(%) mode
	F4	P2↓	The function of soft keys is shown on next page (P3).
	F1	H-BZ	Sets the buzzer sound for every horizontal angle 90°
3	F2	R/L	Switches R/L rotation of horizontal angle.
3	F3	CMPS	Switches the COMPASS ON/OFF of vertical angle.
	F4	P3↓	The function of soft keys is shown on next page (P1).

Distance measurement mode

	F1	MEAS	Start measuring
1	F2	MODE	Sets a measuring mode, Fine/Coarse/Tracking
'	F3	S/A	Select set audio mode
	F4	P1↓	The function of soft keys is shown on next page (P2).
	F1	OFSET	Select Off-set measurement mode
2	F2	S.O	Select stake out measurement mode
	F3	m/f/i	Switches meter, feet or feet and inch unit.
	F4	P2↓	The function of soft keys is shown on next page (P1).

Coordinate measurement mode

	F1	MEAS	Start measuring
1	F2	MODE	Sets a measuring mode, Fine/Coarse/Tracking
'	F3	S/A	Select set audio mode
	F4	P1↓	The function of soft keys is shown on next page (P2).
	F1	R.HT	Sets a prism height by input values.
2	F2	INSHT	Sets an instrument height by input values.
	F3	OCC	Sets an instrument coordinate point by input values.
	F4	P2↓	The function of soft keys is shown on next page (P3).
	F1	OFSET	Select Off-set measurement mode
3	F3	m/f/i	Switches meter, feet or feet and inch unit.
	F4	P3↓	The function of soft keys is shown on next page (P1).


1.5 Star key mode

Press the (★) key to view the instrument options.

The following instrument options can be selected from the (*):

- 1. Adjustment the contrast of the display (0 to 9 steps)
- 2. Adjustment the reticle illumination (1 to 9 steps) [or]
- 3. Turn the backlight of the display ON/OFF [F1]
- 4. Setting Tilt Correction [F2]
- 5. Turn the Point Guide option ON/OFF [F3] (Only for point guide type)
- 6. S/A (set audio) mode [F4]

Note: Star key mode does not function when the same function as the function assigned to the star key mode is performed from the main routine.

key	Display mark	Function
F1	B.LT	Turn the backlight of the display ON/OFF
F2	TILT	Setting Tilt Correction If ON, the display shows tilt correction value.
F3	P.G.	Turn the Point Guide option ON/OFF (Only for point guide type)
F4	S/A	The light acceptance quantity level for the EDM (SIGNAL), the atmospheric correction value (PPM) and correction value of prism constant (PSM) are displayed.
or 🔻	CONT	Adjust the contrast of the display (0 to 9 steps)
⋖ or ▶	RTCL	Adjust the Reticle Illumination (1 to 9 steps) ON/OFF of the reticle illumination is linked with ON/OFF of the back light.

Adjustment the contrast (0 to 9) of the display (CONT)

This enable you to adjust the contrast of the display. Press the up or down arrow keys to adjust the contrast.

Adjustment the reticle illumination (1 to 9) (RTCL)

This enable you to adjust the reticle illumination.

Turn the display back light ON/OFF

To turn the back light ON, press the [F1] key. Press [F1] again to turn the back light OFF.

Tilt correction

The tilt setting mode performed here will not be memorized after powering OFF. To set TILT correction in the initialized setting (it is memorized after powering OFF), see Section 6.4.3 "Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF)".

Set audio mode

The light acceptance quantity level (Signal level) is displayed in this mode. When reflected light from the prism is received, a buzzer sounds. This function is good for easy collimation when the target is difficult to find.

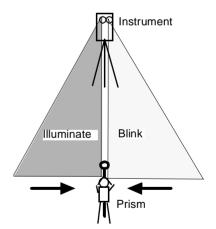
Press the [F4] key to view the set audio screen.

- (1) To stop the buzzer, refer to Chapter 16 "SELECTING MODE" (page 16 -1).
- (2) Also, it is possible to display the signal level in Distance Measuring Mode.

The temperature, pressure, PPM, and PSM can be viewed in set audio mode. Refer to Chapter 10 "SET AUDIO MODE"(page 10 -1), Chapter 11 "SETTING THE PRISM CONSTANT VALUE"(page 11 -1) and Chapter 12 "SETTING ATMOSPHERIC CORRECTION"(page 12 -1), for further instructions.

Point guide (Only for Point guide type)

Fast and simple to use, the Point Guide feature is useful when doing stake out work. The LED's for the Point Guide System on the instrument telescope assist the rod person to get on-line. When using the Point Guide System, the battery life will be approximately 8 hours at +20 °C (+68 °F).


Turning the Point Guide ON and Operation:

Press the [F3] key to turn ON the Point Guide LEDs. Looking at the objective lens of the telescope, the right LED will blink and the left LED will stay lit.

The Point Guide should be used within a distance of 100 meters (328 feet). The quality of its results will depend on the weather conditions and the user's eyesight.

The goal of the rod person is to look at both LED's on the instrument and move the prism on-line until both LED's are equally bright.

If the solid LED is brighter, move right. If the blinking LED is brighter, move left.

Once you have determined that both of the LED's are equally bright, you are on-line with the instrument.

Turning the Point Guide OFF:

To turn OFF the Point Guide System, press the [F3] key again.

1.6 Serial signal RS-232C connector

The serial signal connector is used for connecting the GTS-230W series with a computer or TOPCON Data Collector, which enables the computer to receive measured data from the GTS-230W series or to send preset data of horizontal angle, etc. to it.

Refer to 6.4.7 "Selecting Communication Port" (page 6 -22), select [RS-232C] communication.

• The following data will be output at each mode.

Mode	Output
Angle mode (V,HR or HL)	V,HR (or HL)
Horizontal distance mode (HR, HD, VD)	V,HR, HD, VD
Slope distance mode (V, HR,SD)	V,HR, SD,HD
Coordinate mode	N, E, Z, HR (or V,HR,SD,N,E,Z)

- The display and the output at the coarse mode are the same as the contents above.
- Output at the tracking mode is displayed as distance data only.

The details necessary for the connection with the GTS-230W Series are obtained from its Interface Manual which is optionally available. Please refer to the manual.

1.7 Bluetooth™ communication

By built-in Bluetooth, it can communicate with DK-7W or other Bluetooth instruments by wireless, without connecting a serial signal connector.

1.8 Laser Plummet ON/OFF (Only for Laser Plummet type)

Laser plummet option will help you to center the instrument easily onto the measurement point. There are two ways to turn on/off of laser plummet option as follows.

On/Off of laser plummet option by Soft Key in Tilt Correction

	Operating procedure	Option	Display
1	Press the [F4] key to get the function page 2.	[F4]	V: 90°10'20" HR: 120°30'40"
			0SET HOLD HSET P1↓
			TILT REP V% P2↓
2	Press the [F1](TILT) key. In case ON is already selected, the display shows tilt correction value.	[F1]	TILT SENSOR: [XY-ON] X:-0°00'25" Y: 0°00'20" X-ON XY-ON OFF L.PL
3	Press the [F4](L.PL) key. By pressing the [F4](L.PL) key, the laser plummet will be turned On / Off alternately.	[F4]	TILT SENSOR: [XY-ON] X:-0°00'25" Y: 0°00'20" X-ON XY-ON OFF L.PL
•	Symbol mark while the laser is emitting. The following symbol mark will appear at the right signs.	de of the secon	d line
	TILT SENSOR X:-0°00'25" Y: 0°00'20" X-ON XY-ON (: [XY-ON] #	a iiio.

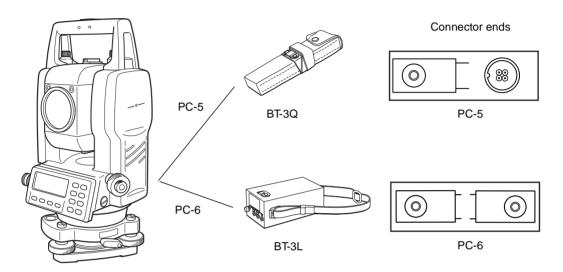
On/Off of laser plummet option from MENU mode

	Operating procedure	Operation	Display
1	Press the [MENU] key.	[MENU]	MENU 1/3 F1:DATA COLLECT F2:LAYOUT F3:MEMORY MGR. P↓
2	Press the [F4](P \downarrow) key to get the menu on page 2.	[F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:LASER PLUMMET P↓
3	Press the [F3] key.	[F3]	LASER PLUMMET [OFF] F1:ON F2:OFF
4	Press the [F1] or [F2] key to turn on or off the laser plummet option.	[F1] or [F2]	LASER PLUMMET [ON] F1:ON F2:OFF

Laser Plummet auto-cut off function

The laser plummet will be turned off automatically after 1 to 99 minutes (Default :3 minutes). It is also possible to stop the auto-cut off function.

Refer to Chapter 16 "SELECTING MODE" (page 16 -1) to change the time or to invalidate the function.


2 PREPARATION FOR MEASUREMENT

2.1 Power Connection

(unnecessary if on-board Ni-MH battery BT-52QA is used)

See below for connecting the external battery pack.

- Battery pack BT-3Q
 - Power cord , PC-5 is used.
- Large capacity battery pack BT-3L Power cord PC-6 is used.

Note: BT-32Q on-board (Ni-cd) battery can be also available.

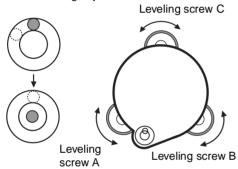
To use BT-32Q (Ni-cd) battery, it is required to change battery type in selecting mode, see Section 6.4.5 "Selecting Battery Type".

2.2 Setting Instrument Up For Measurement

Mount the instrument to the tripod. Level and center the instrument precisely to insure the best performance. Use tripods with a tripod screw of 5/8 in. diameter and 11 threads per inch, such as the Type E TOPCON wide- frame wooden tripod.

Reference: Leveling and Centering the Instrument

1. Setting up the Tripod

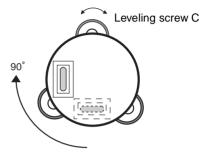

First, extend the extension legs to suitable lengths and tighten the screws on their midsections.

2. Attaching the Instrument on the Tripod Head

Place the instrument carefully on the tripod head and slide the instrument by loosening the tripod screw. If the plumb bob is positioned right over the center of the point, slightly tighten the tripod screw.

3. Roughly Leveling the Instrument by Using the Circular Level

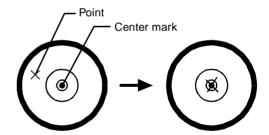
1 Turn the leveling screws A and B to move the bubble in the circular level. The bubble is now located on a line perpendicular to a line running through the centers of the two leveling screws being adjusted.


2 Turn the leveling screw C to bring the bubble to the center of the circular level.

4. Centering by Using the Plate Level

1 Rotate the instrument horizontally by using the Horizontal motion/clamp screw and place the plate level parallel with the line connecting leveling screws A and B, and then bring the bubble to the center of the plate level by turning leveling screws A and B.

2 Rotate the instrument 90° (100g) around its vertical axis and turn the remaining leveling screw or C to center the bubble once more.

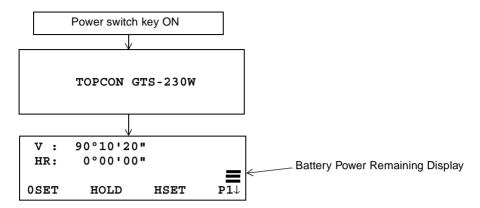


3 Repeat the procedures 1 and 2 for each 90° (100g) rotation of the instrument and check whether the bubble is correctly centered for all four points.

5. Centering by Using the Optical Plummet Telescope

Adjust the eyepiece of the optical plummet telescope to your eyesight.

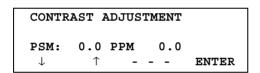
Slide the instrument by loosening the tripod screw, place the point on the center mark, and then tighten the tripod screw. Sliding the instrument carefully not to rotate that allows you to get the least dislocation of the bubble.



6. Completely Leveling the Instrument

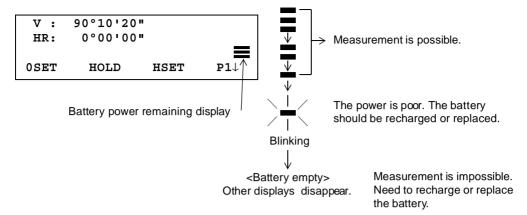
Leveling the instrument precisely in a similar way to 4. Rotate the instrument and check to see that the bubble is in the center of the plate level regardless of telescope direction, then tighten the tripod screw hard.

2.3 Power Switch Key ON


- 1 Confirm the instrument is leveled.
- **2** Turn the power switch ON.

• Confirm the battery power remaining display. Replace with charged battery or charge when battery level is low or indicates "Battery empty". see Section 2.4 "Battery Power Remaining Display".

Contrast adjustment


You can confirm prism constant value (PSM) , atmospheric correction value (PPM) and you can also adjust the contrast of the display when the instrument is turned on. To display this screen, see Chapter 16 "SELECTING MODE" ..

This enables you to adjust the brightness by pressing the $[F1](\downarrow)$ or $[F2](\uparrow)$ key. To memorize the setting value after powering off, press [F4](ENTER) key.

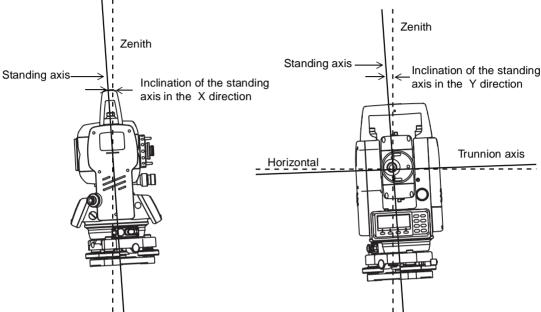
2.4 Battery Power Remaining Display

Battery power remaining display indicates the power condition.

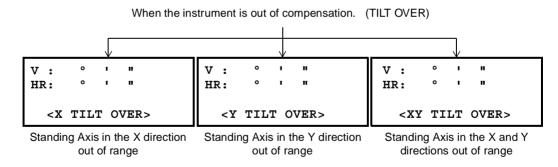
Note: 1 The battery operating time will vary depending on the environmental conditions such as ambient temperature, charging time, the number of times of charging and discharging etc. It is recommended for safety to charge the battery beforehand or to prepare spare full charged batteries.

- 2 For general usage of the battery, see Chapter 14 "POWER SOURCE AND CHARGING"
- 3 The battery power remaining display shows the power level regarding to the measurement mode now operating.

The safety condition indicated by the battery power remaining display in the angle measurement mode does not necessarily assure the battery's ability to be used in the distance measurement mode.


It may happen that the mode change from the angle mode to the distance mode will stop the operation because of insufficient battery power for the distance mode which consumes more power than angle mode.

2.5 Vertical and Horizontal Angle Tilt Correction


(GTS-239W has vertical angle tilt correction only.)

When the tilt sensors are activated, automatic correction of vertical and horizontal angle for mislevelment is displayed.

To ensure a precise angle measurement, tilt sensors must be turned on. The display can also be used to fine level the instrument. If the (TILT OVER) display appears the instrument is out of automatic compensation range and must be leveled manually.

- GTS-230W compensates both the vertical angle and the horizontal angle readings due to inclination of the standing axis in the X and Y directions.
- For more information about dual axis compensation, refer to APPENDIX 1 "Dual Axis Compensation".

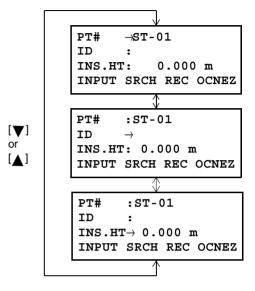
- To set auto tilt correction from the moment that power is on, see Section 6.4.3"Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF)".
- The display of Vertical or Horizontal angle is unstable when instrument is on an unstable stage or a windy day. You can turn off the auto tilt correction function of V/H angle in this case.

Setting Tilt Correction by Soft Key
 To enable you to select tilt ON/OFF function. setting is not memorized after power is OFF.
 [Example] Setting X,Y Tilt OFF

	Operating procedure	Option	Display
1	Press [F4] key to get the function page 2.	[F4]	V: 90°10'20" HR: 120°30'40"
			0SET HOLD HSET P1↓ TILT REP V% P2↓
2	Press [F1](TILT) key. In case ON is already selected, the display shows tilt correction value.	[F1]	TILT SENSOR: [XY-ON] X:-0°00'25" Y: 0°00'20" X-ON XY-ON OFF
3	Press [F3](OFF) key.	[F3]	TILT SENSOR: [OFF]
4	Press [ESC] key.	[ESC]	X-ON XY-ON OFF V: 90°10'20" HR: 120°30'40" OSET HOLD HSET P1↓
•	The setting mode performed here will not be memor	•	•

The setting mode performed here will not be memorized after poweringOFF. To setTILT correction in the initialized setting (it is memorized after powering OFF), see Section 6.4.3"Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF)".

2.6 How to Enter Alphanumeric characters


This enables you to enter alphanumeric characters such as the instrument height, prism height, occupied point, backsight point etc..

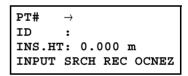
How to select a item

[Example setting] Occupied point in the data collection mode.

The arrow indicates a item to enter.

The arrow line moves up or down when the $[\ \ \ \]$ key or $[\ \ \ \]$ key is pressed.

How to enter characters


- 1 Move the arrow to enter a item using the [▼] or [▲] key.
- 2 Press the [F1] (INPUT) key. The arrow changes to the equal (=) .

The characters are displayed on the bottom line.

3 Press the ▼[] or ▲ [] key to select a page.

4 Press the soft key to select a group of characters.

Example: [F2](QRST) key is pressed.


```
PT# = ID : INS.HT: 0.000 m 1234 5678 90.- [ENT]

ABCD EFGH IJKL [ENT]

MNOP QRST UVWX [ENT]

YZ+#[SPC] [CLR] [ENT]
```

```
PT# =
ID :
INS.HT: 0.000 m
(Q) (R) (S) (T)
```

5 Press soft key to select a character.

Example: [F4](T) key is pressed.

Select next character in the same manner.

6 Press [F4](ENT) key. The arrow moves to next item.

Select next character in the same manner.

PT# =T
ID :
INS.HT: 0.000 m
MNOP QRST UVWX [ENT]

PT# =TOPCON-1 ID :

INS.HT: 0.000 m
MNOP QRST UVWX [ENT]

PT# :TOPCON-1

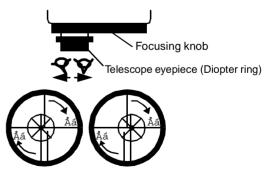
 $\mathtt{ID} \qquad \rightarrow \qquad$

INS.HT: 0.000 m
INPUT SRCH REC OCNEZ

 To correct a character, move the cursor to correct character by pressing [◄] or [▶] key and enter again.

3 ANGLE MEASUREMENT

3.1 Measuring Horizontal Angle Right and Vertical Angle


Make sure the mode is in Angle measurement.

	Operating procedure	Operation	Display
1	Collimate the 1st target (A).	Collimate A	V: 90°10'20" HR: 120°30'40"
2	Set horizontal angle of target A at 0° 00' 00".		0SET HOLD HSET P1↓
	Press the [F1](0 set) key and press the [F3](YES) key.	[F1]	H ANGLE 0 SET > OK?
			[YES] [NO]
		[F3]	V: 90°10'20" HR: 0°00'00"
			0SET HOLD HSET P1↓
3	Collimate the 2nd target (B). The required V/H angle to target B will be displayed.	Collimate B	V: 98°36'20" HR: 160°40'20"
			0SET HOLD HSET P2↓

Reference: How to Collimate

- 1 Point the telescope toward the light Turn the diopter ring and adjust the diopter so that the cross hairs are clearly observed.
 - (Turn the diopter ring toward you first and then backward to focus.)

 Aim the target at the peak of the triangle mark of the sighting collimator. Allow a
- 2 Aim the target at the peak of the triangle mark of the sighting collimator. Allow a certain space between the sighting collimator and yourself for collimating.
- 3 Focus the target with the focusing knob.
 - *If parallax is created between the cross hairs and the target when viewing vertically or horizontally while looking into the telescope, focusing is incorrect or
 - diopter adjustment is poor. This adversely
 - affects precision in measurement or survey
 - Eliminate the parallax by carefully focusing
 - and using diopter adjustment.

3.2 Switching Horizontal Angle Right/Left

Make sure the mode is Angle measurement.

	Operating procedure	Operation	Display
1	Press the [F4](\downarrow) key twice to get the function on page 3.	[F4] twice	V: 90°10'20" HR: 120°30'40"
			0SET HOLD HSET P1↓
			TILT REP V% P2↓
			H-BZ R/L CMPS P3↓
2	Press the [F2](R/L) key. The mode Horizontal angle Right (HR) switches to Left (HL) mode.	[F2]	V: 90°10'20" HL: 239°29'20"
3	Measure as HL mode.		H-BZ R/L CMPS P3↓
•	Every time pressing the [F2](R/L) key, HR/HL mode	switches.	

3.3 Measuring from the Required Horizontal Angle

3.3.1 Setting by Holding the Angle

Make sure the mode is angle measurement.

Operating procedure	Operation	Display
et the required horizontal angle, using prizontal tangent screw.	Display angle	V: 90°10'20" HR: 130°40'20"
		0SET HOLD HSET P1↓
ress the [F2](HOLD) key.	[F2]	H ANGLE HOLD HR= 130°40'20" > SET ? [YES] [NO]
ollimate the target.	Collimate	
ress the [F3](YES) key to finish holding the prizontal angle.*1) ne display turns back to normal angle easurement mode.	[F3]	V : 90°10'20" HR: 130°40'20" OSET HOLD HSET P1↓
	et the required horizontal angle, using prizontal tangent screw. ess the [F2](HOLD) key. collimate the target. ess the [F3](YES) key to finish holding the prizontal angle.*1) the display turns back to normal angle	bet the required horizontal angle, using Display angle orizontal tangent screw. The property of the required horizontal angle, using Display angle orizontal tangent screw. The property of the required horizontal angle orizontal angle orizontal angle. The property of the required horizontal angle orizontal angle orizontal angle.

³⁻²

3.3.2 Setting a Horizontal Angle from the Keys

Make sure the mode is Angle measurement.

	Operating procedure	Operation	Display
1	Collimate the target.	Collimate	V: 90°10'20" HR: 170°30'20"
			0SET HOLD HSET P1↓
2	Press the [F3](HSET) key.	[F3]	H ANGLE SET HR:
			INPUT ENTER
			1234 5678 90[ENT]
3	Input the required horizontal angle by using keys. *1)	[F1] 70.4020	V: 90°10'20" HR: 70°40'20"
	For example :70°40'20"	[F4]	0SET HOLD HSET P1↓
	When completed, normal measuring from the required Horizontal angle is possible.		
*1)	To enter Alphanumeric characters, see Section 2.6 "	How to Enter A	lphanumeric characters".

3.4 Vertical Angle Percent Grade(%) Mode

Make sure the mode is Angle measurement.

	Operating procedure	Operation	Display
1	Press the [F4](\downarrow) key to get the function on page 2.	[F4]	V: 90°10'20" HR: 170°30'20"
			OSET HOLD HSET P1↓ TILT REP V% P2↓
2	Press the [F3](V%) key. *1)	[F3]	V : -0.30 % HR: 170°30'20" TILT REP V% P1↓

^{*1)} Every time pressing the [F3](V%) key, the display mode switches.

When the measurement is carried out over ±45° (±100%) from the horizontal, the display shows

3.5 Repetition Angle Measurement

• Repetition angle measurement can be done by horizontal angle right measurement mode.

Make sure the mode is Horizontal Angle Right measurement.

	Operating procedure	Operation	Display
1	Press the [F4](\downarrow) key to get the function on page 2.	[F4]	V : 90°10'20" HR: 170°30'20" 0SET HOLD HSET P1↓ TILT REP V% P2↓
2	Press the [F2](REP)key.	[F2]	REPETITION ANGLE > OK? [YES][NO]
3	Press the [F3](YES) key.	[F3]	REP-ANGLE COUNT[0] Ht: 0°00'00" Hm: OSET V/H REL HOLD
4	Collimate the target A and press the [F1] (0SET) key.	Collimate A [F1]	REPETITION ANGLE INITIALIZE > OK? [YES][NO]
5	Press the [F3] (YES) key.	[F3]	REP-ANGLE COUNT[0] Ht: 0°00'00" Hm: OSET V/H REL HOLD
6	Collimate the target B using the horizontal clamp and tangent screw. Press the [F4](HOLD) key.	Collimate B [F4]	REP-ANGLE COUNT[1] Ht: 45°10'00" Hm: 45°10'00" OSET V/H REL HOLD
7	Recollimate target A using the horizontal clamp and tangent screw, and press the [F3](REL)key.	Collimate A [F3]	REP-ANGLE COUNT[1] Ht: 45°10'00" Hm: 45°10'00" OSET V/H REL HOLD
8	Recollimate target B using the horizontal clamp and tangent screw, and press the [F4](HOLD) key.	Collimate B [F4]	REP-ANGLE COUNT[2] Ht: 90°20'00" Hm: 45°10'00" OSET V/H REL HOLD
9	Repeat 7 to 8 to measure the desired number of repetitions.		REP-ANGLE COUNT[4] Ht: 180°40'00" Hm: 45°10'00" OSET V/H REL HOLD [Example] 4 measurement

10 To return to the normal angle mode, press the [F2](V/H) key or [ESC] key.	[ESC] or [F2]	REPETITION ANGLE Exit > OK? [YES][NO]
11 Press the [F3](YES) key.	[F3]	V: 90°10'20" HR: 170°30'20" OSET HOLD HSET P1↓
Horizontal angle can be accumulated up to		

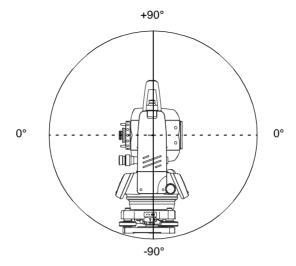
 Horizontal angle can be accumulated up to (3600°00'00" – minimum reading) (horizontal angle right).

In case of 5 second reading, horizontal angle can be accumulated up to +3599°59'55".

• Error will be displayed when the results differ from first measurement by more than ±30".

3.6 Buzzer Sounding for Horizontal Angle 90° Increments

When the horizontal angle falls in the range of less than \pm 1° of 0°, 90°, 180° or 270°, the buzzer sounds. Buzzer stops only when the horizontal angle is adjusted to 0°00'00", 90°00'00", 180°00'00" or 270°00'00".


This setting is not memorized after powering off. Refer to 16 "SELECTING MODE" to set the initial setting (memorized after powering off).

Make sure the mode is Angle measurement.

	Operating procedure	Operation	Display
1	Press the [F4](\downarrow) key twice to get the function on page 3.	[F4] twice	V: 90°10'20" HR: 170°30'20"
			0SET HOLD HSET P1 \downarrow H-BZ R/L CMPS P3 \downarrow
2	Press the [F1](H-BZ) key. The data previously set is shown.	[F1]	H-ANGLE BUZZER [OFF]
			[ON] [OFF] ENTER
3	Press the [F1](ON) key or [F2](OFF) key to select the buzzer ON/OFF.	[F1] or [F2]	H-ANGLE BUZZER [ON]
			[ON] [OFF] ENTER
4	Press the [F4](ENTER) key.	[F4]	V: 90°10'20" HR: 170°30'20"
			0SET HOLD HSET P1↓

3.7 Compasses (vertical angle)

Vertical angle is displayed as shown below.

	Operating procedure	Operation	Display
1	Press the [F4](\downarrow) key twice to get the function on page 3.	[F4] twice	V: 98°10'20" HR: 170°30'20"
			0SET HOLD HSET P1↓ H-BZ R/L CMPS P3↓
2	Press the [F3](CMPS) key. *1)	[F3]	V : - 8°10'20" HR: 170°30'20"
			H-BZ R/L CMPS P3↓

^{*1)} Every time pressing the [F3](CMPS) key, the display mode switches.

4 DISTANCE MEASUREMENT

4.1 Setting of the Atmospheric Correction

When setting the atmospheric correction, obtain the correction value by measuring the temperature and pressure. Refer to Section 12.2 "Setting of Atmospheric Correction Value".

4.2 Setting of the Correction for Prism Constant

Topcon's prism constant value is 0. Set correction for prism at 0. If the prism is of another manufacture, the appropriate constant shall be set beforehand. Refer to Chapter 11 "SETTING THE PRISM CONSTANT VALUE". The setting value is kept in the memory even after power is off.

4.3 Distance Measurement (Continuous Measurement)

Make sure the mode displays angle measurement.

	Operating procedure	Operation	Display
1	Collimate the center of prism.	Collimate P	V : 90°10'20" HR: 120°30'40"
2	Press the [<u>✓</u>] key. Distance measurement starts. *1),2)	[🚄]	HR: 120°30'40" HD*[r] << m VD: m MEAS MODE S/A P1↓
	The measured distances are shown. *3)~*5)		HR: 120°30'40" HD* 123.456 m VD: 5.678 m MEAS MODE S/A P1↓
•	Pressing the [[🚄]	V: 90°10'20" HR: 120°30'40" SD* 131.678 m MEAS MODE S/A P1↓

- *1) When EDM is working, the "* " mark appears in the display.
- *2) To change mode from Fine to Coarse or Tracking, refer to section 4.5 "Fine Mode/Tracking Mode/Coarse Mode".
 - To set the distance measurement when the instrument is powered on, refer to Chapter 16 "SELECTING MODE".
- *3) The distance unit indicator "m" (for meter), "f" (for feet or feet inch) appears and disappears alternatively with buzzer sounds at every renewal of distance data.
- *4) Measurement may repeat automatically in the instrument if the result is affected by shimmer etc..
- *5) To return to the normal measuring angle mode from a distance measuring mode, press the [ANG] key.
- *6) It is possible to choose the display order (HR, HD, VD) or(V, HR, SD) for initial measuring distance mode. Refer to Chapter 16 "SELECTING MODE".

4.4 Distance Measurement (N-time Measurement/Single Measurement)

When the number of times measurement is preset, the GTS-230W series measures the distance the set number of times. The average distance will be displayed.

When presetting the number of times as 1, it does not display the average distance, because of single measurement. Single measurement is set at the factory.

Make sure the mode displays angle measurement.

	Operating procedure	Operation	Display
1	Collimate the center of prism.		V: 90°10'20" HR: 120°30'40"
2	Press the [[🚄]	HR: 120°30'40" HD*[r] << m VD: m MEAS MODE S/A P1↓
3	Press [F1](MEAS) key while continuous measuring is exceeding. *2) The average value is displayed and "*" mark disappears.	[F1]	HR: 120°30'40" HD*[n] << m VD: m MEAS MODE S/A P1↓
•	While EDM is working, press [F1](MEAS) key again, the mode will be changed to continuous measuring mode.		HR: 120°30'40" HD: 123.456 m VD: 5.678 m MEAS MODE S/A P1↓

^{*1)} It is possible to set the measurement mode for N-times measurement mode or continuous measurement mode when the power is turned on. Refer to Chapter 16 "SELECTING MODE".

^{*2)} For setting the number of times (N-times) in the measurement, refer to Chapter 16 "SELECTING MODE".

• Choose meter /feet / feet+inch unit by soft key

It is possible to change the unit for distance measurement mode by soft key. This setting is not memorized after power off. Refer to 16 "SELECTING MODE" to set at the initial setting (memorized after power off).

Operating procedure	Operation	Display
Press the [F4](P1↓) key to get the function on page 2	[F4]	HR: 120°30'40" HD* 2.000 m VD: 3.000 m MEAS MODE S/A P1↓ OFSET S.O m/f/i P2↓
 Every time pressing the [F3](m/f/i) key, the display unit will be changed. Every time pressing the [F3](m/f/i) key, the unit mode switches. 	[F3]	HR: 120°30'40" HD* 6.560 f VD: 9.845 f OFSET S.O m/f/i P2↓

4.5 Fine Mode/Tracking Mode/Coarse Mode

This setting is not memorized after power is off. Refer to Chapter 16"SELECTING MODE" to set at the initial setting (memorized after power is off).

•Fine Mode : This is a normal distance measuring mode.

The unit to be displayed: 0.2mm or 1mm. (0.001ft or 0.005ft)

Measurement time 0.2mm mode: approx. 2.8 sec. 1mm mode: approx. 1.2 sec.

•Tracking Mode : This mode measures in shorter time than in fine mode.

It is very useful when tailing the moving object or carrying out stake-out work.

The unit to be displayed: 10mm Measuring time: approx. 0.4 sec.

•Coarse Mode : This mode measures in shorter time than in fine mode.

The unit to be displayed: 10mm or 1mm Measuring time: approx. 0.7 sec.

	Operating procedure	Operation	Display	
			HR: 120°30'40" HD* 123.456m VD: 5.678m MEAS MODE S/A P1↓	
1	Press the [F2](MODE) key from the distance measuring mode.*1)	[F2]	HR: 120°30'40" HD* 123.456m	
	The initial character (F/T/C) of set mode is displayed . (F:Fine, T:Tracking, C:Coarse)		VD: 5.678m FINE TRACK COARSE F	
2	Press the [F1](FINE) key, [F2](TRACK) key, or [F3](COARSE) key.	[F1]~[F3]	HR: 120°30'40" HD* 123.456m VD: 5.678m MEAS MODE S/A P1↓	
*1	*1) To cancel the setting, press the [ESC] key.			

4.6 Stake Out (S.O)

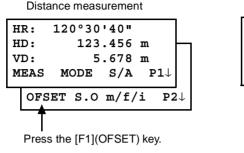
The difference between the measured distance and the input stake out distance is displayed.

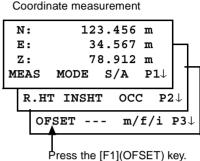
Measured distance — Stake out distance = Displayed value

 In stake out operation, you can select either horizontal distance (HD), relative elevation (VD) and slope distance (SD)

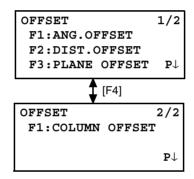
	Operating procedure	Operation	Display
1	Press the [F4](\downarrow) key in the distance measuring mode to get the function on page 2.	[F4]	HR: 120°30'40" HD* 123.456 m VD: 5.678 m MEAS MODE S/A P1↓ OFSET S.O m/f/i P2↓
2	Press the [F2](S.O) key.	[F2]	STAKE OUT HD: 0.000 m
	The data previously set is shown.		HD VD SD
3	Select the measuring mode by pressing the [F1] to [F3] key.	[F1]	STAKE OUT HD: 0.000 m
	Example : Horizontal distance		INPUT ENTER 1234 5678 90[ENT]
4	Enter the distance for stake out. *1)	[F1] Enter data [F4]	STAKE OUT HD: 100.000 m INPUT ENTER
5	Collimate the target (Prism).	Collimate P	HR: 120°30'40" dHD*[r] << m
	Measuring starts.		$\begin{array}{cccc} \text{VD:} & \text{m} \\ \text{MEAS MODE} & \text{S/A} & \text{P1} \downarrow \end{array}$
6	The difference between the measured distance and the stake out distance is displayed. Move the target until the difference becomes 0m.		HR: 120°30'40" dHD* 23.456 m VD: 5.678 m MEAS MODE S/A P1↓

[•] To return to normal distance measurement mode, stake out distance to "0" m or turn the power off.

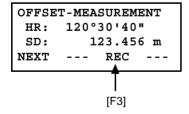

4.7 Offset Measurement


There are four offset measurement modes in the Offset Measurement.

- Angle offset
- Distance offset
- Plane offset
- Column offset


To show the offset measurement menu, press the [OFSET] soft key from distance or coordinate measurement mode.

Offset Measurement Menu

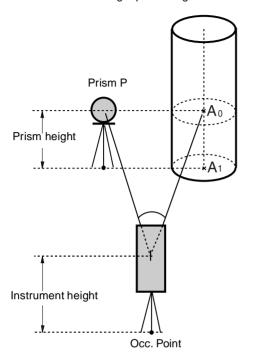


Outputting the Measurement Data

The results of offset measurement can be output to external device.

Setting the function of the [ESC] key to (REC), the [F3] soft key which assigned (REC) will appear in measured result display.

Refer to Chapter 16 "SELECTING MODE" to set this option.



Distance measurement mode of the offset measurement

Offset measurement will be done by N-time fine measurement mode. For setting measuring times refer to Chapter 16 "SELECTING MODE".

4.7.1 Angle Offset

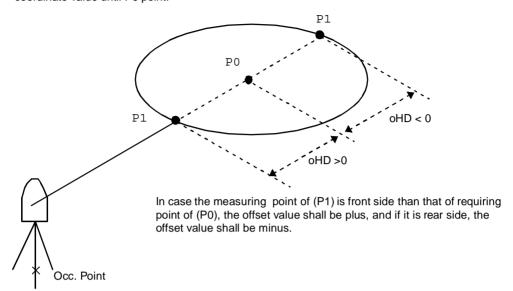
This mode is useful when it is difficult to set up the prism directly, for example at the center of a tree. Place the prism at the same horizontal distance from the instrument as that of point A0 to measure. To measure the coordinates of the center position, operate the offset measurement after setting the instrument height/prism height.

When measuring coordinates of ground point A₁:Set the instrument height/prism height.

When measuring coordinates of point A_0 : Set the instrument height only. (Set the prism height to 0).

When sighting to A_0 , you can select one of two ways. One is to fix vertical angle to the prism position even updown the telescope position, and the other is to gear vertical angle to the updown of telescope movement. In case following the vertical angle to the movement of telescope, SD(Slope Distance) and VD(Vertical Distance) will be changed according to the movement of telescope.

To set this option, refer to Chapter 16 "SELECTING MODE".


- Set the instrument height/prism height before proceeding to the offset measurement mode.
- When setting the coordinate value for the occupied station, refer to Section 5.1 "Setting Coordinate Values of Occupied Point"..

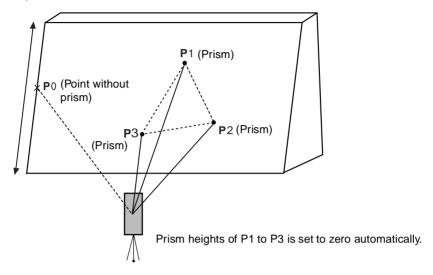
	Operating procedure	Operation	Display
1	Press the [F4](P1↓) key from distance measuring mode to get the function on page 2.	[F4] 	HR: 120°30'40" HD: 123.456 m VD: 5.678 m MEAS MODE S/A P1↓
2	Press the [F1](OFSET) key.	[F1]	OFSET S.O m/f/i P2↓ OFFSET 1/2 F1:ANG.OFFSET F2:DIST.OFFSET
3	Press the [F1](ANG. OFFSET) key.	[F1]	F3:PLANE OFFSET P1 OFFSET-MEASUREMENT HR: 120°30'40" HD: m
4	Collimate prismP, and press the [F1](MEAS) key.	Collimate P [F1]	MEAS OFFSET-MEASUREMENT HR: 110°20'30" HD*[n] << m >Measuring
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

	The horizontal distance from the instrument to the prism will be measured.		OFFSET-MEASUREMENT HR: 110°20'30" HD* 56.789 m >Measuring
	After measuring, the result added offset value will be shown.		OFFSET-MEASUREMENT HR: 110°20'30" HD: 56.789 m NEXT
5	Collimate point A_0 using the horizontal motion clamp and horizontal tangent screw.	Collimate A ₀	OFFSET-MEASUREMENT HR: 113°30'50" HD: 56.789 m NEXT
6	Show the relative elevation of point A ₀ .	⊿ []	OFFSET-MEASUREMENT HR: 113°20'30" VD: 3.456 m NEXT
7	Show the slope distance of point A_0 . Each time pressing the [2] key, horizontal distance, relative elevation and slope distance are shown in sequence.	⊿ []	OFFSET-MEASUREMENT HR: 113°20'30" SD: 56.894 m NEXT
8	Show N coordinate of point A_0 or A_1 . Each time pressing [$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	[比]	OFFSET-MEASUREMENT HR: 113°20'30" N: -12.345 m NEXT
•	To return to procedure 4 , press [F1](NEXT) key. To return to the previous mode, press [ESC] key.	1	

4.7.2 Distance Offset Measurement

Measuring distance and coordinate of the center of a pond or a tree of which the radius is known. Measuring the distance or coordinate till P0 point, input oHD value as an offset value and measure P1 point showing as following draw in distance offset measurement. The display shows distance or coordinate value until P0 point.

 When setting the coordinate value for the occupied station, refer to Section 5.1 "Setting Coordinate Values of Occupied Point".


	Operating procedure	Operation	Display
1	Press the [F4](P1↓) key from distance measuring mode to get the function on page 2.	[F4] 	HR: 120°30'40" HD: 123.456 m VD: 5.678 m MEAS MODE S/A P1↓ OFSET S.O m/f/i P2↓
2	Press the [F1](OFSET) key.	[F1]	OFFSET 1/2 F1:ANG.OFFSET F2:DIST.OFFSET F3:PLANE OFFSET P↓
3	Press the [F2](DIST. OFFSET) key.	[F2]	DISTANCE OFFSET INPUT FORWARD HD OHD: m INPUT ENTER
4	Press the [F1](INPUT) key and enter a offset value, and press the [F4](ENTER) key.	[F1] Offset value [F4]	DISTANCE OFFSET HR: 80°30'40" HD: m MEAS
5	Collimate prism P1, and press the [F1](MEAS) key. Measuring will start.	Collimate P1 [F1]	DISTANCE OFFSET HR: 80°30'40" HD* [n] << m >Measuring

	After measuring, the result added offset value will be shown.		DISTANCE OFFSET HR: 80°30'40" HD* 10.000 m NEXT
6	Show the relative elevation of point P0. Each time pressing the [] key, horizontal distance, relative elevation and slope distance are shown in sequence.	4 []	DISTANCE OFFSET HR: 80°30'40" VD: 11.789 m NEXT
			DISTANCE OFFSET HR: 80°30'40" SD: 11.789 m NEXT
•	Show coordinate of point P0.	[[]	N: 12.345 m E: 23.345 m Z: 1.345 m NEXT
•	To return to procedure 4 , press [F1](NEXT) key. To return to the previous mode, press [ESC] key.	1	

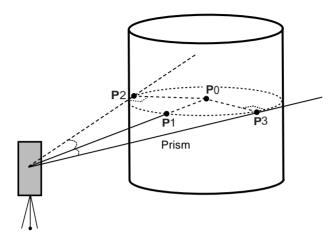
4.7.3 Plane Offset Measurement

Measuring will be taken for the place where direct measuring can not be done, for example distance or coordinate measuring for a edge of a plane.

Three random prism points (P1, P2, P3) on a plane will be measured at first in the plane offset measurement to determine the measured plane. Collimate the measuring target point (P0) then the instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane.

 When setting the coordinate value for the occupied station, refer to Section 5.1 "Setting Coordinate Values of Occupied Point".

	Operating procedure	Operation	Display
1	Press the [F4](P1↓) key from distance measuring mode to get the function on page 2.	[F4]	HR: 120°30'40" HD: 123.456 m VD: 5.678 m MEAS MODE S/A P1↓ OFSET S.O m/f/i P2↓
2	Press the [F1](OFSET) key.	[F1]	OFFSET 1/2 F1:ANG.OFFSET F2:DIST.OFFSET F3:PLANE OFFSET P↓
3	Press the [F3](PLANE OFFSET) key.	[F3]	PLANE N001#: SD: m MEAS
4	Collimate prism P1, and press the [F1](MEAS) key. N-time measuring will start. After measuring, the display will show the second point measurement.	Collimate P1 [F1]	PLANE N001#: SD* [n] << m >Measuring
5	Measure the second and third points in the same way.	Collimate P2 [F1]	PLANE N002#: SD: m MEAS


		Ì		
		Collimate P3 [F1]	PLANE N003#: SD: MEAS	m
			<u> </u>	↓
	The instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane. *1),2)		HR: HD: VD: EXIT	80°30'40" 54.321 m 10.000 m
6	Collimate the edge (P0) of the plane. *3) ,4)	Collimate P0	HR: HD: VD: EXIT	75°30'40" 54.600 m -0.487 m
7	To show the slope distance (SD), press th key.	[]	V: HR: SD:	90°30'40" 75°30'40" 56.602 m
•	Each time pressing the [EXIT	
8	To show coordinate of point P0, press the [] key. To escape the measuring, press the [F1](EXIT) key. The display returns to the previous mode.			

^{*1)} In case the calculation of plane was not successful by the measured three points, error displays. Start measuring over again from the first point.
*2) Data display is the mode beforehand of offset measurement mode.
*3) Error will be displayed when collimated to the direction which does not cross with the determined plane.
*4) The refrector height of the target point P0 is set to zero automatically.

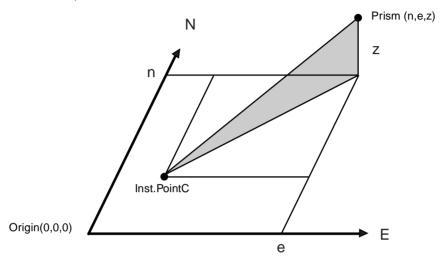
4.7.4 Column Offset Measurement

If it is possible to measure circumscription point (P1) of column directly, the distance to the center of the column (P0), coordinate and direction angle can be calculated by measured circumscription points (P2) and (P3).

The direction angle of the center of the column is 1/2 of total direction angle of circumscription points (P2) and (P3).

 When setting the coordinate value for the occupied station, refer to Section 5.1 "Setting Coordinate Values of Occupied Point".

	Operating procedure	Operation	Display
1	Press the [F4](P1↓) key from distance measuring mode to get the function on page 2.	[F4] 	HR: 120°30'40" HD: 123.456 m VD: 5.678 m MEAS MODE S/A P1↓ OFSET S.O m/f/i P2↓
2	Press the [F1](OFSET) key.	[F1]	OFFSET 1/2 F1:ANG.OFFSET F2:DIST.OFFSET F3:PLANE OFFSET P↓
3	Press the [F4](P↓) key.	[F4]	OFFSET 2/2 F1:COLUMN OFFSET
4	Press the [F1](COLUMN OFFSET) key.	[F1]	COLUMN OFFSET Center HD: m MEAS
5	Collimate the center of the column (P1) and press the [F1](MEAS) key. N-time measuring will start.	Collimate P1 [F1]	COLUMN OFFSET Center HD* [n] << m >Measuring


		1 1	Í
	After the measurement, angle measuring display of the left side (P2) will be shown.		COLUMN OFFSET Left HR: 120°30'40" SET
6	Collimate the left side of the column (P2) and press the [F4](SET) key. After the measurement, angle measuring display of the right side (P3) will be shown.	Collimate P2 [F4]	COLUMN OFFSET Right HR: 180°30'40" SET
7	Collimate the right side of the column (P3) and press the [F4](SET) key. The distance between the instrument and center	Collimate P3 [F4]	COLUMN OFFSET HR: 150°30'40" HD: 43.321 m NEXT
	of the column (P0) will be calculated.		
8	To show the relative elevation (VD), press the [[🚄]	COLUMN OFFSET HR: 150°30'40"
	Each time pressing the [VD: 2.321 m NEXT
•	To show coordinate of point P0, press the [] key.		
9	To escape the measuring, press the [ESC] key. The display returns to the previous mode.		

5 COORDINATE MEASUREMENT

5.1 Setting Coordinate Values of Occupied Point

Set the coordinates of the instrument (occupied point) according to coordinate origin, and the instrument automatically converts and displays the unknown point (prism point) coordinates following the origin.

It is possible to retain the coordinates of the occupied point after turning the power off. Refer to Chapter 16 "SELECTING MODE".

	Operating procedure	Operation	Display			
1	Press the [F4](\downarrow) key from the coordinate measurement mode to get the function on page 2.	[F4]	N: 123.456 m E: 34.567 m Z: 78.912 m MEAS MODE S/A P1↓ R.HT INSHT OCC P2↓			
2	Press the [F3](OCC) key.	[F3]	N→ 0.000 m E: 0.000 m Z: 0.000 m INPUT ENTER 1234 5678 90[ENT]			
3	Enter N coordinate value. *1)	[F1] Enter data [F4]	N: -72.000 m E→ 0.000 m Z: 0.000 m INPUT ENTER			
4	Enter E and Z coordinate values in the same manner. After entering the values, the display returns coordinate measuring display.		N: 51.456 m E: 34.567 m Z: 78.912 m MEAS MODE S/A P1↓			
*1)						

N+9\$2999999.11.7 ft.+inch

9 999999<u>\$</u>99 99999.11**∑**

-99

5.2 Setting Height of the Instrument

It is possible to retain the height of instrument after turning the power off. Refer to Chapter 16 "SELECTING MODE".

	Operating procedure	Operation	Display		
1	Press the [F4](\downarrow) key from the coordinate measurement mode to get the function on page 2.	[F4]	N: 123.456 m E: 34.567 m Z: 78.912 m MEAS MODE S/A P1↓ R.HT INSHT OCC P2↓		
2	Press the [F2](INSHT) key. The current value is displayed.	[F2]	INSTRUMENT HEIGHT INPUT INS.HT: 0.000 m INPUT ENTER 1234 5678 90[ENT]		
3	Enter the instrument height. *1)	[F1] Enter Inst.HT [F4]	N: 123.456 m E: 34.567 m Z: 78.912 m MEAS MODE S/A P1↓		
*1	*1) Refer to Section 2.6 "How to Enter Alphanumeric characters". ■ Input range -999.9999 lsstrument height +999.9999 m -999.999 sstrument height +999.999 ft. -999.11.7 sstrument height strument height +999.11.7 ft.+inch				

5.3 Setting Height of Target (Prism Height)

This mode can be used to obtain Z coordinate values . It is possible to retain the height of target after turning the power off. Refer to Chapter 16 "SELECTING MODE".

	Operating procedure	Operation	Display
1	Press the [F4](\downarrow) key from the coordinate measurement mode to get the function on page 2.	[F4]	N: 123.456 m E: 34.567 m Z: 78.912 m MEAS MODE S/A P1↓ R.HT INSHT OCC P2↓
2	Press the [F1](R.HT) key. The current value is displayed.	[F1]	REFLECTOR HEIGHT INPUT R.HT: 0.000 m INPUT ENTER 1234 5678 90[ENT]
3	Enter the prism height. *1)	[F1] Enter R.HT [F4]	N: 123.456 m E: 34.567 m Z: 78.912 m MEAS MODE S/A P1↓
*1) Refer to Section 2.6 "How to Enter Alphanumeric characters". ■ Input range -999.9999 ≤ Prism height ≤ +999.9999 m -999.999 ≤ Prism height ≤999.999 ft. -999.11.7 Prism height ≤999.11.7 ft.+inch			

5.4 Execution of Coordinate Measuring

Measure the coordinates by entering the instrument height and prism height, coordinates of unknown point will be measured directly.

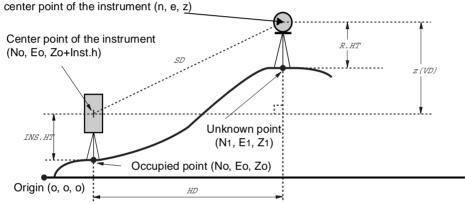
- When setting coordinate values of occupied point, see Section 5.1 "Setting Coordinate Values of Occupied Point"
- When setting the instrument height and prism height, see Section 5.2 "Setting Height of the Instrument" and 5.3 "Setting Height of Target (Prism Height)".
- The coordinates of the unknown point are calculated as shown below and displayed:

Coordinates of occupied point : (N_0, E_0, Z_0)

Instrument height : INS.HT Prism height : R.HT

Vertical distance (Relative elevation) : z (VD)

Coordinates of the center of the prism,

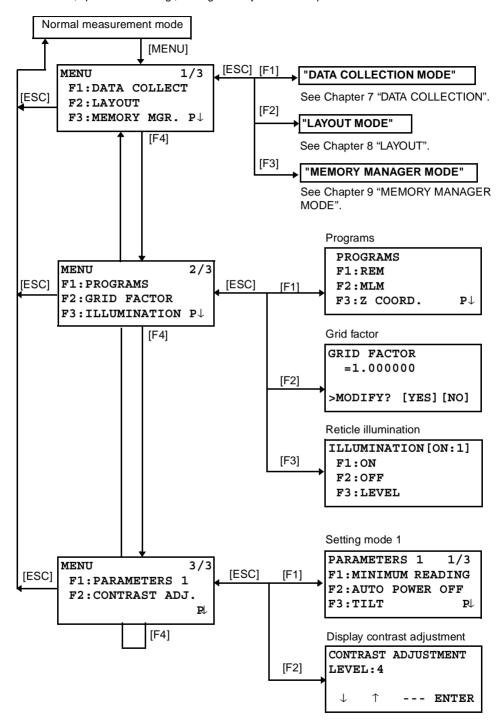

originated from the center point of the instrument : (n,e,z)

Coordinates of unknown point : (N_1, E_1, Z_1)

 $N_1=N_0+n$ $E_1=E_0+e$

 $Z_1=Z_0+INS.HT+z-R.HT$

Coordinates of the center of the prism, originated from the



	Operating procedure	Operation	Display
1	Set the direction angle of known point A. *1)	Set direction angle	V: 90°10'20" HR: 120°30'40"
2	Collimate target prism.	Collimate P	0SET HOLD HSET P1 \downarrow
3	Press the [[[]	N*[r] << m E: m Z: m MEAS MODE S/A P1↓
	The result will be shown.		N* 123.456 m E: 34.567 m Z: 78.912 m MEAS MODE S/A P1↓

- *1) Refer to Section 3.3 "Measuring from the Required Horizontal Angle".
- In case the coordinate of instrument point is not entered, (0,0,0) will be used as the default for the instrument point.
- The instrument height will be calculated as 0 when the instrument height is not entered.
- The prism height will be calculated as 0 when the prism height is not set.

6 SPECIAL MODE (Menu Mode)

By pressing the [MENU] key, the instrument will be in MENU mode. In this mode, special measuring, setting and adjustment are possible.

6.1 Application Measurement (PROGRAMS)

6.1.1 Remote Elevation measurement (REM)

To obtain elevation of the point at which setting the target prism is not possible, place the prism at any point on the vertical line from the target then carry out REM procedure as follows.

1) With prism height (h) input (Example :h=1.5m)

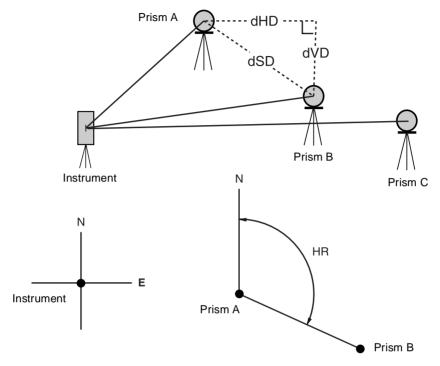
	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key to get the menu on page 2.	[MENU] [F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓
2	Press the [F1] key.	[F1]	PROGRAMS 1/2 F1:REM F2:MLM F3:Z COORD. P↓
3	Press the [F1](REM) key.	[F1]	REM F1:INPUT R.HT F2:NO R.HT
4	Press the [F1] key.	[F1]	REM-1 <step-1> R.HT: 0.000 m INPUT ENTER</step-1>
5	Enter prism height. *1)	[F1] Enter R.HT [F4]	1234 5678 90[ENT] REM-1 <step-2> HD: m</step-2>
6	Collimate prism.	Collimate P	MEAS SET
7	Press the [F1](MEAS) key. Measuring starts.	[F1]	REM-1 <step-2> HD*[n] << m >Measuring</step-2>

	Horizontal distance (HD) between the instrument and prism will be shown.		REM-1 <step-2> HD* 123.456 m >Measuring</step-2>
8	After measuring, the prism position will be decided. *2)		REM-1 VD: 1.500 m
9	Collimate target K. Vertical distance (VD) will be shown. *3)	Collimate K	REM-1 VD: 10.456 m

- *1) Refer to Section 2.6 "How to Enter Alphanumeric characters".
 *2) To return to procedure **5**, press the [F2](R.HT) key. To return to procedure **6**, press the [F3](HD) key.
- *3) To return to PROGRAMS Menu, press the [ESC] key.

2) Without prism height input

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key to get the menu on page 2.	[MENU] [F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓
2	Press the [F1] key.	[F1]	PROGRAMS 1/2 F1:REM F2:MLM F3:Z COORD. P↓
3	Press the [F1](REM) key.	[F1]	REM F1:INPUT R.HT F2:NO R.HT
4	Press the [F2] key.	[F2]	REM-2 <step-1> HD: m MEAS</step-1>
5	Collimate prism.	Collimate P	
6	Press the [F1](MEAS) key. Measuring starts.	[F1]	REM-2 <step-1> HD*[n] << m >Measuring</step-1>
	Horizontal distance (HD) between the instrument and prism will be shown.		REM-2 <step-1> HD* 123.456 m >Measuring</step-1>


7 After measuring, the prism position will be decided.		REM-2 <step-2> V : 60°45'50" SET</step-2>
8 Collimate ground point G.	Collimate G	REM-2 <step-2> V : 123°45'50" SET</step-2>
9 Press the [F4](SET) key. The position of point G will be decided. *1)	[F4]	REM-2 VD: 0.000 m
10 Collimate target K. Vertical distance (VD) will be shown. *2)	Collimate K	REM-2 VD: 10.456 m
*1) To return to procedure 5 , press the [F3](HD) key. To return to procedure 8 , press the [F2](V) key. *2) To return to PROGRAMS Menu, press the [ESC] key	<i>y</i> .	

6.1.2 Missing Line Measurement (MLM)

Measurement for horizontal distance (dHD), slope distance (dSD), elevation (dVD) and horizontal bearing (HR) between two target prisms.

It is possible to enter the coordinate value directly or calculate from coordinate data file. MLM mode has two modes.

- 1.MLM-1 (A-B, A-C): Measurement is A-B, A-C, A-D,.....
- 2.MLM-2 (A-B, B-C): Measurement is A-B, B-C, C-D,......

• It is necessary to set the direction angle of the instrument.

[Example] MLM-1 (A-B, A-C)

• Procedure of MLM-2 (A-B, B-C) mode is completely same as MLM-1 mode

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key to get the menu on page 2.	[MENU] [F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓
2	Press the [F1] key.	[F1]	PROGRAMS 1/2 F1:REM F2:MLM F3:Z COORD. P↓
3	Press the [F2](MLM) key.	[F2]	MLM F1:USE FILE F2:DON'T USE
4	Press the [F1] or [F2] key to select using coordinate file. [Example:F2 : DON'T USE]	[F2]	GRID FACTOR F1:USE G.F. F2:DON'T USE

Fress the [F1] or [F2] key to select using GRID FACTOR. [Example:F2: DON'T USE]	[F2]	MLM F1:MLM-1(A-B, A-C) F2:MLM-2(A-B, B-C)
6 Press the [F1] key.	[F1]	MLM-1(A-B, A-C) <step-1> HD: m MEAS R.HT NEZ</step-1>
7 Collimate prism A, and press the [F1](MEAS) key. Horizontal distance (HD) between the instrument and prism A will be shown.	Collimate A [F1]	MLM-1(A-B, A-C) <step-1> HD*[n] << m >Measuring</step-1>
8 After measuring, the prism position will be decided.		MLM-1(A-B, A-C) <step-2> HD: m MEAS R.HT NEZ</step-2>
9 Collimate prism B and press the [F1](MEAS) key. Horizontal distance (HD) between the instrument and prism B will be shown.	Collimate B [F1]	MLM-1(A-B, A-C) <step-2> HD* [n] << m MEAS R.HT NEZ</step-2>
10 After measuring, the horizontal distance (dHD) and relative elevation (dVD) between prism A and B will be shown.	[F4]	MLM-1(A-B, A-C) dHD: 123.456 m dVD: 12.345 m HD
11 To show slope distance (dSD) , press [◢] key.	[4]	MLM-1(A-B, A-C) dSD: 234.567 m HR: 12°34'40" HD
12 To measure the distance between points A and C, press the [F3](HD). *1)	[F3]	MLM-1(A-B, A-C) <step-2> HD: m MEAS R.HT NEZ</step-2>
13 Collimate point C (Prism C) and press the [F1](MEAS) key. Horizontal distance (HD) between the instrument and prism C will be shown.	Collimate prism C [F1]	
14 After measuring, the horizontal distance (dHD) and relative elevation (dVD) between prism A and C will be shown.	[F4]	MLM-1(A-B, A-C) dHD: 234.567 m dVD: 23.456 m HD
15 To measure the distance between points A and D, repeat procedure 12 to14. *1)		
*1) To return to previous mode, press the [ESC] key.		

• How to use coordinate data

It is possible to input coordinate value directly or calculate from coordinate data file

	Operating procedure	Operation	Display
	To use coordinate data file, select "USE FILE" in step 4.		
	After procedure 6 .		MLM-1(A-B, A-C) <step-1> HD: m MEAS R.HT NEZ</step-1>
1	Press the [F3](NEZ) key. Direct key input display will be shown.	[F3]	N> 0.000 m E: 0.000 m Z: 0.000 m INPUT PT# ENTER
2	Press the [F3](PT#) key to use coordinate data file. Point number input display will be shown. Pressing the [F3](HD) key, the display will return to procedure 6 . After selecting coordinate input mode by pressing the [F3](NEZ or PT# or HD) key, press the [F1](INPUT) key and enter the data.	[F3]	MLM-1(A-B,A-C) PT#: INPUT LIST HD ENTER

6.1.3 Setting Z Coordinate of Occupied Point

Occupied point coordinate data and known point actual measuring data are utilized, z coordinate of occupied point is calculated and reset again.

Known point data and coordinate data can use the coordinate data file.

1) Setting occupied coordinate

[Example setting] Using coordinate data file.

	Operating procedure	Operation	Display
1	After pressing [MENU] key, press [F4](P \downarrow) key to get the menu on page 2.	[MENU] [F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓
2	Press the [F1] key.	[F1]	PROGRAMS 1/2 F1:REM F2:MLM F3:Z COORD. P↓
3	Press the [F3](Z COORD.) key.	[F3]	Z COORD.SETTING F1:USE FILE F2:DON'T USE
4	Press the [F1](USE FILE) key.	[F1]	SELECT A FILE FN: INPUT LIST ENTER
5	Press the [F1](INPUT) key and enter the File Name.	[F1] Enter FN [F4]	Z COORD.SETTING F1:OCC.PT INPUT F2:REF.MEAS
6	Press the [F1] key.	[F1]	OCC.PT PT#: INPUT LIST NEZ ENTER
7	Press the [F1](INPUT) key and enter the Point number. Instrument height setting display will be shown.	[F1] Enter PT# [F4]	INSTRUMENT HEIGHT INPUT INS.HT: 0.000 m INPUT ENTER
8	Press the [F1](INPUT) key and enter the height. The display returns to Z coordinate menu.	[F1] Enter HT [F4]	Z COORD.SETTING F1:OCC.PT INPUT F2:REF.MEAS
•	For more information about data file, see Chapter 9	 "MEMORY MAN	NAGER MODE" .

2) Z Coordinate Calculation from Known Point Measuring Data

[Example setting] Using coordinate data file

	Operating procedure	Operation	Display
1	After pressing [MENU] key, press [F4](P \downarrow) key to get the menu on page 2.	[MENU] [F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓
2	Press the [F1] key.	[F1]	PROGRAMS 1/2 F1:REM F2:MLM F3:Z COORD. P↓
3	Press the [F3](Z COORD.) key.	[F3]	Z COORD.SETTING F1:USE FILE F2:DON'T USE
4	Press the [F1](USE FILE) key.	[F1]	SELECT A FILE FN: INPUT LIST ENTER
5	Press the [F1](INPUT) key and enter the File Name.	[F1] Enter FN [F4]	Z COORD.SETTING F1:OCC.PT INPUT F2:REF.MEAS
6	Press the [F2] key.	[F2]	NOO1# PT#: INPUT LIST NEZ ENTER
7	Press the [F1](INPUT) key and enter the Point Number in coordinate data file.	[F1] Enter PT# [F4]	N: 4.356 m E: 16.283 m Z: 1.553 m >OK ? [YES][NO]
8	Press the [F3](YES) key and enter the Point Number in coordinate data file.	[F3]	REFLECTOR HEIGHT INPUT R.HT: 0.000 m INPUT ENTER
9	Press the [F1](INPUT) key and enter the height.	[F1] Enter R. HT [F4]	REFLECTOR HEIGHT INPUT R.HT: 0.000 m >Sight? [YES][NO]
10	Collimate a prism on the point and press the [F3](YES) key. Measuring starts. *1)	Collimate P [F3]	HR: 120°30'40" HD*[n] << m VD: m >Measuring
			\downarrow

		HR: 120°30'40" HD: 12.345 m VD: 23.456 m NEXT CALC
11 Press the [F4](CALC) key.*2) Z: Z coordinate dZ: Standard deviation	[F4]	Z COORD. SETTING Z: 1.234 m dZ: 0.002 m BS SET
12 Press the [F4](SET) key. *3)	[F4]	BACKSIGHT
Z coordinate of the occupied point will be set.	[, ,]	HR: 23°20'40"
Z coordinate of the occupied point will be set. Bascksight point measuring screen will be shown.	[]	

^{*1)} Measurement is Fine N-times measurement mode.

^{*2)} To measure other points, press the [F1](NEXT) key.
*3) Pressing the [F3] key, the display will be changed alternately.

6.1.4 Area Calculation

This mode calculate the area of a closed figure.

There are two area calculation methods as follows.

- 1) Area Calculation from Coordinate data file
- 2) Area Calculation from Measured data
- Area is not calculated correctly if enclosed lines cross each other.
- It is impossible to calculate what a mix of coordinate file data and measured data.
- If the coordinate data file does not exist, the area calculation from measured data is done automatically.
- The numbers of points used to calculate are not limited.

1) Area Calculation from Coordinate Data File

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key to get the menu on page 2/3.	[MENU] [F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓
2	Press the [F1] key.	[F1]	PROGRAMS 1/2 F1:REM F2:MLM F3:Z COORD. P↓
3	Press the [F4](P \downarrow) key to get the PROGRAMS menu on page 2/2.	[F4]	PROGRAMS 2/2 F1:AREA F2:POINT TO LINE P↓
4	Press the [F1](AREA) key.	[F1]	AREA F1:FILE DATA F2:MEASUREMENT
5	Press the [F1](FILE DATA) key.	[F1]	SELECT A FILE FN: INPUT LIST ENTER
6	Press the [F1](INPUT) key and enter the File Name. Initial display will be shown.	[F1] Enter FN [F4]	AREA 0000 m.sq NEXT#:DATA-01 PT# LIST UNIT NEXT
7	Press the [F4](NEXT) key. *1),2) The top of the file data (DATA-01) will be set and the second point number will be shown.	[F4]	AREA 0001 m.sq NEXT#:DATA-02 PT# LIST UNIT NEXT
8	Repeat pressing the [F4](NEXT) key to set required number of points.	[F4]	

When 3 or more points are set, the area surrounded by the points is calculated and the result will be shown.		0021 .456 m.sq DATA-22 T UNIT NEXT
--	--	---

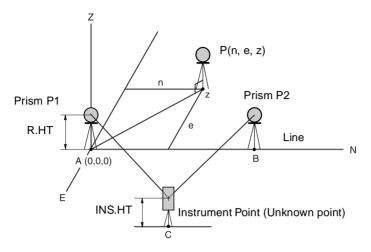
2) Area Calculation from Measured Data

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key to get the menu on page 2/3.	[MENU] [F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓
2	Press the [F1] key.	[F1]	PROGRAMS 1/2 F1:REM F2:MLM F3:Z COORD. P↓
3	Press the [F4](P↓) key to get the PROGRAMS menu on page 2/2.	[F4]	PROGRAMS 2/2 F1:AREA F2:POINT TO LINE P↓
4	Press the [F1](AREA) key.	[F1]	AREA F1:FILE DATA F2:MEASUREMENT
5	Press the [F2](MEASUREMENT) key.	[F2]	AREA F1:USE G.F. F2:DON'T USE
6	Press the [F1] or [F2] key to select using GRID FACTOR. [Example:F2: DON'T USE]	[F2]	AREA 0000 m.sq
7	Collimate a prism and press the [F1](MEAS) key. Measuring starts. *1)	Collimate P [F1]	N*[n] <<< m E: m Z: m >Measuring AREA 0001 m.sq MEAS UNIT
8	Collimate next point and press the [F1](MEAS) key.	Collimate [F1]	

^{*1)} To set specify point, press the [F1](PT#) key.
*2) To show the list of the coordinate data in the file, press the [F2](LIST) key.

When 3 or more points are measured, the area surrounded by the points is calculated and the result will be shown.	AREA 0003 234.567 m.sq MEAS UNIT	
*1) Measurement is Fine N-times measurement mode.		

• To change the display unit


It is possible to change the displayed area unit.

Operating procedure	Operation	Display
		AREA 0003 100.000 m.sq
		MEAS UNIT
1 Press the [F3](UNIT) key.	[F3]	AREA 00003 100.000 m.sq
		m.sq ha ft.sq acre
2 Select a unit by pressing the [F1] to [F4] key. Example: [F2](ha) key.	[F2]	AREA 0003 0.010 ha
		MEAS UNIT
m.sq : square meter ha : hectare ft.sq : square ft.sq : s	re feet acre	: acre.

6.1.5 Point to Line Measurement

This mode is used to obtain the coordinate data with the origin point A(0,0,0) and the line AB as N axis.

Place the 2 prisms at the points A and B on the line, and place the instrument at unknown point C. After measuring the 2 prisms, the coordinate data and the direction angle of the instrument will be calculated and restored.

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key to get the menu on page 2/3.	[MENU] [F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓
2	Press the [F1] key.	[F1]	PROGRAMS 1/2 F1:REM F2:MLM F3:Z COORD. P↓
3	Press the [F4](P \downarrow) key to get the PROGRAMS menu on page 2/2.	[F4]	PROGRAMS 2/2 F1:AREA F2:POINT TO LINE P↓
4	Press the [F2] key.	[F2]	INSTRUMENT HEIGHT INPUT INS.HT: 0.000 m INPUT ENTER
5	Press the [F1](INPUT) key and enter instrument height.	[F1] Enter INS.HT [F4]	REFLECTOR HEIGHT INPUT R.HT: 0.000 m INPUT ENTER
6	Press the [F1](INPUT) key and enter reflector A(P1) height.	[F1] Enter R.HT [F4]	POINT TO LINE MEAS.P1 HD: m >Sight? [YES][NO]

I -	0 (0 : :)		
′	Collimate prism P1 (Origin) and press [F3](YES)	Collimate	POINT TO LINE
	key.	P1	MEAS.P1
	Measuring starts. *1)	[F3]	HD*[n] << m
			>Measuring
	Input display of reflector B(P2) height will be		V
	shown.		REFLECTOR HEIGHT
	onown.		INPUT
			R.HT: 0.000 m
			INPUT ENTER
8	Press [F1](INPUT) key and enter reflector B(P2)		
٥	height.	[F1]	POINT TO LINE
	neight.	Enter R. HT	MEAS.P2
		[F4]	HD: m
			>Sight? [YES][NO]
9	Collimate prism B (P2)(Origin) and press the		
9	[F3](YES) key.	Collimate	POINT TO LINE
	Measuring starts. *1)	P2	MEAS.P2
	ividasuming starts. T)	[F3]	HD*[n] << m
			>Measuring
	The coordinate data and the direction angle of the		
	instrument are calculated and restored.		DIST. (P1-P2) 1/2
	The result (The distance between A and B) will be		dHD: 10.000 m
	displayed.		dVD: 0.000 m
	dHD: Horizontal distance		NEZ S.CO P↓
	dVD:Vertical distance		NEZ S.CO PV
	dSD:Slope distance *2) ,3)		
10	Press [F1](NEZ) key to measure other points.	[E4]	
	1 1 1	[F1]	N: 0.000 m
			E: 0.000 m
			Z: 0.000 m
			EXIT HT MEAS
11	Collimate a prism and press [F4](MEAS) key.	Collimate P	>Measuring
	Coordinate measurement starts. *4)	[F4]	
	The result will be shown. *5)		N: 3.456 m
			E: 5.432 m
			Z: 0.000 m
			EXIT HT MEAS
*4\	Management is Fine N times masser manufacture		

- *1) Measurement is Fine N-times measurement mode.
- *2) To show dSD, press [F4](P↓) key.
 *3) To show the new occupied data, press [F2](S.CO) key.
- *4) Measurement is Fine N-times measurement mode.
- *5) To return to previous mode, press [F1](EXIT) key.

6.2 Setting the GRID FACTOR

GRID FACTOR can reset in this menu mode. For more information, refer to Section 8.1.1"Setting the GRID FACTOR"

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key to get the menu on page 2.	[MENU] [F4]	MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓
2	Press the [F2](GRID FACTOR) key.	[F2]	GRID FACTOR =0.998843 >MODIFY? [YES] [NO]
3	Press the [F3](YES) key.	[F3]	GRID FACTOR ELEV. →1000 m SCALE: 0.999000 INPUT ENTER
4	Press the [F1] (INPUT) key and enter Elevation. *1) Press the [F4](ENT) key.	[F1] Enter ELEV. [F4]	1234 5678 90[ENT]
5	Enter Scale Factor in the same way.	[F1] Enter Scale [F4]	GRID FACTOR ELEV.:2000 m SCALE-1.001000 INPUT ENTER
	Grid Factor is displayed for 1 to 2 second and display returns to menu.		GRID FACTOR =1.000686

^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".

[●] Input Range :Elevation : -9,999 to +9,999 meter (-32,805 to +3,2805 ft, ft+in) Scale Factor: 0.990000 to 1.010000

6.3 Setting Illumination of Display and Cross Hairs

Setting ON/OFF/LEVEL (1 to 9) for illumination of display (LCD) and reticle.

Setting LEVEL (1 to 9) is only for reticle.

[Example setting] LEVEL:2 and turn on the illumination.

key to get the menu on page 2.	[MENU] [F4] MENU 2/3 F1:PROGRAMS F2:GRID FACTOR F3:ILLUMINATION P↓ [F3] ILLUMINATION [OFF:1] F1:ON F2:OFF F3:LEVEL
	F1:ON F2:OFF
3 Press the [F3](LEVEL) key.	[F3] ILLUMINATION [OFF:1] [LEVEL MODE]
	[F2] [F4] ILLUMINATION [OFF:2] F1:ON F2:OFF F3:LEVEL
 Fress the [F1](ON) key. To return to previous mode, press the [ESC] key. 	[F1] ILLUMINATION [ON:2] F1:ON F2:OFF F3:LEVEL

6.4 Setting Mode 1

In this mode, the following settings are possible.

- 1. Setting Minimum Reading
- 2. Auto Power off
- 3. Vertical and Horizontal Angle Tilt Correction (Tilt ON/OFF) (GTS-239W has vertical angle tilt correction only.).
- 4. Systematic Error of Instrument Correction
- 5. Selecting battery type
- 6. Heater ON/OFF
- 7. Selecting communication port
- 8. Confirming the Bluetooth™ Device Address and Setting the PIN code
- This setting is memorized after power off.

6.4.1 Setting Minimum Reading

Select minimum display unit for angle measurement, coarse distance measurement mode.

To select minimum display for fine measurement mode, see Chapter 16 "SELECTING MODE".

Models		Angle Unit	Coarse mode	
	Degree	GON	MIL	Distance unit
GTS-233W GTS-235W GTS-236W	5" / 1"	1mgon / 0.2mgon	0.1mil / 0.01mil	10mm (0.02ft)/
GTS-239W	10" / 5"	2mgon / 1mgon	0.1mil / 0.01mil	1mm(0.005ft)

[Example] Minimum angle: 5", Coarse: 1mm

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key twice to get the menu on page 3.	[MENU] [F4] [F4]	MENU 3/3 F1:PARAMETERS 1 F2:CONTRAST ADJ. P↓
2	Press the [F1] key.	[F1]	PARAMETERS 1 1/3 F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P↓
3	Press the [F1] key.	[F1]	MINIMUM READING F1:ANGLE F2:COARSE
4	Press the [F1] key.	[F1]	MINIMUM ANGLE [F1: 1"] F2: 5" ENTER
5	Press the [F2](5") key and press the [F4](ENTER) key.	[F2] [F4]	MINIMUM READING F1:ANGLE F2:COARSE
6	Press the [F2] key.	[F2]	COARSE READING F1: 1mm [F2:10mm] ENTER

7	Press the [F1] key and press the [F4](ENTER) key.	[F1] [F4]	MINIMUM READING F1:ANGLE F2:COARSE
•	To return to previous mode, press the [ESC] key.		

6.4.2 Auto Power Off

If no key operation is given or no process of measurement is performed for more than 30 minutes (No change exceeding 30" has occurred during horizontal angle or vertical angle measurement.), the power turns off automatically. If the instrument is set at distance measurement mode (No change in distance exceeding 10cm has occurred during distance measurement), the mode changes to angle measurement automatically in case that the instrument does not operate for approximately 10 minutes, and the power turns off after 20 minutes.

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P\$\perp\$) key twice to get the menu on page 3.	[MENU] [F4] [F4]	MENU 3/3 F1:PARAMETERS 1 F2:CONTRAST ADJ. P↓
2	Press the [F1] key.	[F1]	PARAMETERS 1 1/3 F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P↓
3	Press the [F2] key. The data previously set is shown.	[F2]	AUTO POWER OFF [OFF] F1:ON F2:OFF ENTER
4	Press the [F1](ON) key or [F2](OFF) key, and press the [F4](ENTER) key.	[F1] or [F2] [F4]	

6.4.3 Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF)

(GTS-239W has vertical angle tilt correction only.)

In case the instrument is used in an unstable situation, constant indexing of vertical and horizontal angle may be impossible. In this case, the function of tilt correction can be stopped by selecting TILT OFF. It has been set to X,Y (V/H) TILT ON at the factory.

• This setting is memorized after powering off.

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key twice to get the menu on page 3.	[MENU] [F4] [F4]	MENU 3/3 F1:PARAMETERS 1 F2:CONTRAST ADJ. P↓
2	Press the [F1] key.	[F1]	PARAMETERS 1 1/3 F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P↓
3	Press the [F3] key. The data previously set is shown. If already ON, the display shows tilt correction value.	[F3]	TILT SENSOR: [XY-ON] X: 0°02'10" Y: 0°03'00" X-ON XY-ON OFF ENTER
4	Press the [F1](X-ON) key or [F2](XY-ON) or [F3](OFF) key, and press the [F4](ENTER) key.	[F1]~[F3] [F4]	

6.4.4 Systematic Error of Instrument Correction (only for GTS-233W/235W/236W)

Setting ON/OFF for error correction of collimation and horizontal axis for angle measurement. Note: Perform this item after complete Section 17.5 "Adjustment of Compensation Systematic Error of Instrument". .

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key twice to get the menu on page 2.	[MENU] [F4] [F4]	MENU 3/3 F1:PARAMETERS 1 F2:CONTRAST ADJ. P↓
2	Press the [F1] key.	[F1]	PARAMETERS 1 1/3 F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P↓
3	Press the [F4] key.	[F4]	PARAMETERS 1 2/3 F1:ERROR CORRECTION F2:BATTERY TYPE F3:HEATER P↓
4	Press the [F1] key. The data previously set is shown.	[F1]	ERROR CORR. [OFF] F1:ON F2:OFF ENTER
5	Press the [F1](ON) key or [F2](OFF) key, and press the [F4](ENTER) key.	[F1] or [F2] [F4]	

6.4.5 Selecting Battery Type

On-board battery BT-32Q can be also available for GTS-330 series. When you use BT-32Q (Ni-Cd) battery, select [Ni-Cd] type of battery in this parameters 1 menu.

If you select wrong type of battery, the battery remaining display may work incorrectly.

BT-52QA: Ni-MH battery type, BT-32Q: Ni-Cd battery type.

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P\$\perp\$) key twice to get the menu on page 3/3.	[MENU] [F4] [F4]	MENU 3/3 F1:PARAMETERS 1 F2:CONTRAST ADJ. P↓
2	Press the [F1] key and press the [F4](P \downarrow) key to get the menu on page 2.	[F1] [F4]	PARAMETERS 1 2/3 F1:ERROR CORRECTION F2:BATTERY TYPE F3:HEATER P↓
3	Press the [F2] key.	[F2]	BATTERY TYPE [F1:Ni-MH] F2:Ni-Cd ENTER
4	Press the [F2] key to select Ni-Cd battery type. Then press the [F4](ENTER) key.	[F2] [F4]	

6.4.6 Heater ON/OFF

The heater option for both display units can be turned OFF or ON.

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key twice to get the menu on page 2.	[MENU] [F4] [F4]	MENU 3/3 F1:PARAMETERS 1 F2:CONTRAST ADJ. P↓
2	Press the [F1] key.	[F1]	PARAMETERS 1 1/3 F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P↓
3	Press the [F4] key.	[F4]	PARAMETERS 1 2/3 F1:ERROR CORRECTION F2:BATTERY TYPE F3:HEATER P↓
4	Press the [F3] key. The data previously set is shown.	[F3]	HEATER [OFF] F1:ON F2:OFF ENTER
5	Press the [F1](ON) key or [F2](OFF) key, and press the [F4](ENTER) key.	[F1] or [F2] [F4]	

6.4.7 Selecting Communication Port

You can change the communication port to RS-232C port.

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key twice to get the menu on page 3.	[MENU] [F4] [F4]	MENU 3/3 F1:PARAMETERS 1 F2:CONTRAST ADJ. P\
2	Press the [F1] key.	[F1]	PARAMETERS 1 1/3 F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P↓
3	Press the [F4] key.	[F4]	PARAMETERS 1 2/3 F1:ERROR CORRECTION F2:BATTERY TYPE F3:HEATER P↓
4	Press the [F4] key.	[F4]	PARAMETERS 1 3/3 F1:SELECT COM F2:BLUETOOTH P↓
5	Press the [F1] key.	[F1]	SELECT COM [F1:BLUETOOTH] F2:RS-232C ENTER
6	Press the [F2](RS-232C) key to select the communication port and press the [F4](ENTER) key. The display will return to the previous menu.	[F2] [F4]	SELECT COM F1:BLUETOOTH [F2:RS-232C] ENTER

6.4.8 Confirming the Bluetooth™ Device Address and Setting the PIN code

You can confirm the Bluetooth™ address and set the PIN code

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P \downarrow) key twice to get the menu on page 3.	[MENU] [F4] [F4]	MENU 3/3 F1:PARAMETERS 1 F2:CONTRAST ADJ. P↓
2	Press the [F1] key.	[F1]	PARAMETERS 1 1/3 F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P↓
3	Press the [F4] key.	[F4]	PARAMETERS 1 2/3 F1:ERROR CORRECTION F2:BATTERY TYPE F3:HEATER P↓
4	Press the [F4] key.	[F4]	PARAMETERS 1 3/3 F1:SELECT COM F2:BLUETOOTH P↓
5	Press the [F2] key. The Bluetooth device address and PIN code will display.	[F1]	BLUETOOTH ADDR.:000E14F49B4 PIN CODE: 1234 INPUT ENTER
6	To change the PIN code, press the [F1](INPUT) key.	[F1]	BLUETOOTH ADDR.:000E14F49B4
7	Enter a new PIN code and press the [F4](ENTER] key.	Enter PIN code [F4]	PIN CODE : 2233 1234 5678 90 ENTER

- Coincide PIN code of DK-7W with the one of total station.
 If two PIN codes don't coincide, the two instrument cannot communicate each other.
- To set the PIN code of the total station, refer to the instruction manual of the total station.

6.5 Setting Contrast of Display

Setting level for contrast of display (LCD)

	Operating procedure	Operation	Display
1	After pressing the [MENU] key, press the [F4](P↓) key twice to get the menu on page 3.	[MENU] [F4] [F4]	MENU 3/3 F1:PARAMETERS 1 F2:CONTRAST ADJ. P↓
2	Press the [F2] key.	[F2]	CONTRAST ADJUSTMENT LEVEL: 4
,	Dress the [E41/1] key or [E01/4] key and press the		↓ BRIER
3	Press the [F1](\downarrow) key or [F2](\uparrow) key, and press the [F4](ENTER) key.	[F1]or [F2] [F4]	

7 DATA COLLECTION

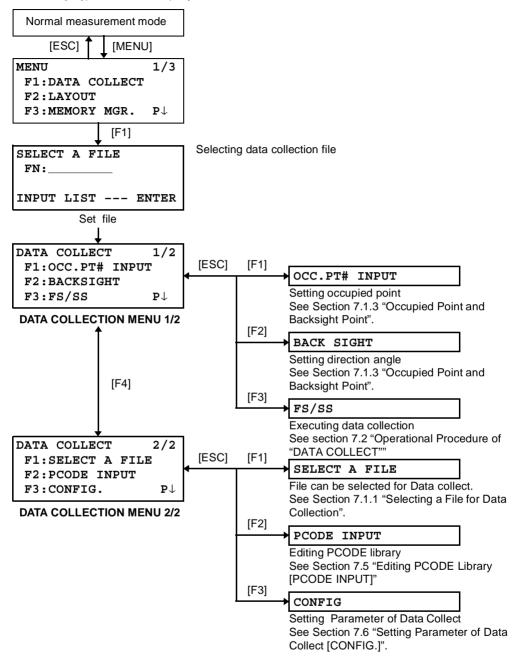
The GTS-230W is able to store the measured data into the internal memory. The internal memory is shared by the measured data files and the coordinate data files. Maximum 30 files can be generated.

Measured data

The collected data is memorized into a files.

• The number of measurement points

(In case not using the internal memory in layout mode)


MAX. 8,000 points

Because the internal memory covers both data collection mode and layout mode, the number of measurement points will be decreased when the layout mode is used. For the internal memory, refer to Chapter 9 "MEMORY MANAGER MODE".

- When turning off the power, ensure that you are in the main menu screen or main angle measurement mode.
 - This ensures completion of the memory access process and avoids possible damage to the stored data.
- It is recommended for safety to charge the battery (BT-52QA) beforehand and prepare fully charged spare batteries.

Data collect menu operation

By pressing the [MENU] key, the instrument will be in MENU 1/3 mode. Press the [F1](DATA COLLECT) key, the menu of data collect 1/2 will be shown.

7.1 Preparation

7.1.1 Selecting a File for Data Collection

A file used by data collection mode must be selected at first. Select a file before beginning data collection mode because selection screen of a file is displayed. And a selection from data collection menu is possible in the mode.

	Operating procedure	Operation	Display
			MENU 1/3 F1:DATA COLLECT F2:LAYOUT F3:MEMORY MGR. P↓
1 Press [F1]	(DATA COLLECT) key from menu 1/3.	[F1]	SELECT A FILE FN:
			INPUT LIST ENTER
2 Press [F2]((LIST) key to display the list of file. *1)	[F2]	AMIDATA /M0123 →*HILDATA /M0345 TOPDATA /M0789 SRCH ENTER
	st by pressing [▼] or [▲] key and e to use. *2),3)	[▼] or [▲]	TOPDATA /M0789 →RAPDATA /M0564 SATDATA /M0456 SRCH ENTER
	(ENTER) key. I be set and data collect 1/2 menu will	[F4]	DATA COLLECT 1/2 F1:OCC.PT# INPUT F2:BACKSIGHT F3:FS/SS P↓

^{*1)} If you want to make a new file or input file name directly, press [F1](INPUT) key and enter a file name.

^{*3)} Data in a file shown with arrow can be searched by pressing [F2](SRCH) key.

lacktriangle	It is possible to select a file from DATA COLLECT 2/2 menu in the
	same way.

DATA COLLECT 2/2
F1:SELECT A FILE
F2:PCODE INPUT
F3:CONFIG. P

^{*2)} When a file has been selected already, '*' mark is indicated on left of current file name.

7.1.2 Selecting a Coordinate File for Data Collection

When coordinate data in a coordinate data file are used for occupied point or backsight point, select a coordinate file from the data collect menu 2/2 beforehand.

	Operating procedure	Operation	Display
			DATA COLLECT 2/2 F1:SELECT A FILE F2:PCODE INPUT F3:CONFIG. P↓
1	Press the [F1](SELECT A FILE) key from DATA COLLECT menu 2/2.	[F1]	SELECT A FILE F1:MEAS.DATA F2:COORD.DATA
2	Press the [F2](COORD.DATA) key.	[F2]	SELECT A FILE FN: INPUT LIST ENTER
3	Select a coordinate file in the same manner as Section 7.1.1 "Selecting a File for Data Collection".		IN ST III

7.1.3 Occupied Point and Backsight Point

The occupied point and direction angle in the data collect mode are linked with the occupied point and direction angle in normal coordinate measurement.

It is possible to set or change the occupied point and direction angle from the data collect mode.

Occupied point can be set by two setting methods as follow.

- 1) Setting from the coordinate data stored in the internal memory.
- 2) Direct key input.

The following three setting methods for backsight point can be selected.

- 1) Setting from the coordinate data stored in the internal memory.
- 2) Direct key input of coordinate data.
- 3) Direct key input of setting angle.

Note: See 9.4 "Coordinate Data Direct Key Input" and 9.7.2 "Loading Data" for how to store coordinate into the internal memory.

Example for setting the occupied point:
 In case of setting occupied point from the coordinate data stored in the internal memory.

Operating procedure	Operation	Display
Press the [F1](OCC.PT# INPUT) key from the data collect menu 1/2. The previous data is shown.	[F1]	PT# →PT-01 ID : INS.HT: 0.000 m INPUT SRCH REC OCNEZ
2 Press the [F4] (OCNEZ) key.	[F4]	OCC.PT PT#:PT-01
		INPUT LIST NEZ ENTER
3 Press the [F1](INPUT) key.	[F1]	OCC.PT PT#=PT-01
		1234 5678 90 [ENT]

4 Enter PT#, press [F4](ENT) key. *1)	Enter PT# PT# \rightarrow PT-11 ID : INS.HT: 0.000 m INPUT SRCH REC OCN	EZ
5 Enter ID, INS.HT in the same way. *2),3)6 Press [F3](REC) key.	Enter ID, INS.HT ID : INS.HT ID : INS.HT → 1.335 m INPUT SRCH REC OCNE >REC ? [YES] [N	
 7 Press [F3](YES) key. The display returns to the data collect menu 1/2. 	[F3] DATA COLLECT 1/2 F1:OCC.PT# INPUT F2:BACKSIGHT F3:FS/SS P	

- *1) Refer to Section 2.6 "How to Enter Alphanumeric characters".
- *2) ID can be input by inputting a register number linked with PCODE Library. To show the list of PCODE library, press the [F2](SRCH) key.
- *3) Press the [F3](REC) key when you do not input the INS.HT.
- The data recorded in data collect is PT#, ID and INS.HT.
- If point is not found in internal memory "PT# DOES NOT EXIST" is displayed.

• Example for setting the direction angle:

The following is to memorize the data of the backsight after setting the backsight point from point number.

	Operating procedure	Operation	Display
1	Press the [F2](BACKSIGHT) key from the data collect menu 1/2. The previous data is shown.	[F2]	BS# → PCODE : R.HT : 0.000 m INPUT OSET MEAS BS
2	Press the [F4] (BS) key. *1)	[F4]	BACKSIGHT PT#:
3	Press the [F1](INPUT) key.	[F1]	INPUT LIST NE/AZ ENT BACKSIGHT PT#=
4	Enter PT#, press the [F4](ENT) key. *2)		1234 5678 90 [ENT]
	Enter PCODE,R.HT in the same way. *3),4)	Enter PT# [F4]	BS# →PT-22 PCODE: R.HT: 0.000 m INPUT OSET MEAS BS
5	Press the [F3](MEAS) key.	[F3]	BS# →PT-22 PCODE : R.HT : 0.000 m *VH SD NEZ
6	Collimate back sight point. Select one of the measuring mode and press the soft key. EXAMPLE: [F2](Slope Distance) key. Measuring starts. Horizontal circle is set to calculated direction	Collimate BS [F2]	V: 90°00'00" HR: 0°00'00" SD*[n] <<< m > Measuring
	angle. Measuring result is memorized and the display returns to the data collect menu 1/2.		DATA COLLECT 1/2 F1:OCC.PT# INPUT F2:BACKSIGHT F3:FS/SS P↓

^{*1)} Pressing each time the [F3] key, the input method changes as Coordinate value, Angle, Coordinate point name alternatively.

^{*2)} Refer to Chapter 2.6 "How to Enter Alphanumeric characters".

^{*3)} PCODE can be input by inputting a register number linked with PCODE Library. To show the list of PCODE library, press the [F2](SRCH) key.

^{*4)} Data collect sequence can be set to [EDIT→MEAS]. Refer to Section 7.6 "Setting Parameter of Data Collect [CONFIG.]".

[•] If point is not found in internal memory " PT# DOES NOT EXIST" is displayed.

7.2 Operational Procedure of "DATA COLLECT"

	Operating procedure	Operation	Display
	5 P	5,5.2.2.5	DATA COLLECT 1/2 F1:OCC.PT# INPUT F2:BACKSIGHT F3:FS/SS P↓
1	Press the [F3](FS/SS) key from the data collect menu 1/2. The previous data is shown.	[F3]	PT# → PCODE : R.HT : 0.000 m INPUT SRCH MEAS ALL
2	Press the [F1](INPUT) key and enter PT#. Press the [F4](ENT) key. *1)	[F1] Enter PT# [F4]	PT# =PT-01 PCODE: R.HT: 0.000 m 1234 5678 90 [ENT]
			PT# :PT-01 PCODE → R.HT : 0.000 m INPUT SRCH MEAS ALL
3	Enter PCODE, R.HT in the same way. *2),3)	[F1] Enter PCODE [F4] [F1]	PT# →PT-01 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL
4	Press the [F3](MEAS) key.	EnterR.HT [F4]	VH *SD NEZ OFSET
5	Collimate the target point.	[F3] Collimate	
6	Press one of the [F1] to [F3] key. *4) Example: [F2](SD) key. Measuring starts.	[F2]	V: 90°10'20" HR: 120°30'40" SD*[n] < m > Measuring < complete >
	The measuring data is memorized and the display changes to the next point. *5) PT# is automatically incremented.		PT# →PT-02 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL
7	Enter the next point data and collimate the next point.	Collimate	
8	Press [F4](ALL) key. Measuring starts in the same measuring mode of the previous point. Data is recorded.	[F4]	V: 90°10'20" HR: 120°30'40" SD*[n] < m > Measuring < complete >
	Continue the measuring in the same way. To finish the mode , press [ESC] key.		PT# →PT-03 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL

- *1) Refer to Section 2.6 "How to Enter Alphanumeric characters".
- *2) PCODE can be input by inputting a register number linked with PCODE Library. To show the list of PCODE library, press the [F2](SRCH) key.
- *3) Data collect sequence can be set to [EDIT→MEAS]. See to Section 7.6 "Setting Parameter of Data Collect [CONFIG.]".
- *4) The mark "*" indicates the previous measuring mode.
- *5) You can confirm the measured data as follows. Refer to Section 7.6 "Setting Parameter of Data Collect [CONFIG.]".

V: 90°10'20"
HR: 120°30'40"
SD: 98.765 m
> OK? [YES][NO]

Searching the recorded data

While executing the DATA COLLECT mode, you can search the recorded data.

	Operating procedure	Operation	Display
			PT# →PT-02 PCODE : R.HT : 1.200 m INPUT SRCH MEAS ALL
1	While executing the DATA COLLECT mode, press [F2](SRCH) key. *1)	[F2]	SEARCH [TOPCON] F1:FIRST DATA
	The using file name will appear on the top of the right side of the display.		F2:LAST DATA F3:PT# DATA
2	Select one of three search methods by pressing [F1] to [F3] key. *2)	[F1] to [F3]	

^{*1)} It is possible to see the PCODE list when the arrow is located beside PCODE or ID.

^{*2)} The operation is same as the "SEARCH" in the MEMORY MANAGER mode. For more information, refer to Section 9.2 "Searching Data".

Entering PCODE / ID using PCODE Library

While executing the DATA COLLECT mode, you can enter PCODE /ID from PCODE Library.

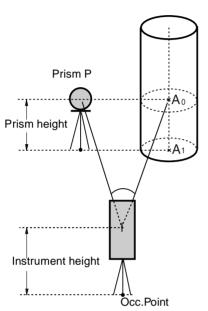
	Operating procedure	Operation	Display
1	Move the arrow to the PCODE or ID in the DATA		PT# :PT-02 PCODE → R.HT : 1.200 m INPUT SRCH MEAS ALL
2	COLLECT mode, press the [F1](INPUT) key. Enter a register number linked with PCODE library and press the [F4](ENT) key. (Example) Register number, 32 = TOPCON	[F1] Enter No [F4]	PT# :PT-02 PCODE =32 R.HT : 1.200 m 1234 5678 90 [ENT]
			PT# :PT-02 PCODE :TOPCON R.HT → 1.200 m INPUT SRCH MEAS ALL

• Entering PCODE / ID from the list of PCODE

You can also enter PCODE / ID from the list of PCODE.

	Operating procedure	Operation	Display
			PT# :PT-02 PCODE → R.HT : 1.200 m INPUT SRCH MEAS ALL
1	Move the arrow to the PCODE or ID in the DATA COLLECT mode, press the [F2](SRCH) key.	[F2]	→001:PCODE01 002:PCODE02 EDIT CLR ENTER
2	By pressing the following keys, the register number will increase or decrease. [▲]or[▼]:Increasing or Decreasing one by one [▶]or[◄]:By ten Increasing or Decreasing. *1)	[▲]or[▼] [▶]or[◀]	031:PCODE31 →032:TOPCON 033:HILTOP EDIT CLR ENTER
3	Press the [F4](ENTER) key.	[F4]	PT# :PT-02 PCODE :TOPCON R.HT → 1.200 m INPUT SRCH MEAS ALL
*1) To edit the PCODE library, press the [F1](EDIT) key. To delete the PCODE registered with shown an arrow, press the [F3](CLR) key. PCODE can be edited in DATA COLLECT menu 2/2 or MEMORY MANAGER menu 2/3.			

⁷⁻⁹


7.3 Data Collect Offset Measurement mode

This mode is useful when it is difficult to set up the prism directly, for example at the center of a tree. Data Collect . Offset Measurement has four measuring methods.

- Angle offset measurement
- Distance offset measurement
- Plane offset measurement
- Column offset measurement

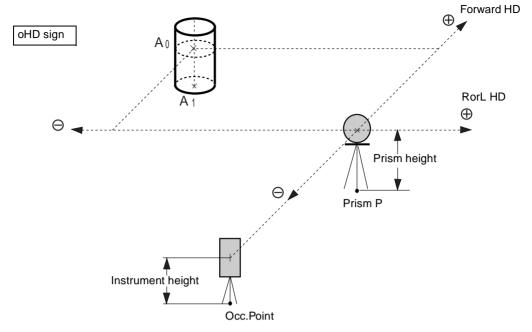
7.3.1 Angle Offset Measurement

Place the prism at the same horizontal distance from the instrument as that of point A0 to measure.

When measuring coordinates of ground point A1 :Set the instrument height / prism height.

When measuring coordinates of point A0: Set the instrument height only. (Set the prism height to 0).

When sighting to A_0 , you can select one of two ways. One is to fix vertical angle to the prism position even up down the telescope position, and the other is to gear vertical angle to the up down of telescope movement. In case following the vertical angle to the movement of telescope, SD (Slope Distance) and VD (Vertical Distance) will be changed according to the movement of telescope.


To set this option, refer to Chapter 16 "SELECTING MODE".

Operating procedure	Operation	Display
1 Press the [F3](MEAS) key.	[F3]	PT# →PT-11 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL VH *SD NEZ OFSET
2 Press the [F4](OFSET) key.	[F4]	OFFSET 1/2 F1:ANG. OFFSET F2:DIST. OFFSET F3:PLANE OFFSET P↓
3 Press the [F1] key.	[F1]	OFFSET-MEASUREMENT HR: 120°30'40" HD: m >Sight ? [YES][NO]
4 Collimate the prism.	Collimate P	
5 Press the [F3](YES) key. Continuous measuring starts.	[F3]	OFFSET-MEASUREMENT HR: 120°30'40" HD*[n] < m >measuring

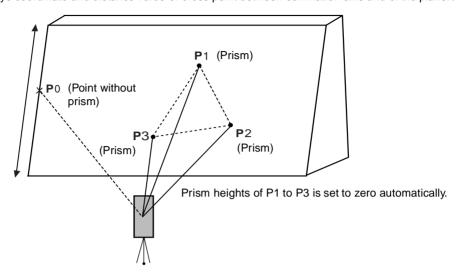
6	Collimate point A0 using the horizontal motion clamp and horizontal tangent screw.	Collimate A0	OFFSET-MEASUREMENT HR: 120°30'40" SD* 12.345 m >OK? [YES] [NO] OFFSET-MEASUREMENT HR: 123°30'40" SD: 12.345 m >OK? [YES] [NO]
7	Show the horizontal distance of point A0.	[4]	OFFSET-MEASUREMENT HR: 123°30'40" HD: 6.543 m >OK? [YES][NO]
8	Show the relative elevation of point A0. Each time pressing [] key, horizontal distance relative elevation and slope distance are shown in sequence.	[⊿]	OFFSET-MEASUREMENT HR: 123°30'40" VD: 0.843 m >OK? [YES][NO]
9	Show N coordinate of point A0 or A1. Each time pressing [] key, N,E and Z coordinate are shown in sequence.	[匕]	OFFSET-MEASUREMENT HR: 123°30'40" N: -12.345 m >OK? [YES][NO]
10	Press the [F3](YES) key. The data is recorded and the next measuring point is displayed.	[F3]	PT# →PT-12 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL

7.3.2 Distance Offset Measurement

The measurement of a place apart from a prism is possible by inputting offset horizontal distance of front and back / right and left.

When measuring coordinates of ground point A₁: Set the instrument height / prism height.

When measuring coordinates of point A_0 : Set the instrument height only. (Set the prism height to 0).


Operating procedure	Operation	Display
1 Press the [F3](MEAS) key.	[F3]	PT# →PT-11 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL VH *SD NEZ OFSET
2 Press the [F4](OFSET) key.	[F4]	OFFSET 1/2 F1:ANG. OFFSET F2:DIST. OFFSET F3:PLANE OFFSET P↓
3 Press the [F2] key.	[F2]	DISTANCE OFFSET INPUT RorL HD OHD: 0.000 m INPUT SKP ENTER
4 Press the [F1](INPUT) key and enter Right and Left direction offset value.*1)	[F1] Enter HD [F4]	DISTANCE OFFSET INPUT FORWARD HD OHD: 0.000 m INPUT SKP ENTER
5 Press the [F1](INPUT) key and enter Forward direction offset value. *1)	[F1] Enter HD [F4]	PT# :PT-11 PCODE : TOPCON R.HT : 1.200 m *SD NEZ

6	Collimate the prism.	Collimate P		
7	Press the [F2] or [F3] key. Example:[F3](NEZ) key Measuring starts.	[F3]	N*[n] E: Z:	<<< m m m
	The data is recorded and the next measuring point is displayed.		R.HT :	ing -12 PCON
*1	To skip entering, press the [F3](SKP) key.			

7.3.3 Plane Offset Measurement

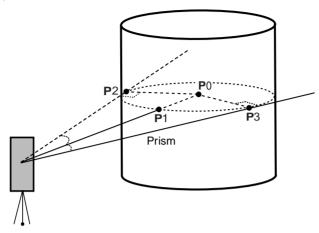
Measuring will be taken for the place where direct measuring can not be done, for example distance or coordinate measuring for a edge of a plane.

Three random points (P1, P2, P3) on a plane will be measured at first in the plane offset measurement to determine the measured plane. Collimate the measuring point (P0) then the instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane.

Operating procedure	Operation	Display
1 Press the [F3](MEAS) key.	[F3]	PT# →PT-11 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL VH *HD NEZ OFSET
2 Press the [F4](OFSET) key.	[F4]	OFFSET 1/2 F1:ANG.OFFSET F2:DIST.OFFSET F3:PLANE OFFSET P↓
3 Press the [F3](PLANE OFFSET) key.	[F3]	PLANE N001#: SD: m MEAS
4 Collimate prism P1, and press the [F1](MEAS) key. Measuring will start. After measuring, the display will show the second point measurement.	Collimate P1 [F1]	PLANE N001#: SD* [n] << m >Measuring
5 Measure the second and third points in the same way.	Collimate P2 [F1]	PLANE N002#: SD: m MEAS

	Collimate PLANE N003#:
	[F1]
	↓ ↓
The display changes to PT# input in the plane offset measurement. *1) Input point number if necessary.	PLANE PT# →PT-11 PCODE :TOPCON INPUT SRCH MEAS
6 Press the [F4](MEAS) key. The instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane. *2)	[F4] HR: 80°30'40" HD: 54.321 m VD: 10.000 m >OK? [YES][NO]
7 Collimate the edge (P0) of the plane. *3), 4)	Collimate P0 HR: 75°30'40" HD: 54.600 m VD: -0.487 m >OK? [YES] [NO]
 8 To show the slope distance (SD), press th key. Each time pressing the [] key, horizontal distance, relative elevation and slope distance are shown in sequence. 	V: 90°30'40" HR: 75°30'40" SD: 54.602 m >OK? [YES][NO]
 To show coordinate value of point P0, press the [
9 Press the [F3](YES) key. The measured data will be recorded and the next offset point number will be displayed.	[F3] PLANE PT# →PT-12 PCODE :TOPCON INPUT SRCH MEAS
10 To escape the measuring, press the [ESC] key. The display returns to the next point number in data collect mode.	[ESC] PT# →PT-12 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL

^{*1)} In case the calculation of plane was not successful by the measured three points, errordisplays. Start measuring over again from the first point.
*2) Data display is the mode beforehand of offset measurement mode.


^{*3)} Error will be displayed when collimated to the direction which does not cross with the determined plane.

^{*4)} The refrector height of the target point P0 is set to zero automatically

7.3.4 Column Offset Measurement

If it is possible to measure circumscription point (P1) of column directly, the distance to the center of the column (P0), coordinate and direction angle can be calculated by measured circumscription points (P2) and (P3).

The direction angle of the center of the column is 1/2 of total direction angle of circumscription points (P2) and (P3).

Oper	ating procedure	Operation	Display
1 Press the [F3](ME	EAS) key.	[F3]	PT# →PT-11 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL VH *SD NEZ OFSET
2 Press the [F4](OF	SET) key.	[F4]	OFFSET 1/2 F1:ANG.OFFSET F2:DIST.OFFSET F3:PLANE OFFSET P↓
3 Press the [F4](P1	↓) key.	[F4]	OFFSET 2/2 F1:COLUMN OFFSET
4 Press the [F1](CC	DLUMN OFFSET) key.	[F1]	COLUMN OFFSET Center HD: m MEAS
5 Collimate the centhe [F1](MEAS) keep Measuring will state		Collimate P1 [F1]	COLUMN OFFSET Center HD* [n] << m >Measuring
After the measure of the left side (P2	ement, angle measuring display 2) will be shown.		COLUMN OFFSET Left HR: 120°30'40" SET

6	Collimate the left side of the column (P2) and press the [F4](SET) key. After the measurement, angle measuring display of the right side (P3) will be shown.	Collimate P2 [F4]	COLUMN OFFSET Right HR: 180°30'40" SET
7	Collimate the right side of the column (P3) and press the [F4](SET) key. The distance between the instrument and center of the column (P0) will be calculated.	Collimate P3 [F4]	COLUMN OFFSET HR: 150°30'40" HD: 43.321 m >OK? [YES][NO]
	To show the relative elevation (VD), press the [[4]	COLUMN OFFSET HR: 150°30'40" VD: 2.321 m >OK? [YES][NO]
8	To show coordinate of point P0, press the [] key. Press the [F3](YES) key. The display returns to the next point number in data collect mode.	[F3]	PT# →PT-12 PCODE :TOPCON R.HT : 1.200 m INPUT SRCH MEAS ALL

7.4 NEZ Auto Calculation

As measured data is collected, coordinates are calculated and stored for traverse or topo collection. Automatic making out function of coordinate data sets up in CONFIG of data collect. Refer to Section 7.6 "Setting Parameter of Data Collect [CONFIG.]".

As a default, coordinate data calculated will be saved in a file of the same name as the measurement data file.

When the coordinate data file of the same name as the measurement data file does not exist, it will be generated automatically.

It is possible to change a file for saving coordinate data in the DATA COLLECT Menu 2/2 (F1:SELECT A FILE).

To calculate a coordinate data, it is necessary to add a point number in Data Collect execution.

When a coordinate data of the same point number exist already, it can be replaced with the new data by confirming display.

 Coordinates will be calculated using the grid factor. To set the grid factor, see Section 6.2" Setting the GRID FACTOR".

7.5 Editing PCODE Library [PCODE INPUT]

PCODE data can be entered into PCODE Library in this mode.

A PCODE is liked with a number of 1 to 50.

PCODE can be also edited in MEMORY MANAGER menu 2/3 in the same way.

Operating procedure	Operation	Display
		DATA COLLECT 2/2 F1:SELECT A FILE F2:PCODE INPUT F3:CONFIG. P↓
1 Press the [F2](PCODE INPUT) key from Data Collect menu 2/2.	[F2]	→001:TOPCON 002:TOKYO EDIT CLR
 2 By pressing the following keys, the list will increase or decrease. [▲] or[▼]: Increasing or Decreasing one by one [▶]or[◄]: By ten Increasing or Decreasing. 	[▲]or[▼] [▶]or[◀]	011:URAH →012:AMIDAT 013:HILLTO EDIT CLR
3 Press the [F1](EDIT) key.	[F1]	011:URAH →012=AMIDAT 013:HILLTO 1234 5678 90 [ENT]
4 Enter PCODE and press the [F4](ENT) key. *1)	Enter PCODE [F4]	011:URAH →012:AMISUN 013:HILLTO EDIT CLR
*1) Refer to Section 2.6 "How to Enter Alphanumeric characters".		

7.6 Setting Parameter of Data Collect [CONFIG.]

In this mode, the following settings of data collect mode are possible.

Setting Items

Menu	Selecting Item	Contents
F1:DIST MODE	FINE / CRS(1) / CRS(10)	Select Fine /Coarse(1) /Coarse(10) mode in distance measurement mode. The unit to be displayed is as follows. Fine mode: 1mm (0.2mm) Coarse (1) mode: 1mm Coarse (10) mode: 10mm
F2:HD/SD	HD/SD	Select the distance measurement mode Horizontal distance or Slope distance.
F3:MEAS. SEQ.	N-TIMES / SINGLE / REPEAT	Select to set measurement mode for distance measurement.
F1:DATA CONFIRM	YES/NO	It is possible to confirm the result of measuring data before the data is recorded.
F2:COLLECT SEQ.	[EDIT→MEAS] / [MEAS→EDIT]	Select the procedure of data collection. [EDIT-MEAS] :Measurement is carried out after entering other data. [MEAS-EDIT] :Measurement is carried out before entering other data.
F3:NEZ AUTO. CALC	ON/OFF	It is possible to calculate coordinate value of data collected and store it into coordinate data file in every data collection.

How to Set Items

Example Setting: DATA CONFIRM: YES

	Operating procedure	Operation	Display
			DATA COLLECT 2/2 F1:SELECT A FILE F2:PCODE INPUT F3:CONFIG. P↓
1	Press the [F3] (CONFIG.) key from the data collect menu 2/2. The CONFIG menu 1/2 is shown.	[F3]	CONFIG. 1/2 F1:DIST MODE F2:HD/SD F3:MEAS. SEQ. P↓
2	Press the [F4](P↓) key to display the CONFIG menu 2/2.	[F4]	CONFIG. 2/2 F1:DATA CONFIRM F2:COLLECT SEQ. F3:NEZ AUTO. CALC P↓
3	Press the [F1] (DATA CONFIRM) key. [] indicates the current setting.	[F1]	DATA CONFIRM F1:YES [F2:NO] ENTER
4	Press the [F1] (YES) key.	[F1]	DATA CONFIRM [F1:YES] F2:NO ENTER
5	Press the [F4] (ENTER) key.	[F4]	

8 LAYOUT

LAYOUT mode has two functions which are setting of layout points and setting new points using coordinate data in the internal memory.

Also, if the coordinate data is not stored in the internal memory, this can be input from key board. The coordinate data is loaded from PC to the internal memory via RS-232C.

The coordinate data

The coordinate data is memorized into a file.

For the internal memory, refer to Chapter 9 "MEMORY MANAGER MODE".

The GTS-230W is able to store the coordinate data into the internal memory. The internal memory is shared by the measured data and the coordinate data for layout. Maximum 30 files can be generated.

The number of coordinate data

(In case not using the internal memory in the data collect mode)

MAX. 16,000 points

Because the internal memory covers both data collection mode and layout mode, the number of coordinate data will be decreased when the data collection mode is used.

 When turning off the power, ensure that you are in the main menu screen or main angle measurement mode.

This ensures completion of the memory access process and avoids possible damage to the stored data.

- 2) It is recommended for safety to charge the battery (BT-52QA) beforehand and prepare fully charged spare batteries.
- 3) When recording new point data, remember to consider the amount of internal memory available.

Layout menu operation

By pressing the [MENU] key, the instrument will be in MENU 1/3 mode. Press the [F2](LAYOUT) key, the menu of layout 1/2 will be shown.

8.1 Preparation

8.1.1 Setting the GRID FACTOR

Calculation Formula

1) Elevation Factor

Elevation Factor = $\frac{R}{R + ELEV}$ R: The average radius of the earth ELEV: The elevation above mean sea level

2) Scale Factor

Scale Factor: Scale Factor at the surveying station

3) Grid Factor

Grid Factor = Elevation Factor × Scale Factor

Distance Calculation

1) Grid Distance

 $HDg = HD \times Grid Factor$ $HDg : Grid distance \\ HD : Ground distance$

2) Ground Distance

$$HD = \frac{HDg}{Grid\ Factor}$$

How to Set Grid Factor

0	perating procedure	Operation	Display
			LAYOUT 2/2 F1:SELECT A FILE F2:NEW POINT F3:GRID FACTOR P↓
1 Press the [F3] Layout menu 2	(GRID FACTOR) key from the 2/2.	[F3]	GRID FACTOR =0.998843
			>MODIFY? [YES][NO]
2 Press the [F3]	(YES) key.	[F3]	GRID FACTOR ELEV1000 m SCALE: 0.999000 INPUT ENTER
	(INPUT) key and enter Elevation. e [F4](ENT)key.	[F1] Enter ELEV. [F4]	GRID FACTOR ELEV.:2000 m SCALE-1.001000 INPUT ENTER
Grid Factor is	actor in the same way. displayed for 1 to 2 second and s to Layout menu 2/2.	[F1] Enter Scale [F4]	GRID FACTOR =1.000686

*1) Refer to Section 2.6 "How to Enter Alphanumeric characters".

● Input Range :Elevation : -9,999 to +9,999 meter (-32,805 to +3,2805 ft, ft+in)

Scale Factor: 0.990000 to 1.010000

8.1.2 Selecting Coordinate Data File

You can execute a Layout from selected coordinate data file, also you can record New point measured data into the selected coordinate data file.

- The only coordinate data file existing can be selected and you can not make a new file in this mode. For more information about File, refer to Chapter 9 "MEMORY MANAGER MODE".
- When LAYOUT MODE is begun, a file can be selected in the same way.

Operating procedure	Operation	Display
		LAYOUT 2/2 F1:SELECT A FILE F2:NEW POINT F3:GRID FACTOR P↓
Press the [F1](SELECT A FILE) key from the ayout menu 2/2.	[F1]	SELECT A FILE FN:
		INPUT LIST ENTER
Press the [F2](LIST) key to display the list of coordinate data file.*1)	[F2]	COORDDATA /C0123 ->*TOKBDATA /C0345 TOPCDATA /C0789 SRCH ENTER
Scroll file list by pressing the [▲]or[▼] key and select a file to use. *2),3)	[▲]or[▼]	*TOKBDATA /C0345 → TOPCDATA /C0789 SATIDATA /C0456 SRCH ENTER
Press the [F4](ENTER) key. The file will be set .	[F4]	LAYOUT 2/2 F1:SELECT A FILE F2:NEW POINT F3:GRID FACTOR P↓

^{*1)} If you want to input file name directly, press the [F1](INPUT) key and enter a file name.

^{*2)} When a file has been selected already, '*' mark is indicated on left of current file name. For the file discrimination mark (*, @, &), refer to Section 9.3 "FILE MAINTENANCE".

^{*3)} Data in a file shown with arrow can be searched by pressing the [F2](SRCH) key.

8.1.3 Setting Occupied Point

Occupied point can be set by two setting methods as follows.

- 1) Setting from the coordinate data stored in the internal memory.
- 2) Direct key input of coordinate data.
- Example setting: Setting the occupied point from the internal coordinate data file

	Operating procedure	Operation	Display
1	Press the [F1](OCC.PT INPUT) key from the Layout menu 1/2.	[F1]	OCC.PT PT#:
2	Press the [F1] (INPUT) key , enter PT# and press the [F4](ENT) key. *1)	[F1] Enter PT# [F4]	INPUT LIST NEZ ENTER INSTRUMENT HEIGHT INPUT INS.HT: 0.000 m INPUT ENTER
3	Enter INS.HT in the same way. The display returns to layout menu 1/2.	[F1] Enter INS.HT	LAYOUT 1/2 F1:OCC.PT INPUT F2:BACKSIGHT
*1	*1) Refer to Section 2.6 "How to Enter Alphanumeric characters".		

• Example setting: Setting Instrument point coordinates directly

	Operating procedure	Operation	Display
1	Press the [F1](OCC.PT INPUT) key from the Layout menu 1/2.	[F1]	OCC.PT PT#:
2	Press the [F3] (NEZ) key.	[F3]	N→
3	Press the [F1](INPUT) key and enter coordinate value. press the [F4](ENT) key. *1),2)	[F1] Enter coord. [F4]	COORD.DATA INPUT PT#: INPUT ENTER
4	Press the [F1](INPUT) key and enter PT#. Press the [F4](ENT) key. *2)	[F1] Enter PT# [F4]	INSTRUMENT HEIGHT INPUT INS.HT: 0.000 m INPUT ENTER
5	Enter Instrument Height in the same way. The display returns to layout menu 1/2.	[F1] Enter INS.HT [F4]	LAYOUT 1/2 F1:OCC.PT INPUT F2:BACKSIGHT F3:LAYOUT P↓

^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".

^{*2)} It is possible to record the coordinate value. Refer to Chapter 16 "SELECTING MODE".

8.1.4 Setting Backsight Point

The following three setting methods for Backsight point can be selected.

- 1) Setting from the coordinate data file stored in the internal memory.
- 2) Direct key input of coordinate data.
- 3) Direct key input of setting angle.

	Operating procedure	Operation	Display
1	Press the [F2](BACKSIGHT) key from the Layout menu 1/2.	[F2]	BACKSIGHT PT#:
_			INPUT LIST NE/AZ ENT
2	Press the [F1] (INPUT) key.	[F1]	BACKSIGHT PT#=BK-01
			1234 5678 90 [ENT]
3	Enter PT#, press the [F4](ENT) key. *1)	Enter PT# [F4]	BACKSIGHT H(B) = 0°00'00"
			>Sight ? [YES][NO]
4	Sight the backsight point and press the [F3](YES) key. The display returns to the layout menu 1/2.	Sight BK [F3]	
*1)	Refer to Section 2.6 "How to enter alphanumeric cha	aracters".	
•	With each pressing of [F3] key, method of inputting backsight is changed.	<u> </u> -	BACKSIGHT PT#:
			INPUT LIST NE/AZ ENT [F3](NE/AZ)
			$N \rightarrow 0.000 \text{ m}$
			E: 0.000 m
			INPUT AZ ENTER
			[F3](AZ)

BACKSIGHT HR:

INPUT --- PT#

ENTER

[F3](PT#)

• Example setting: Setting the backsight point coordinates directly

	Operating procedure	Operation	Display
1	Press the [F2](BACKSIGHT) key from the Layout menu 1/2.	[F2]	BACKSIGHT PT#:
			INPUT LIST NE/AZ ENT
2	Press the [F3] (NE/AZ) key.	[F3]	N→ 0.000 m E: 0.000 m
			INPUT AZ ENTER
3	Press the [F1](INPUT) key and enter coordinate value. Press the [F4](ENT) key. *1), 2)	[F1] Enter coord. [F4]	BACKSIGHT H(B) = 0°00'00"
			>Sight ? [YES][NO]
4	Sight the backsight point.	Sight BK	
5	Press the [F3](YES) key.	[F3]	LAYOUT 1/2
	The display returns to the layout menu 1/2.		F1:OCC.PT INPUT F2:BACKSIGHT F3:LAYOUT P

^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".
*2) It is possible to record the coordinate value. Refer to Chapter 16 "SELECTING MODE".

8.2 Executing a Layout

The following methods can be selected for executing a Layout:

- 1) Recalling points from internal memory by point number.
- 2) Direct key input of coordinate values.

Example setting: Recalling point from internal memory.

	Operating procedure	Operation	Display
			LAYOUT 1/2 F1:OCC.PT INPUT F2:BACKSIGHT F3:LAYOUT P↓
1	Press the [F3](LAYOUT) key from the layout menu 1/2.	[F3]	LAYOUT PT#:
	D (1 (F4)/ND(F))		INPUT LIST NEZ ENTER
	Press the [F1](INPUT) key, and enter PT#. *1) Press the [F4](ENT) key. *2)	[F1] Enter PT# [F4]	REFLECTOR HEIGHT INPUT R.HT: 0.000 m INPUT ENTER
3	Enter reflector height in the same way. When the layout point is set, the instrument will start layout calculation. HR: Calculated horizontal angle of the layout point HD: Calculated horizontal distance from the instrument to the layout point	[F1] Enter R.HT [F4]	CALCULATED HR= 90°10'20" HD= 123.456 m ANGLE DIST
4	Collimate the prism, and press the [F1](ANGLE) key. PT#: Layout point HR: Measured (Actual) horizontal angle. dHR: Horizontal angle to be turned to the layout point = Actual horizontal angle - Calculated horizontal angle. Correct direction when dHR = 0°00'00"	Collimate P [F1]	PT#: LP-100 HR: 6°20'40" dHR: 23°40'20" DIST NEZ
5	Press the [F1](DIST) key. HD: Measuring (Actual) horizontal distance dHD: Horizontal distance to be turned to the layout point = Actual horizontal distance – Calculated horizontal distance. dZ: Vertical distance to be turned to the layout point = Actual vertical distance – Calculated vertical distance.	[F1]	HD*[t] < m dHD: m dZ: m MODE ANGLE NEZ NEXT HD* 143.84 m dHD: -13.34 m dZ: -0.05 m MODE ANGLE NEZ NEXT
6	Press the [F1](MODE) key. The fine mode measuring starts.	[F1]	HD*[r] < m dHD: m dZ: m MODE ANGLE NEZ NEXT HD* 156.835 m dHD: -3.327 m dZ: -0.046 m MODE ANGLE NEZ NEXT

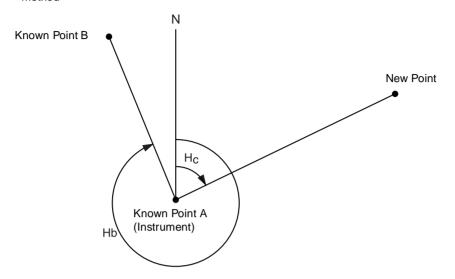
7	When the display value dHR, dHD and dZ are equal to 0, the layout point is established.*3		
8	Press the [F3](NEZ) key. The coordinate data is shown.	[F3]	N * 100.000 m E: 100.000 m Z: 1.015 m MODE ANGLE NEXT
9	Press the [F4](NEXT) key to set next layout point . PT# is automatically incremented.	[F4]	LAYOUT PT#: LP-101 INPUT LIST NEZ ENTER

Point Guide Function (Only for Point Guide type)

The point guide function can be used while executing a Layout.

	Operating procedure	Operation	Display
			PT#:P1003 HR: 6°20'40" dHR: 23°40'20" DIST NEZ
1	After measuring Angle, Distance or Coordinate, press the [MENU] key.	[MENU]	POINTGUIDE [OFF]
			[ON] [OFF]
2	Press the [F3](ON) or [MENU] key.	[F3] or	POINTGUIDE [ON]
		[MENU]	[ON] [OFF]
3	Press the [ESC] key to return to the previous display.	[ESC]	PT#:P1003 HR: 6°20'40" dHR: 23°40'20" DIST NEZ

^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".
*2) Point number could not be entered when data to comply with the coordinate value does not exist in the


^{*3)} Cut & Fill displaying function is available . Refer to Chapter 16 "SELECTING MODE".

8.3 Setting a New Point

New point is required for example when a layout point cannot be sighted from existing control points.

8.3.1 Side Shot Method

Set up the instrument at a known point, and measure the coordinate of the new points by the side shot method

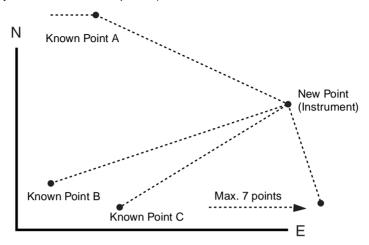
Operating procedure	Operation	Display
		LAYOUT 1/2 F1:OCC.PT INPUT F2:BACKSIGHT F3:LAYOUT P↓
1 Press the [F4](↓) key from the layout menu 1/2 to get the layout menu 2/2.	[F4]	LAYOUT 2/2 F1:SELECT A FILE F2:NEW POINT F3:GRID FACTOR P↓
2 Press the [F2](NEW POINT).	[F2]	NEW POINT F1:SIDE SHOT F2:RESECTION
3 Press the [F1](SIDE SHOT) key.	[F1]	SELECT A FILE FN: INPUT LISTENTER
4 Press the [F2](LIST) key to display the list of coordinate data file. *1)	[F2]	COORDDATA /C0123 →*TOKBDATA /C0345 TOPCDATA /C0789 SRCH ENTER
5 Scroll file list by pressing [▲]or[▼] key and select a file to use. *2),3)	[▲]or[▼]	*TOKBDATA /C0345 → TOPCDATA /C0789 SATIDATA /C0456 SRCH ENTER

Ī •	<u> </u>
6 Press the [F4](ENTER) key. The file will be set .	[F4] SIDE SHOT PT#:
	INPUT SRCH ENTER
7 Press the [F1](INPUT) key, and enter the point name. *4) Press the [F4](ENT) key.	REFLECTOR HEIGHT Enter PT# [F4] REFLECTOR HEIGHT INPUT R.HT: 0.000 m INPUT ENTER
8 Enter reflector height in the same way.	[F1] Enter R.HT [F4] REFLECTOR HEIGHT INPUT R.HT: 1.235 m >Sight? [YES] [NO]
Collimate the new point, and press the [likey. Distance measuring starts.	Collimate [F3] HR: 123°40'20" HD*[n] < m VD: m > Measuring < complete >
10 Press the [F3](YES) key.*5) The name and coordinate value are stor COORD.DATA. The input menu for next new point is dispPT# is automatically incremented.	PI#:NP-101

^{*1)} If you want to input file name directly, press the [F1](INPUT) key and enter a file name.

^{*2)} When a file has been selected already, '*' mark is indicated on left of current file name. For the file discrimination mark (*, @, &), refer to Chapter 9.3 "FILE MAINTENANCE".

^{*3)} Data in a file shown with arrow can be searched by pressing [F2](SRCH) key.


^{*4)} Refer to Section 2.6 "How to Enter Alphanumeric characters".

^{*5)} An error will be displayed when the internal memory is full.

8.3.2 Resection Method

Set up the instrument at a new point, and calculate the coordinate of the new point using the coordinate data of maximum seven known points and the measurements made to these points. By following observation, resection is possible.

- Resection by distance measurement:2 or more points must be measured
- Resection by angle measurement only:3 or more points must be measured An occupied point coordinate value will be calculated by the method of least squares. (In case that 3 known points are measured by angle measurement only, the value would not be calculated by the method of least squares.)

Operating procedure	Operation	Display
		LAYOUT 1/2 F1:OCC.PT INPUT F2:BACKSIGHT F3:LAYOUT P↓
Press the [F4](↓) key from the layout menu 1/2 to get the layout menu 2/2.	[F4]	LAYOUT 2/2 F1:SELECT A FILE F2:NEW POINT F3:GRID FACTOR P↓
2 Press the [F2](NEW POINT).	[F2]	NEW POINT F1:SIDE SHOT F2:RESECTION
3 Press the [F2](RESECTION) key.	[F2]	NEW POINT PT#: INPUT SRCH SKP ENTER
4 Press the [F1](INPUT) key, and enter the new point name. *1) ,2) Press the [F4](ENT) key.	[F1] Enter PT# [F4]	
		INSTRUMENT HEIGHT INPUT INS.HT : 0.000 m INPUT ENTER

5 Enter instrument height in the same way.	[F1] Enter INS.HT [F4]	NO01# PT#: INPUT LIST NEZ ENTER
6 Enter the known point A number. *3)	[F1] Enter PT# [F4]	REFLECTOR HEIGHT INPUT R.HT: 0.000 m INPUT ENTER
7 Enter reflector height.	[F1] Enter R.HT [F4]	REFLECTOR HEIGHT INPUT R.HT: 1.235 m >Sight? ANG DIST
8 Collimate the known point A, and press the [F3](ANG) or [F4](DIST) key. Example:[F4](DIST) Distance measuring starts.	Collimate A [F4]	HR: 123°40'20" HD* < m VD: m > Measuring < complete >
Known point B entering display will be shown.		NO02# PT#: INPUT LIST NEZ ENTER
9 Same as procedure 6 to 8 proceed to the known point B. When two points have been measured by the [F4](DIST) key, the RESIDUAL ERROR will be calculated. *4)		SELECT GRID FACTOR F1:USE LAST DATA F2:CALC MEAS.DATA
10 Select GRID FACTOR for calculation of RESIDUAL ERROR by pressing [F1] or [F2] key. *5) Example: [F1]	[F1]	RESIDUAL ERROR dHD= 0.015 m dZ = 0.005 m NEXT G.F CALC
11 Press the [F1](NEXT) key to measure other points. Maximum seven points can be measured.	[F1]	NO03# PT#: INPUT LIST NEZ ENTER
12 Same as procedure 6 to 8 proceed to the known point C.		HR: 123°40'20" HD* < m VD: m > Measuring < complete > HR: 123°40'20" HD: 123.456 m VD: 1.234 m NEXT CALC

13 Press the [F4](CALC) key. *6) Standard Deviation will be shown. Unit: (sec.) or (mGON) or (mMIL)	[F4]	Standard Deviation = 1.23 sec \psi NEZ
14 Press the [F2](↓) key. Standard Deviations of each coordinate will be shown. Unit: (mm) or (inch) The display will be changed alternately by pressing [F2](↓) or (↑) key.	[F2]	SD(n): 1.23 mm SD(e): 1.23 mm SD(z): 1.23 mm ↑ NEZ
15 Press the [F4](NEZ) key. Coordinate data of the new point will be shown.	[F4]	N: 65.432 m E: 876.543 m Z: 1.234 m >REC ? [YES][NO]
16 Press the [F3](YES) key. *7) The new point data will be stored into the coordinate data file and the value of occupied coordinate data will change to that of the calculated NEW POINT.	[F3]	NEW POINT F1:SIDE SHOT F2:RESECTION
The display returns to new point menu.		

- *1) Refer to Section 2.6 "How to Enter Alphanumeric characters".
- *2) When there is no need to memorize the new point data, press the [F3](SKP) key.
- *3) To enter the known point coordinate data by direct key inputting, press the [F3](NEZ) key.
- *4) RESIDUAL ERROR:
 - dHD (Horizontal distance between two known points) =Measured value Calculated value dZ=(Z coordinate of the new point calculated from known point A) – (Z coordinate of the new point calculated from known point B)
- *5) [F1:USE LAST DATA]; RESIDUAL ERROR is calculated with GRID FACTOR already set. [F2:CALC MEAS.DATA]; RESIDUAL ERROR is calculated without GRID FACTOR already set. In this case, new GRIDFACTOR is calculated from measured data and reset."
 - •To see the GRID FACTOR value, press the [F3](G.F.) key.
- *6) In case that the all points are measured by angle measurement only, the following display will be shown. You can select Z coordinate calculation.

CALC. Z COORD. F1:YES F2:NO

F1(YES): :N,E,Z coordinates will be calculated with measured angle data.

F2(NO) : :N and E coordinates will be calculated with measured horizontal angle data. Z coordinate

(Z coordinate value =0.000m)

would not be calculated.

When the distance measurement is done even one point, Z coordinate will be calculated as a mean value of relative distance (vertical distance data).

*7) The display shows ">SET ?" when [F3](SKP) key pressed in step 4. In this case, the new point data is not stored into the coordinate data file, only the value of occupied coordinate data changes to that of the calculated NEW POINT.

● Viewing PT# LIST

You can see the PT# List and enter the data from the List, also you can see coordinate data of a point. [Example: Executing Layout Mode]

	Operating procedure	Operation	Display
			LAYOUT PT#: INPUT LIST NEZ ENTER
1	While executing the LAYOUT mode, press the [F2](LIST) key. The arrow(→) indicates selected data.	[F2]	[TOPCON] →DATA-01 DATA-02 VIEW SRCH ENTER
2	By pressing the following keys, the list will increase or decrease. [▲]or[▼]: Increasing or Decreasing one by one. [▶]or[◄] :By ten Increasing or Decreasing.	[▲]or[▼], [▶]or[◀]	DATA-49 →DATA-50 DATA-51 VIEW SRCH ENTER
3	To show the coordinate of the selected data, press the [F1](VIEW) key. It is still possible to scroll the PT# data by pressing [[▲]or[▼] key.	[F1]	PT#_DATA-50 N
4	Press the [ESC] key. The display returns to the List.	[ESC]	DATA-49 →DATA-50 DATA-51 VIEW SRCH ENTER
5	Press the [F4] (ENTER) key. The selected point number is set as PT#.	[F4]	REFLECTOR HEIGHT INPUT R.HT : 0.000 m INPUT ENTER
•	The operation of [F2](SRCH) is same as the "SEAR For more information, refer to Chapter 9 "MEMORY		

9 MEMORY MANAGER MODE

The following items for internal memory are available in this mode.

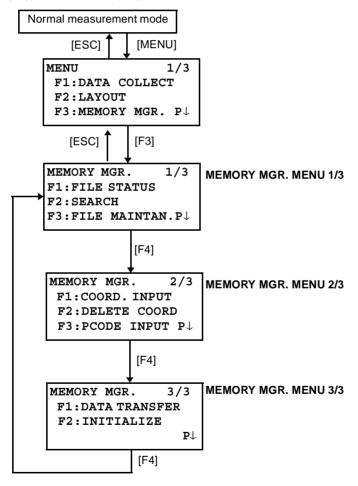
1) FILE STATUS : Checking the number of stored data / Remaining internal memory

capacity.

2) SEARCH : Searching the recorded data.3) FILE MAINTAN. : Deleting files / Editing file name

4) COORD. INPUT : Inputting coordinate data into Coord. data file.
5) DELETE COORD. : Deleting coordinate data from Coord. data file.
6) PCODE INPUT : Inputting PCODE DATA into PCODE Library

7) DATA TRANSFER: Sending measured data or coordinate data or PCODE Library data /


Uploading coordinate data or PCODE Library data / Setting

communication parameters

8) INITIALIZE : Initializing internal memory.

Memory manager menu operation

By pressing the [MENU] key, the instrument will be in MENU 1/3 mode. Press the [F3](MEMORY MGR.) key, the menu of MEMORY MGR. 1/3 will be shown.

9.1 Display Internal Memory Status

This mode is used to check the internal memory status.

	Operating procedure	Operation	Display
1	Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN P↓
2	Press the [F1](FILE STATUS) key. The total number of stored measured data files and coordinate files are shown.	[F1]	FILE STATUS 1/2 MEAS. FILE : 3 COORD. FILE: 6 [] P↓
3	Press the [F4](P↓) key. The total number of stored measured data and coordinate data in all files are shown.*1)	[F4]	Remaining memory capacity DATA STATUS 2/2 MEAS. DATA:0100 COORD. DATA:0050 [] P↓

^{*1)} Each coordinate file has one extra data for working area.

[•] The FILE/DATA STATUS display will change alternately by pressing [F4](P↓) key.

To return to MEMORY MGR. menu press the [ESC] key.

9.2 Searching Data

This mode is used to search the recorded file data in the DATA COLLECT or LAYOUT mode.

The following 3 search methods in each type of files can be selected.

- 1: First data search
- 2: Last data search
- 3: Point number search(MEAS.DATA, COORD.DATA)

Number search (PCODE LIB.)

MEAS. DATA: Measured data in the data collect mode.

COORD. DATA : Coordinate data for layout, control points and new point data measured in the

layout mode.

PCODE LIB. : The data which was registered with a number from 1 to 50 in Point code library. Point name (PT#, BS#), ID, PCODE and Height data (INS.HT, R.HT) can be corrected in the searching mode.

Measured value can not be corrected.

9.2.1 Measured Data Searching

Example: Point number searching

	Operating procedure	Operation	Display
1	Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN P↓
2	Press the [F2](SEARCH) key.	[F2]	SEARCH F1:MEAS. DATA F2:COORD. DATA F3:PCODE LIB.
3	Press the [F1](MEAS. DATA) key.	[F1]	SELECT A FILE FN: INPUT LIST ENTER
4	Press the [F1](INPUT) key and enter File Name. Press the [F4](ENT) key. *1),2)	[F1] Enter FN [F4]	MEAS. DATA SEARCH F1:FIRST DATA F2:LAST DATA F3:PT# DATA
5	Press the [F3](PT# DATA) key.	[F3]	PT# DATA SEARCH PT#: INPUT ENTER
6	Press the [F1](INPUT) key and enter PT#. Press the [F4](ENT) key. *1)	[F1] Enter PT# [F4]	PT#JTOP-104 2/2 V J 98°36'20" HRJ 160°40'20" TILTJ 0°00'00" ↓
7	Press the [F4](\downarrow) key to scroll data for selected point.	[F4]	PT# TOP-104 1/2 PCODE R.HT 1.200 m EDIT ↓

^{*1)} Refer to Section 2.6 "How to enter alphanumeric characters".

^{*2)} To show the file list, press the [F2](LIST) key.

^{• &}quot;J" represents data shown on the display is the stored data.

Press the [▲]or[▼] key to scroll to next or previous point.

To search MEAS. DATA of the same point number, press[◀]or[▶] key.

• To edit the data in searching mode

Point name (PT#, BS#) , ID, PCODE and Height data (INS.HT, R.HT) can be corrected in the searching mode.

Measured value can not be corrected.

	Operating procedure	Operation	Display
			PT# TOP-104 2/2 PCODE
1	Press the [F1](EDIT) key from last page of displayed data.	[F1]	PT# →TOP-104 PCODE : R.HT : 1.000 m INPUT ENTER
2	Select the item to correct by pressing ▲ []▼ [] key.	[▲]or[▼]	PT# :TOP-104 PCODE : R.HT → 1.000 m INPUT ENTER
3	Press the [F1](INPUT) key and enter data. *1) Press the [F4](ENT) key.	[F1] Enter Data	PT# →TOP-104 PCODE :
4	Press the [F4](ENTER) key.	[F4] [F4]	R.HT : 1.200 m >SAVE? [YES][NO]
5	Press the [F3](YES) key .	[F3]	PT#JTOP-104 2/2 PCODEJ R.HTJ 1.200 m EDIT ↓

^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".

[•] When editing, ID and PCODE are not linked with PCODE LIBRARY.

[•] Even though the height data (INS.HT, R.HT) are corrected, the measured value can not be corrected.

9.2.2 Coordinate Data Searching

Example searching: Point number searching

	Operating procedure	Operation	Display
1	Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN P↓
2	Press the [F2](SEARCH) key.	[F2]	SEARCH F1:MEAS. DATA F2:COORD. DATA F3:PCODE LIB.
3	Press the [F2](COORD. DATA) key.	[F2]	SELECT A FILE FN: INPUT LIST ENTER
4	Press the [F1](INPUT) key and enter File Name. Press the [F4](ENT) key. *1)	[F1] Enter FN [F4]	COORD. DATA SEARCH F1:FIRST DATA F2:LAST DATA F3:PT# DATA
5	Press the [F3](PT# DATA) key.	[F3]	PT# DATA SEARCH PT#: INPUT ENTER
6	Press the [F1](INPUT) key and enter PT#. Press the [F4](ENT) key. *1)	[F1] Enter PT# [F4]	PT#JTOP-104 N J 100.234 m E J 12.345 m Z J 1.678 m

^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".

● "J" represents data shown on the display is the stored data.

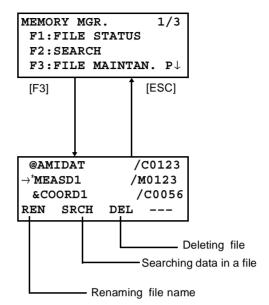
Press the [▲] or [▼] key to scroll to next or previous point.

To search COORD. DATA of the same point number, press the [◄] or[▶] key.

9.2.3 PCODE LIBRARY Searching

Example searching: Number searching

	Operating procedure	Operation	Display
1	Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN P↓
2	Press the [F2](SEARCH) key.	[F2]	SEARCH F1:MEAS. DATA F2:COORD. DATA F3:PCODE LIB.
3	Press the [F3](PCODE LIB.) key.	[F3]	PCODE DATA SEARCH F1:FIRST DATA F2:LAST DATA F3:No. SEARCH
4	Press the [F3](No. SEARCH) key.	[F3]	PCODE No. SEARCH No.: INPUT ENTER
5	Press the [F1](INPUT) key and enter number.Press the [F4](ENT) key. *1) The number and linked data will be shown. *2)	[F1] Enter PT# [F4]	011:NAKADAI →012:HILLTOP 013:ITABASH EDIT CLR


^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".

Press the [▲] or [▼] key to scroll to next or previous PCODE data.
 *2) To correct the PCODE data, press the [F1](EDIT) key.
 To delete the PCODE data, press the [F3](CLR) key.

9.3 FILE MAINTENANCE

In this mode, the following items are available. Renaming file name / Searching data in a file / Deleting files

FILE MAINTAN, menu

Pressing [F3](FILE MAINTAN.) key from MEMORY MANAGER menu 1/3, file list will be shown.

• File discrimination mark (*,@,&)

File discrimination mark (*,@,&) placed before file name indicates the file status.

For measured data file

" * " :selected file for DATA COLLECT mode.

For coordinate data file

- " * " :selected coordinate file for LAYOUT mode.
- "@":selected coordinate file for DATA COLLECT mode.
- "&":selected coordinate file for both LAYOUT and DATA COLLECT mode.
- Data discrimination character (M, C)

Data discrimination character (M, C) placed before four figures indicates the type of data.

- " M ":Measured data
- "C":Coordinate data.
- Four figures means the total number of data in the file.

(Coordinate data file has an extra data for working.)

Press the $[\blacktriangle]$ or $[\blacktriangledown]$ key to scroll to next file.

9.3.1 Rename a File

An existing file in internal memory can be renamed.

Operating procedure	Operation	Display	
Press the [F3](FILE MAINTAN.) key from Memory manager menu 1/3.	om the [F3]	→MEASD1 /M0123 COORD1 /C0056 REN SRCH DEL	
2 Select a file by pressing ▲ []▼ r[]	key. [▲]or[▼]	MEASD1 /M0123 →COORD1 /C0056 COORD2 /C0098 REN SRCH DEL	
3 Press the [F1](REN) key.	[F1]	MEASD1 /M0123 =COORD1 /C0056 COORD1 /C0098 1234 5678 90 [ENT]	
4 Enter new file name. Press the [F4](ENT) key. *1)	Enter FN [F4]	MEASD1 /M0123 →COORD5 /C0056 COORD1 /C0098 REN SRCH DEL	
*1) Refer to Section 2.6 "How to Enter Alphanumeric characters". Existing file name can not be available. To return to the FILE MAINTAN. Menu , press the [ESC] key.			

9.3.2 Searching Data in a File

An existing file in internal memory can be searched.

	Operating procedure	Operation	Display
1	Press the [F3](FILE MAINTAN.) key from the Memory manager menu 1/3.	[F3]	-MEASD1 /M0123 COORD1 /C0056 REN SRCH DEL
2	Select a file to search by pressing $[\blacktriangle]$ or $[\blacktriangledown]$ key.	[▲]or[▼]	MEASD1 /M0123 →COORD1 /C0056 COORD2 /C0098 REN SRCH DEL
3	Press the [F2](SRCH) key.	[F2]	SEARCH [COORD1] F1:FIRST DATA F2:LAST DATA F3:PT# DATA
4	Select searching method by pressing the [F1] to [F3] key. *1)	[F1] to [F3]	

^{*1)} Because procedures from next are same as procedures of Section 9.2 "Searching Data", refer to Section 9.2 "Searching Data"

To return to the FILE MAINTAN. Menu, press the [ESC] key.

9.3.3 Deleting a File

This mode erases a file from internal memory. Only one file can be erased at a time.

	Operating procedure	Operation	Display		
1	Press the [F3](FILE MAINTAN.) key from the Memory manager menu 1/3.	[F3]	→MEASD1 /M0123 COORD1 /C0056 REN SRCH DEL		
2	Select a file to delete by pressing [▲]or[▼] key.	[▲]or[▼]	MEASD1 /M0123 →COORD1 /C0056 COORD2 /C0098 REN SRCH DEL		
3	Press the [F3](DEL) key.	[F3]	MEASD1 /M0123 →COORD1 /C0056 COORD2 /C0098 >DELETE? [NO] [YES]		
4	Confirm the deleting, and press the [F4](YES) key.	[F4]	MEASD1 /M0123 →COORD2 /C0098 COORD3 /C0321 REN SRCH DEL		
•	To return to the FILE MAINTAN. Menu , press the [ESC] key.				

9.4 Coordinate Data Direct Key Input

Coordinate data for the layout point or control point can be input directly from the keyboard. This data can be stored into a file in the internal memory.

	Operating procedure	Operation	Display
1	Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN P↓
2	Press the [F4](P \downarrow) key.	[F4]	MEMORY MGR. 2/3 F1:COORD. INPUT F2:DELETE COORD. F3:PCODE INPUT P↓
3	Press the [F1](COORD. INPUT) key.	[F1]	SELECT A FILE FN: INPUT LIST ENTER
4	Press the [F1](INPUT) key and enter File Name you want to input. Press the [F4](ENT) key. *1)	[F1] Enter FN [F4]	COORD. DATA INPUT PT#: INPUT LIST ENTER
5	Press the [F1](INPUT) key and enter PT#. Press the [F4](ENT) key. *1)	[F1] Enter PT# [F4]	N→ m E: m Z: m INPUT ENTER
6	Enter coordinate data in the same way. Next input display is shown, point number (PT#) is automatically incremented.	[F1] Enter COORD. [F4]	COORD. DATA INPUT PT#:TOPCON-102 INPUT LIST ENTER
*1	Refer to Section 2.6 "How to Enter Alphanumeric ch	aracters".	

9.5 Delete a Coordinate Data from a File

Coordinate data in a file can be erased.

	Operating procedure	Operation	Display	
1	Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN P↓	
2	Press the [F4](P↓) key.	[F4]	MEMORY MGR. 2/3 F1:COORD. INPUT F2:DELETE COORD. F3:PCODE INPUT P↓	
3	Press the [F2](DELETE COORD.) key.	[F2]	SELECT A FILE FN: INPUT LIST ENTER	
4	Press the [F1](INPUT) key and enter File Name. Press the [F4](ENT) key. *1)	[F1] Enter FN [F4]	DELETE COORD. PT#: INPUT LIST ENTER	
5	Press the [F1](INPUT) key and enter PT#. Press the [F4](ENT) key. *1)	[F1] Enter PT# [F4]	N: 100.234 m E: 12.345 m Z: 1.678 m >DELETE? [YES] [NO]	
6	Confirm the data and press the [F3](YES) key. Deleting starts. The display will return to the previous display.	[F3]		
*1)	*1) Refer to Section 2.6 "How to Enter Alphanumeric characters".			

9.6 Editing PCODE Library

PCODE data can be entered into PCODE Library in this mode.

A PCODE is linked with a number of 1 to 50

PCODE can be also edited inDATA COLLECT menu 2/3 in the same way.

Operating procedure	Operation	Display
Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN. P↓
2 Press the [F4](P↓) key.	[F4]	MEMORY MGR. 2/3 F1:COORD. INPUT F2:DELETE COORD. F3:PCODE INPUT P↓
3 Press the [F3](PCODE INPUT) key.	[F3]	→001:TOPCON 002:TOKYO EDIT CLR
 4 By pressing the following keys, the list will increase or decrease. [▲]or[▼]:Increasing or Decreasing one by one [▶]or[◄]:By ten Increasing or Decreasing. 	[▲]or[▼], [▶]or[◀]	011:URAH →012:AMIDAT 013:HILLTO EDIT CLR
5 Press the [F1](EDIT) key.	[F1]	011:URAH →012=AMIDAT 013:HILLTO 1234 5678 90 [ENT]
6 Enter PCODE and press the [F4](ENT) key. *1)	Enter PCODE [F4]	011:URAH →012:AMISUN 013:HILLTO EDIT CLR
*1) Refer to Section 2.6 "How to Enter Alphanumeric ch	aracters".	

9.7 Data Communications

You can send a data file stored in the internal memory to a computer directly. Also, you can directly load a coordinate data file and PCODE Library data to the internal memory from the computer.

9.7.1 Sending Data

Example: Sending a Measured data file

	Operating procedure	Operation	Display
1	Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN P↓
2	Press the [F4](P \downarrow) key twice.	[F4] [F4]	MEMORY MGR. 3/3 F1:DATA TRANSFER F2:INITIALIZE P↓
3	Press the [F1](DATA TRANSFER) key.	[F1]	DATA TRANSFER F1:SEND DATA F2:LOAD DATA F3:COMM. PARAMETERS
4	Press the [F1] key.	[F1]	SEND DATA F1:MEAS. DATA F2:COORD. DATA F3:PCODE DATA
5	Select the type of data to send by pressing [F1]- [F3] key. Example : [F1](MEAS. DATA)	[F1]	SELECT A FILE FN: INPUT LIST ENTER
6	Press the [F1](INPUT) key and enter File Name you want to send. Press the [F4](ENT) key. *1),2)	[F1] Enter FN [F4]	SEND MEAS. DATA >OK ? [YES][NO]
7	Press the [F3](YES) key .*3) The sending starts. The display will return to menu.	[F3]	SEND MEAS. DATA < Sending Data!> STOP

^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".

^{*2)} To scroll the data, press the [▲]or[▼] key.

To show the file list, press the [F2](LIST) key.

^{*3)} To cancel the sending, press the [F4](STOP) key.

9.7.2 Loading Data

Coordinate data files and PCODE Library data can be loaded from PC. Example: Loading a coordinate data file

	Operating procedure	Operation	Display
1	Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN P↓
2	Press the [F4](P \downarrow) key twice.	[F4] [F4]	MEMORY MGR. 3/3 F1:DATA TRANSFER F2:INITIALIZE P↓
3	Press the [F1](DATA TRANSFER) key .	[F1]	DATA TRANSFER F1:SEND DATA F2:LOAD DATA F3:COMM. PARAMETERS
4	Press the [F2] key.	[F2]	LOAD DATA F1:COORD. DATA F2:PCODE DATA
5	Select the type of data to load by pressing [F1] or [F2] key. Example: [F1](COORD. DATA)	[F1]	COORD. FILE NAME FN: INPUT ENTER
6	Press the [F1](INPUT) key and enter New File Name you want to receive. Press the [F4](ENT) key. *1)	[F1] Enter FN [F4]	LOAD COORD. DATA >OK ? [YES][NO]
7	Press the [F3](YES) key.*2) The loading starts. The display will return to menu.	[F3]	LOAD COORD. DATA < Loading Data!> STOP

^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".
*2) To cancel the loading, press the [F4](STOP) key.

9.7.3 Setting Parameter of Data Communications

• Items of the Parameter

Item	Selecting Item	Contents
F1: Protocol	[ACK/NAK], [ONE WAY]	Setting Protocol [ACK/NAK] or [ONE WAY] communication
F2: Baud rate	1200, 2400, 4800, 9600, 19200,38400	Setting transfer speed 1200/2400/4800/9600 /19200/ 38400 baud rate
F3: Char. / Parity	[7/EVEN], [7/ODD], [8/NON]	Setting data length and parity. [7bit, even], [7bit, odd], [8bit,none]
F1: Stop Bits	1, 2	Setting Stop 1 bit or 2bits

• Example Setting Baud rate: 4800

	Operating procedure	Operation	Display		
	ss the [F3](MEMORY MGR.) key from the nu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN P↓		
2 Pre	ss the [F4](P↓) key twice.	[F4] [F4]	MEMORY MGR. 3/3 F1:DATA TRANSFER F2:INITIALIZE P↓		
3 Pre	ss the [F1](DATA TRANSFER) key .	[F1]	DATA TRANSFER F1:SEND DATA F2:LOAD DATA F3:COMM. PARAMETERS		
4 Pre	ss the [F3](COMM. PARAMETERS) key.	[F3]	COMM. PARAMETERS 1/2 F1:PROTOCOL F2:BAUD RATE F3:CHAR./PARITY P↓		
	ss the [F2](BAUD RATE) key. indicates present setting.	[F2]	BAUD RATE [1200] 2400 4800 9600 19200 38400 ENTER		
	ect the items by pressing ▲]or ▼], [< [▶] keys. *1)	[▶] [♥]	BAUD RATE 1200 2400 [4800] 9600 19200 38400 ENTER		
7 Pre	ss the [F4](ENTER) key.	[F4]	COMM. PARAMETERS 1/2 F1:PROTOCOL F2:BAUD RATE F3:CHAR./PARITY P↓		
*1) To (*1) To cancel setting, press the [ESC] key.				

9.7.4 Confirming the parameters for Bluetooth™ communication

The communication parameters for the Bluetooth™ are fixed as follows. You can only confirm the parameters in Memory manager mode.

Fixed parameters for Bluetooth[™] communication

Item	Fixed parameters
Baud rate	38400 baud rate
Char. / Parity	8bit, none
Stop Bits	Stop 1 bit

9.8 Initialization

This mode is used to initialize the internal memory.

Following data can be initialized.

FILE DATA :All files of measuring data and coordinate data

PCODE DATA: PCODE LIST

ALL DATA: FILE DATA and PCODE DATA

Note that the following data are not initialized even if initialization is executed. : Coordinates of the instrument, Instrument height and Reflector height.

Example Initialization: ALL DATA (FILE data and PCODE data)

	Operating procedure	Operation	Display
1	Press the [F3](MEMORY MGR.) key from the menu 1/3.	[F3]	MEMORY MGR. 1/3 F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN. P↓
2	Press the [F4](P↓) key twice.	[F4] [F4]	MEMORY MGR. 3/3 F1:DATA TRANSFER F2:INITIALIZE P↓
3	Press the [F2](INITIALIZE) key.	[F2]	INITIALIZE F1:FILE AREA F2:PCODE LIST F3:ALL DATA
4	Select the data to initialize by pressing one of the [F1] to [F3] key. Example: [F3](ALL DATA)	[F3]	INITIALIZE DATA ERASE ALL DATA ! >OK ? [NO][YES]
5	Confirm the erase data, press the [F4](YES) key. Initializing will start. The display returns to menu.	[F4]	INITIALIZE DATA <initializing!></initializing!>
			MEMORY MGR. 3/3 F1:DATA TRANSFER F2:INITIALIZE P↓

10 SET AUDIO MODE

The light acceptance quantity level for the EDM (SIGNAL), the atmospheric correction value (PPM) and correction value of prism constant (PSM) are displayed in this mode.

When reflected light from the prism is received a buzzer sounds. This function is good for easy collimation when the target is difficult to find.

	Operating procedure	Operation	Display
1	Make sure the mode is in the distance measurement mode on page 1.		HR: 120°30'40" HD* 123.456 m VD: 5.678 m MEAS MODE S/A P1↓
2	Pressing the [F3](S/A) key, mode changes to set audio mode. The display indicates correction value of prism constant (PSM), atmospheric correction (PPM) and reflection light level (SIGNAL).	[F3]	SET AUDIO MODE PSM:0.0 PPM 0.0 SIGNAL:[IIII] PRISM PPM T-P

- When receiving reflected light, buzzer sounds.
 It is possible to stop the sound, see Chapter 16 "SELECTING MODE".
- The [F1] to [F3] keys are used for setting atmospheric correction and prism constant.
- To return to normal measuring mode, press the [ESC] key.

11 SETTING THE PRISM CONSTANT VALUE

The prism constant value of Topcon is set to zero. When using prisms other than Topcon's, it is necessary to set the prism constant correction value of that specific prism. Once you set the correction value for prism constant, it is retained after power is OFF.

	Operating procedure	Operation	Display	
1	Press the [F3](S/A) key from distance measurement or coordinates measurement mode.	[F3]	SET AUDIO MODE PSM:0.0 PPM 0.0 SIGNAL:[IIIII] PRISM PPM T-P	
2	Press the [F1](PRISM) key.	[F1]	PRISM CONST. SET PRISM :0.0 mm INPUT ENTER	
3	Input the Prism constant correction value. *1) The display returns to set audio mode.	[F1] Enter data [F4]	SET AUDIO MODE PSM:14.0 PPM 0.0 SIGNAL:[IIIII] PRISM PPM T-P	
*1) Refer to Section 2.6 "How to Enter Alphanumeric characters".				

Section 2.6 "How to Enter Alphanumeric characters".

Input range: -99.9mm to +99.9mm,0.1mm step

12 SETTING ATMOSPHERIC CORRECTION

The velocity of light through air is not constant and depends on the atmospheric temperature and pressure. The atmospheric correction system of this instrument corrects automatically when the correction value is set. 15°C/59°F, and 1013.25hPa / 760mmHg / 29.9 inHg is as a standard value for Oppm in this instrument. The values are kept in the memory even after power is OFF.

12.1 Calculation of Atmospheric Correction

The followings are the correction formulas. Unit: meter

$$Ka = \begin{cases} 279.67 - \frac{79.535 \times P}{273.15 + t} \end{cases} \times 10^{-6}$$

$$Ka: Atmospheric correction value P : Ambient atmospheric pressure (hPa) t : Ambient Atmospheric temperature (°C)$$

Ka: Atmospheric correction value

t: Ambient Atmospheric temperature (°C)

The distance L (m) after atmospheric correction is obtained as follow. L = I(1+Ka)I:Measured distance when atmospheric

correction is not set.

Example: In case Temperature +20°C, Air pressure 847hPa, I =1000 m

$$Ka = \left\{ 279.67 - \frac{79.535 \times 847}{273.15 + 20} \right\} \times 10^{-6}$$

$$=$$
 + 50×10⁻⁶ (50 ppm)

$$L = 1000 (1+50 \times 10^{-6}) = 1000.050 \text{ m}$$

12.2 Setting of Atmospheric Correction Value

How to Set Temperature and Pressure Value Directly

Measure the temperature and air pressure surrounding the instrument beforehand.

Example: Temperature: +26°C. Pressure:1017 hPa

	Operating procedure	Operation	Display
1	Press the [F3](S/A) key to set Set Audio Mode from distance or coordinate measurement mode.	[F3]	SET AUDIO MODE PSM:0.0 PPM 0.0 SIGNAL:[IIIII] PRISM PPM T-P
2	Press the [F3](T-P) key.	[F3]	TEMP. & PRES. SET TEMP. \(\to \) 15.0 °C PRES. : 1013.2 hPa INPUT ENTER
3	Input Temp.value and Pressure value.*1) Mode returns to Set Audio mode.	Enter Temp. Enter Pres.	TEMP. & PRES. SET TEMP. : 26.0 °C PRES. : 1017.0 hPa INPUT ENTER

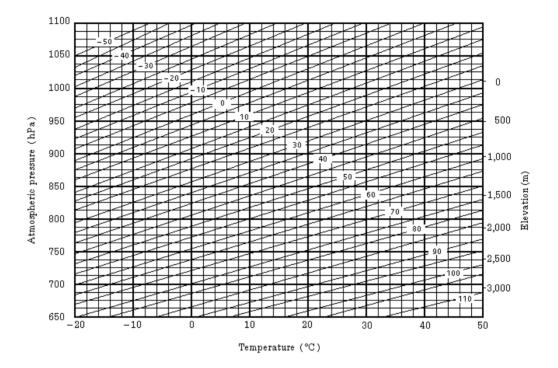
- *1) Refer to Section 2.6 "How to Enter Alphanumeric characters".
- Range: Temp. −30 to +60°C (0.1°C step) or −22 to +140°F (0.1°F step) Pres. 560 to 1066.0hPa (0.1hPa step) ,420 to 800mmHg (0.1mmHg step) or 16.5 to 31.5inHg (0.1inHg step)
- When the atmospheric correction value which is calculated from the input temperature and pressure values exceeds the range ± 999.9ppm, the operating procedure returns to step 3 automatically. Input values again.

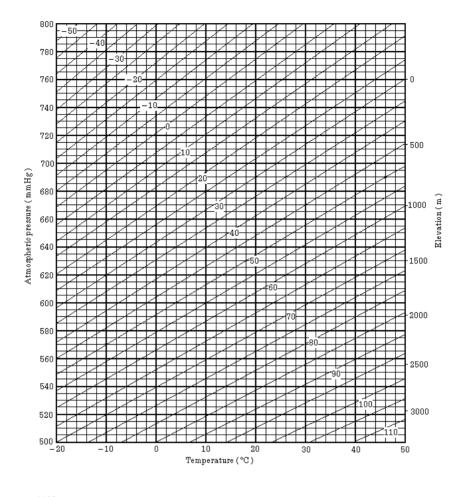
How to Set the Atmospheric Correction Value Directly

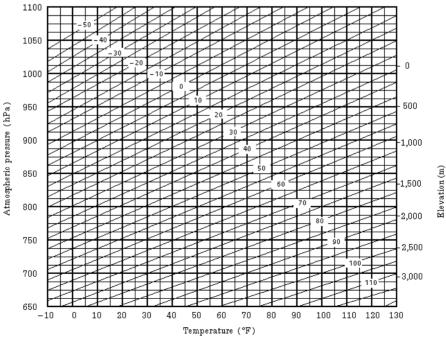
Measure the temperature and air pressure to find atmospheric correction value (PPM) from the chart or correction formula.

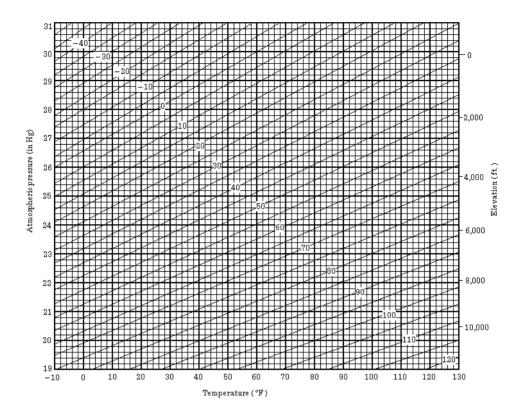
	Operating procedure	Operation	Display		
1	Press the [F3](S/A) key to set Set Audio Mode from distance or coordinate measurement mode.	[F3]	SET AUDIO MODE PSM:0.0 PPM 0.0 SIGNAL:[IIIII] PRISM PPM T-P		
2	Press the [F2](PPM) key. Current setting value is displayed.	[F2]	PPM SET PPM: 0.0 ppm INPUT ENTER		
3	Enter atmospheric correction value. *1)	[F1] Enter Data			
	Mode returns to Set Audio mode.	[F4]			
*1	*1) Refer to Section 2.6 "How to Enter Alphanumeric characters". Input range: -999.9ppm to +999.9ppm.0.1ppm step				

[■] Input range : -999.9ppm to +999.9ppm,0.1ppm step


Atmospheric Correction Chart (For your reference)


The atmospheric correction value is obtained easily with the atmospheric correction chart. Find the measured temperature in horizontal, and pressure in vertical on the chart.


Read the value from the diagonal line, which represents the required atmospheric correction value.


Example:

The measured temperature is +26°C The measured pressure is 1013 hPa There fore,
The correction value is +10ppm

13 CORRECTION FOR REFRACTION AND EARTH CURVATURE

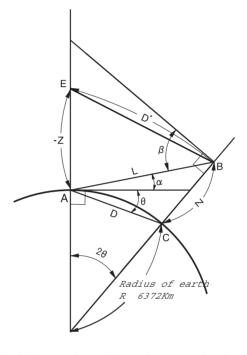
The instrument measures distance, taking into account correction for refraction and earth curvature.

13.1 Distance Calculation Formula

Distance Calculation Formula; with correction for refraction and earth curvature taken into account. Follow the Formula below for converting horizontal and vertical distances.

Horizontal distance $D = AC(\alpha)$ or $BE(\beta)$ Vertical distance $Z = BC(\alpha)$ or $EA(\beta)$ $D = L\{\cos\alpha - (2\theta - \gamma) \sin\alpha\}$ $Z = L\{\sin\alpha + (\theta - \gamma) \cos\alpha\}$ $\theta = L.\cos\alpha/2R....$ Earth curvature

correcting item


 $\gamma = K \cdot L\cos\alpha/2R...$ Atmospheric

refraction correcting item

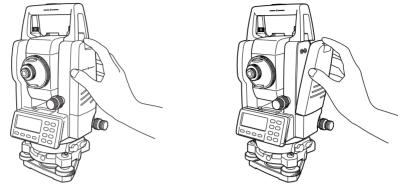
K =0.14 or 0.2..... Coefficient of

refraction

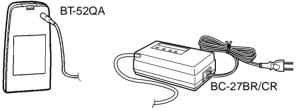
 $\begin{array}{lll} R = & 6372 km... & Radius of earth \\ \alpha & (\ or \ \beta)... & Altitude \ angle \\ L & ... & Slope \ distance \\ \end{array}$

 The conversion formula for horizontal and vertical distances is as follows when correction for refraction and earth curvature is not applied.
 D=L•cosα

Z=L•sinα


Note: The coefficient of the instrument has been set at 0.14 before shipment (K=0.14). if the "K" value is to be changed, refer to 16 "SELECTING MODE".

14 POWER SOURCE AND CHARGING


14.1 On-board Battery BT-52QA

To remove

1 Confirm that the instrument is turned off before removing the battery.
Push the battery locking lever and pull out the BT-52QA on-board battery as shown below.

To charge

- 1 Plug the charger into the outlet.
- 2 Connect the charger connector to the battery, then charging will start. Preparatory charging will start. (The red lamp of the charger will blink.) When the preparatory charging is completed, the charging status will be switched to quick charging automatically. (The red lamp of the charger will light.)
- 3 Charging will take approximately 1.8 hours. (The green lamp will illuminate.)
- 4 After charging, remove the battery from the charger.
- 5 Remove the charger from the outlet.

To refresh

Press the refresh switch after starting charging above steps (1, 2), then discharging will start. Confirm the vellow lamp illuminates.

After discharging is finished, charging will start automatically.

Time discharging battery charged fully is approximately 8 hours.

For refreshing

Rechargeable battery can be used repeatedly by charging. If charging is repeated by the state that capacity of the battery still left, operating time of the battery may shorten. In this case, the voltage of the battery will be recovered by refreshing and operating time can be improved.

About Preparatory charging

Before quick charging, the battery is charged using small amount current to measure its temperature and voltage.

When the temperature and voltage is within a range, the charging status will change to quick charging.

The lamp of charger

Red blinking: Preparatory charging /Waiting until internal temperature falls

Red ON : Charging

Red lamp will illuminate during charging.

Green ON : Charging completed

Green lamp will illuminate after completely charging.

Yellow ON : Discharging

Yellow lamp will illuminate and discharging will start by pressing the refresh

(discharge) switch.

Red quick flashing : Abnormal outbreaks

Red lamp will flash when the battery life is over or the battery is broken down.

Replace the battery to new one.

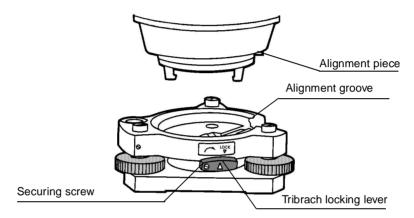
To install

- 1 Place the base of the on-board battery into the GTS-230W series, push the on-board battery toward the instrument side till the battery clicks into position.
- Do not charge or discharge continuously, otherwise the battery and the charger may be deteriorated. If charging or discharging is necessary, use the charger after stopping charge for approximately 30 minutes.
- Do not charge the battery or discharge the battery in right after the battery is charged, it causes deterioration of the battery in rare cases.
- The charger may develop heat while charging, there is no problem of it.

Note: 1 Recharging should take place in a room with an ambient temperature range of 10°C to 40°C (50°F to 104°F).

- 2 If charging is done at high temperature, charging time of the battery may take longer.
- 3 Exceeding the specified charging time may shorten the life of the battery and should be avoided if possible.
- 4 The battery source will discharge when stored and should be checked before using with instrument.
- 5 Be sure to charge as stored battery source every 3 or 4 months and store in a place at 30°C and below when it will not used for a long period.
 If you allow the battery to be completely discharged, it will have an effect on the overall performance for proper charging in the future.
 Keep batteries charged at all times.
- 6 For further information, see APPENDIX 2 "Precaution when Charging or Storing Batteries".

15 DETACH/ATTACH OF TRIBRACH


The instrument is easily detached or attached to the tribrach, with a tribrach locking lever loosened or tightened for this purpose.

Detachment

- 1) Loosen the tribrach locking lever, by revolving it 180° or 200g in the counterclockwise direction (which will point the triangle mark upwards).
- 2) Grip the carrying handle firmly with one hand while holding the tribrach with the other. Then lift the instrument straight upwards and off.

Attachment

- Hold the instrument by the carrying handle, with one hand, and carefully lower it on top of the tribrach while, at the same time, coinciding the alignment piece with the tribrach alignment groove on the instrument and tribrach respectively.
- 2) When fully seated, revolve the tribrach locking lever 180° or 200g clockwise (which will point the triangle mark downwards again).

Locking the Tribrach Locking Lever

The tribrach locking lever can be locked, to prevent it be accidentally removed, especially if the upper instrument section is not being detached very often. Simply tighten the securing screw on the locking lever with the accessory screwdriver, found in the case.

16 SELECTING MODE

16.1 Items of the Selecting Mode

The following modes are available.

Menu	Items	Selecting item	Display
1: UNIT SET	TEMP. & PRES.	°C / °F hPa / mmHg / inHg	Select the unit of temperature for atmospheric correction. Select the unit of air pressure for atmospheric correction .
	ANGLE	DEG(360°) / GON(400G) / MIL(6400M)	Choose degree, gon or mil unit for measuring angle.
	DISTANCE	METER / FEET / FEET and inch	Choose measuring unit for distance meter, feet or feet and inch
	FEET	US SURVEY / INTERNATIONAL	Select the meter / feet conversion factor. US SURVEY feet 1m=3.28083333333333333333333333333333333333
2: MODE	POWER ON MODE	ANGLE MEAS./ DISTANCE MEAS.	Select to set the measurement mode for angle or distance when the power is turned on.
SET	FINE/CRS/ TRK	FINE/COARSE/ TRACK	Select Fine /Coarse / Tracking mode in distance measurement mode, when the power is turned on.
	HD&VD/SD	HD&VD /SD	Specify which is displayed first, horizontal and vertical distance or slope distance, when the power is turned on.
	V ANGLE Z0/H0	Zenith 0 / Horizontal 0	Choose the vertical angle reading from zenith or from level.
	N-TIMES / REPEAT	N-TIMES / REPEAT	Select the measurement mode for distance when the power is turned on.
	TIMES OF MEAS.	0~99	Set N (number of times) for times of distance measurement. When setting number of times as 1, it is single measurement.
	NEZ / ENZ	NEZ / ENZ	Select a coordinate displaying order either NEZ or ENZ.
	HA MEMORY	ON / OFF	Horizontal angle set can be retained after the power is turned off.
	ESC KEY MODE	DATA COLLECT / LAYOUT / REC / OFF	You can select a function of the [ESC] key. DATA COLLECT / LAYOUT: It is possible to enter data input mode (in DATA COLLECT) or Layout Menu from normal measuring mode directly. REC: While executing normal or offset measuring, the measuring data can be output. OFF: Returns to normal function.
	COORD. CHECK	ON / OFF	Select coordinate displaying ON or OFF when setting a point.

	EDM OFF TIME	0-99	The time when EDM is cut off from distance measurement is completed can be changed. This function is effective for shortening the first time measuring time when distance measurement is started from distance measurement completing state. (Default:3minutes) 0 :After completing distance measurement, EDM is cut off immediately. 1-98:EDM is cut off after 1~98 minutes. 99 :EDM is always switched ON.
	FINE READING	0.2/1mm	Select 1mm or 0.2mm for the minimum reading unit in the distance mode (FINE mode).
	L.PL OFF TIME (Only for Laser plummet type)	1 -99	Laser plummet function can be turned off automatically. 1-98: Laser Plummet is cut off after 1 to 98 minutes. 99: Manual
	OFFSET V ANG	FREE / HOLD	Select Vertical angle setting in the Angle Offset measurement mode. FREE: Vertical angle varies by the angle of the telescope. HOLD: Vertical angle is fixed even if the angle of the telescope changes.
3: OTHERS	H-ANGLE BUZZER	ON / OFF	Specify whether the buzzer sounds or not for every horizontal angle 90°.
SET	S/A BUZZER	ON / OFF	Specify whether the buzzer sounds or not in the set audio mode.
	W- CORRECTI ON	OFF / K=0.14 / K=0.20	Set correction for refraction and earth curvature, coefficient of refraction as ; K=0.14, K=0.20 or no correction.
	NEZ MEMORY	ON / OFF	It is possible to retain the coordinate of instrument point, the instrument height and prism height after power off.
	REC TYPE	REC-A / REC-B	Select REC-A or REC-B for data output. REC-A: The measurement is made again and this new data is output. REC-B: The data being displayed is output.
	CR,LF	ON / OFF	It is possible to output the data with carriage return and line feed.
	NEZ REC FORM	STANDARD / STANDARD (12dig) / with RAW with RAW (12dig)	Select the format of the record coordinates data STANDARD: 11 digits standard data STASNDARD (12dig):12 digits standard data with RAW:11digits standard data with raw data with RAW (12dig):12digits standard data with raw data
	MANUAL NEZ REC	ON/ OFF	In the layout mode or data collect mode, it is possible to record coordinates entered directly from the keyboard.
	LANGUAGE *	ENGLISH/ OTHER *	Select the displaying language.

ACK MODE	STANDARD / OMITTED	Set the procedure of the communication with external device. STANDARD:Normal procedure OMITTED:Even though the [ACK] is omitted from the external device, the data is not sent again.
GRID FACTOR	USE G.F. / DON'T USE	Select using GRID FACTOR in calculation of measurement data.
CUT & FILL	STANDARD / CUT&FILL	In the layout mode, CUT & FILL can be displayed instead of dZ.
ECHO BACK	ON / OFF	It is possible to output the data of echo back type.
CONTRAST MENU	ON / OFF	When the instrument is turned ON, it is possible to display the screen which you can adjust contrast of the display and confirm the prism constant (PSM) and atmospheric correction value (PPM).

^{*}LANGUAGE selection is different in each country.

16.2 How to Set Selecting Mode

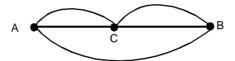
<Example>: Setting unit in hPa, F, NEZ MEMORY:ON

	Operating procedure	Operation	Display
1	While pressing [F2] key, turn power ON.	[F2] + Power ON	PARAMETERS 2 F1:UNIT SET F2:MODE SET F3:OTHERS SET
2	Press [F1](UNIT SET) key.	[F1]	UNIT SET 1/2 F1:TEMP. & PRES. F2:ANGLE F3:DISTANCE P↓
3	Press [F1](TEMP. & PRES.) key.	[F1]	TEMP. & PRES. UNIT TEMP. : °C PRES. : mmHg °C °F ENTER
4	Press [F2](°F) key, and press [F4](ENTER) key.	[F2] [F4]	TEMP. & PRES. UNIT TEMP. : °F PRES. : mmHg hPa mmHg inHg ENTER
5	Press [F1](hPa) key, and press [F4] (ENTER) key. Returns to unit set menu.	[F1] [F4]	UNIT SET 1/2 F1:TEMP. & PRES. F2:ANGLE F3:DISTANCE
6	Press [ESC] key. Returns to PARAMETERS 2 menu.	[ESC]	PARAMETERS 2 F1:UNIT SET F2:MODE SET F3:OTHERS SET

7 Press [F3](OTHERS SET) key.	[F3]	OTHERS SET 1/5 F1:H-ANGLE BUZZER F2:S/A BUZZER F3:W-CORRECTION P↓
8 Press [F4](P \downarrow) key, to get the function in page 2 .	[F4]	OTHERS SET 2/5 F1:NEZ MEMORY F2:REC TYPE F3:CR,LF P↓
9 Press [F1] key.	[F1]	NEZ MEMORY [OFF]
10 Press [F1](ON) key, and press [F4] (ENTER) key. Returns to OTHERS SET menu.	[F1] [F4]	OTHERS SET 2/5 F1:NEZ MEMORY F2:REC TYPE F3:CR,LF P↓
11 Power off	Power OFF	
Up or down arrow key can be used when there are four or more selection items.		

17 CHECK AND ADJUSTMENT

17.1 Checking and adjusting of instrument constant

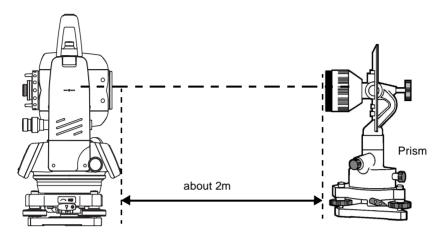

Normally, the instrument constant does not have discrepancy. It is recommended you measure and compare with an accurately measured distance at a location where the precision is specifically monitored on a consistent basis. If such a location is not available, establish your own base line over 20m (when purchasing the instrument) and compare the data measured with the newly purchased instrument.

In both cases note that the setup displacement of the instrument position over the point, the prism, baseline precision, poor collimation, atmospheric correction, and correction for refraction and earth curvature determine the inspection precision. Please keep in mind these points.

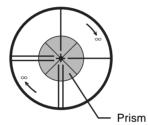
Also, when providing a base line in a building, please note that differences in temperature greatly affect the length measured.

If a difference of 5mm or over is the result from the comparative measurement, the following procedure as shown below could be used to change the instrument constant.

 Provide point C on a straight line, connecting straight line AB which is almost level and about 100m long. Measure straight lines AB, AC and BC.

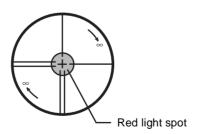

- Obtain the instrument constant by repeating 1) above several times.
 Instrument constant = AC+BC-AB
- 3) When there is error between written instrument constant value and calculated value, review Section 17.4 "How to Set the Instrument Constant Value"
- 4) Once again, measure at a calibrated baseline and compare results.
- 5) If using above procedure and no difference is found from the instrument constant at the factory or a difference of over 5mm is found, contact TOPCON or your TOPCON dealer.

Note: The seal with which the value is written is stuck on the lower part of the instrument, or the battery removal side of the instrument.


17.2 Checking the Optical Axis

To check if the optical axis of EDM and theodolite are matched, follow the procedure below. It is especially important to check after adjustment of the eyepiece reticle is carried out.

1) Position the Instrument and prism with about 2m apart and face them at each other. (At this time, the power is ON.)

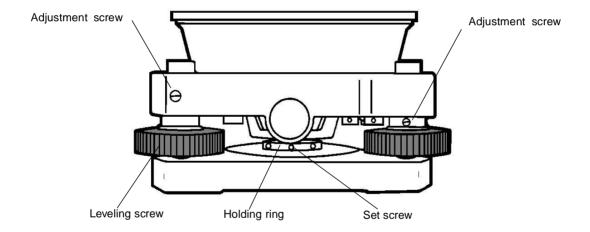


2) Sight through the eyepiece and focus to the prism. Then center the prism on the cross hairs.

- 3) Set to the measure mode to distance measurement or set audio.
- 4) Sight through the eyepiece and focus the (blinking) red light spot by turning the focusing knob in the direction of infinity (clockwise). If displacement of the reticle cross hairs is within one-fifth of the diameter of the round red light spot both vertically and horizontally, adjustment will not be required.

Note: If displacement is more than one-fifth in the above case, and still remains so after rechecking the original line of sight, the instrument must be adjusted by competent technicians. Please contact TOPCON or your TOPCON dealer to adjust the instrument.

17.3 Checking/Adjusting the Theodolite Functions

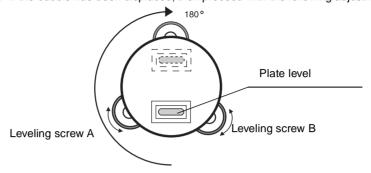

Pointers on the Adjustment

- 1) Adjust the eyepiece of the telescope properly prior to any checking operation which involves sighting through the telescope.
 - Remember to focus properly, with parallax completely eliminated.
- Carry out the adjustments in the order of item numbers, as the adjustments are dependent one upon another. Adjustments carried out in the wrong sequence may even nullify previous adjustment.
- Always conclude adjustments by tightening the adjustment screws securely (but do not tighten them
 more than necessary, as you may strip the threads, twist off the screw or place undue stress on the
 parts).
 - Furthermore, always tighten by revolving in the direction of tightening tension.
- 4) The attachment screws must also be tightened sufficiently, upon completion of adjustments.
- 5) Always repeat checking operations after adjustments are made, in order to confirm results.

Notes on the Tribrach

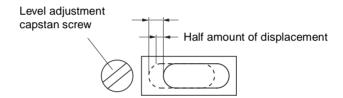
Note that the angle measuring precision may be effected directly if the tribrach has not been installed firmly.

- If any leveling screw becomes loose and slack or if collimation is unstable due to the looseness of leveling screws, adjust by tightening the adjusting screws (in 2 places) installed over each leveling screw with a screwdriver
- 2) If there is any slack between the leveling screws and the base, loosen the set screw of the holding ring and tighten the holding ring with adjusting pin, until it is properly adjusted. Re-tighten the set screw on completing the adjustment.



17.3.1 Checking /Adjusting the Plate Level

Adjustment is required if the axis of the plate level is not perpendicular to the vertical axis.

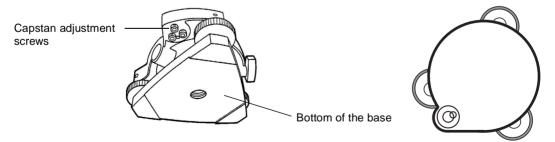

Check

- 1) Place the plate level parallel to a line running through the centers of two leveling screws, say, A and B. Use these two leveling screws only and place the bubble in the center of the plate level.
- 2) Rotate the instrument 180° or 200g around the vertical axis and check bubble movement of the plate level. If the bubble has been displaced, then proceed with the following adjustment.

Adjustment

- Adjust the level adjustment capstan screw, with the accessory adjusting pin and return the bubble towards the center of the plate level. Correct only one-half of the displacement by this method.
- 2) Correct the remaining amount of the bubble displacement with the leveling screws.
- 3) Rotate the instrument 180° or 200g around the vertical axis once more and check bubble movement. If the bubble is still displaced, then repeat the adjustment.

17.3.2 Checking /Adjusting the Circular Level

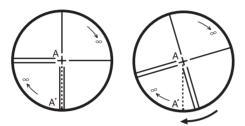

Adjustment is required if the axis of the circular level is also not perpendicular to the vertical axis.

Check

1) Carefully level the instrument with the plate level only. If the bubble of the circular level is centered properly, adjustment is not required. Otherwise, proceed with the following adjustment.

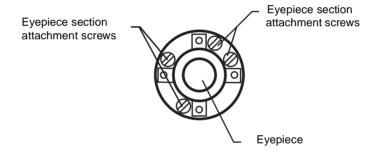
Adjustment

1) Shift the bubble to the center of the circular level, by adjusting three capstan adjustment screws on the bottom surface of the circular level, with the accessory adjusting pin.



17.3.3 Adjustment of the Vertical Cross-hair

Adjustment is required if the vertical cross-hair is not in a place perpendicular to the horizontal axis of the telescope (since it must be possible to use any point on the hair for measuring horizontal angles or running lines).


Check

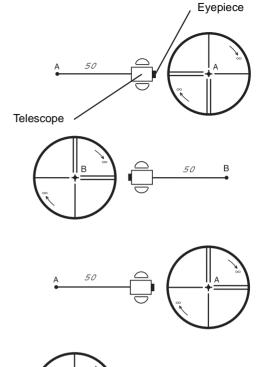
- 1) Set the instrument up the tripod and carefully level it.
- 2) Sight the cross-hairs on a well defined Point A at a distance of, at least, 50 meters (160ft.) and clamp horizontal motion.
- 3) Next swing the telescope vertically using the vertical tangent screw, and check whether the point travels along the length of the vertical cross-hair.
- 4) If the point appears to move continuously on the hair, the vertical cross-hair lies in a plane perpendicular to the horizontal axis (and adjustment is not required).
- 5) However, if the point appears to be displaced from the vertical cross-hair, as the telescope is swung vertically, then proceed with the following adjustment.

Adjustment

1) Unscrew the cross-hair adjustment section cover, by revolving it in the counterclockwise direction, and take it off. This will expose four eyepiece section attachment screws.

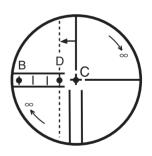
- 2) Loosen all four attachment screws slightly with the accessory screw-drive (while taking note of the number of revolutions).
 - Then revolve the eyepiece section so that the vertical cross-hair coincides to Point A'. Finally, re-tighten the four screws by the amount that they were loosened.
- Check once more and if the point travels the entire length of the vertical cross-hair, further adjustment is not required.

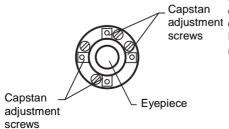
Note: Perform following adjustment after completing the above adjustment .


Section 17.3.4 "Collimation of the Instrument", Section 17.3.7 "Adjustment of Vertical Angle 0 Datum".

17.3.4 Collimation of the Instrument

Collimation is required to make the line of sight of the telescope perpendicular to the horizontal axis of the instrument, otherwise, it will not be possible to extend a straight line by direct means.


Check


- Set the instrument up with clear sights of about 50 to 60meters (160 to 200 ft.) on both sides of the instrument.
- Level the instrument properly with the plate level.
- 3) Sight Point A at approximately 50 meters (160 ft.) distance.
- Loosen the vertical motion clamp only, and rotate the telescope 180° or 200g around the horizontal axis, so that the telescope is pointed in the opposite direction.
- Sight Point B, at equal distance as Point A and tighten the vertical motion clamp.
- Loosen the horizontal motion clamp and rotate the instrument 180° or 200g around the vertical axis. Fix a sight on Point A once more and tighten the horizontal motion clamp.
- Loosen the vertical motion clamp only and rotate the telescope 180° or 200g around the horizontal axis once more and fix a sight on Point C, which should coincide with previous Point B.
- 8) If Points B and C do not coincide, adjust in the following manner.

Adjustment

- 1) Unscrew the cross-hair adjustment section cover.
- 2) Find Point D at a point between Points C and B, which should be equal to 1/4th the distance between Points B and C and measured from Point C. This is because the apparent error between Points B and C is four times the actual error since the telescope has been reversed twice during the checking operation.

3)Shift the vertical cross-hair line and coincide it with Point D, by revolving the left and right capstan adjustment screws with the adjusting pin.Upon Capstan completing the adjustment, repeat the checking adjustment operation once more.

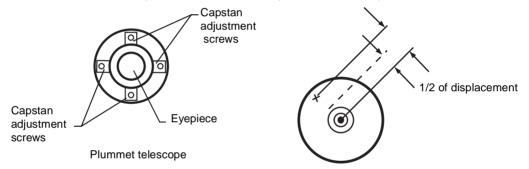
If Points B and C coincide, further adjustment is not required. Otherwise, repeat the adjustment.

Note: 1 First, loosen the capstan adjustment screw on the side to which the vertical cross-hair line must be moved. Then tighten the adjustment screw on the opposite side by an equal amount which will leave the tension of the adjustment screws unchanged.

Revolve in the counterclockwise direction to loosen and in the clockwise direction to tighten, but revolve as little as possible.

2 Perform following adjustment after completing above adjustment. Section 17.3.7 "Adjustment of Vertical Angle 0 Datum", Section 17.2 "Checking the Optical Axis".

17.3.5 Checking / Adjusting the Optical Plummet Telescope


Adjustment is required to make the line of sight of the optical plummet telescope coincide with the vertical axis (otherwise the vertical axis will not be in the true vertical when the instrument is optically plumbed).

Check

- 1) Coincide the center mark and the point. (See Chapter 2 "PREPARATION FOR MEASUREMENT".)
- 2) Rotate the instrument 180° or 200g around the vertical axis and check the center mark. If the point is properly centered in the center mark, adjustment is not required. Otherwise, adjust in the following manner.

Adjustment

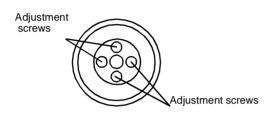
1) Take off the adjustment section cover of the optical plummet telescope eyepiece. This will expose four capstan adjustment screws which should be adjusted with the accessory adjusting pin to shift the center mark to the point. However, correct only one-half of the displacement in this manner.

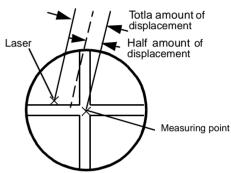
- 2) Use the leveling screws and coincide the point and center mark.
- 3) Rotate the instrument 180° or 200g around the vertical axis once more and check the center mark. If it is coincided to the point, then further adjustment is not required. Otherwise, repeat the adjustment.

Note: First, loosen the capstan adjustment screw on the side to which the center mark must be moved. Then tighten the adjustment screw on the opposite side by an equal amount which will leave the tension of the adjustment screws unchanged.

Revolve in the counterclockwise direction to loosen and in the clockwise direction to tighten, but revolve as little as possible.

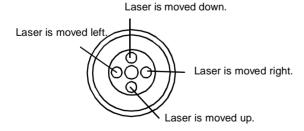
17.3.6 Checking / Adjusting the Laser Plummet (For Laser Plummet type)

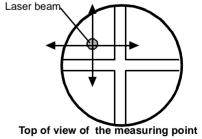

Check


- 1) Turn on the laser plummet and coincide the center of the laser with a measuring point.
- 2) Rotate the instrument 180° or 200g around the vertical axis and check the measuring point. If the laser is properly centered in the measuring point, adjustment is not required. Otherwise, adjust in the following manner.

Adjustment

- Turn the cap located on the left side corner of the instrument counterclockwise and remove it.
 This will expose four adjustment screws which should be adjusted with the accessory hexagonal wrench.
- Shift the laser to the measuring point. However, correct only one-half of the displacement in this manner.


- 3) Use the leveling screws and coincide the center of the laser and the point.
- 4) Rotate the instrument 180° or 200g around the vertical axis once more and check the point and the laser. If the laser is coincided to the measuring point, then further adjustment is not required. Otherwise, repeat the adjustment.


Note: Note:First, loosen the adjustment screw to move the laser. Then tighten the adjustment screw on the opposite side by an equal amount which will leave the tension of the adjustment screws unchanged.

Revolve in the counterclockwise direction to loosen and in the clockwise direction to tighten, but revolve as little as possible.

Reference

The laser can be moved by turning the adjustment screws clockwise as follows.

Adjustment screws

17.3.7Adjustment of Vertical Angle 0 Datum

If when measuring the vertical angle of target A at telescope position normal (direct) and reverse settings, the amount of normal and reverse measurements combined is other than 360° (ZENITH-0), half of the difference from 360° is the error amount from corrected 0 setting. Carry out adjustment. As adjustment for vertical angle 0 setting is the criteria for determining instrument coordinate origin, use special care for adjustment.

	Operating procedure	Operation	Display		
1	Level the instrument properly with the plate level.				
2	While pressing the [F1]key, turn power switch ON.	[F1] + Power ON	ADJUSTMENT MODE 1/2 F1:V ANGLE 0 POINT F2:INST. CONSTANT F3:V0 AXIS P↓		
3	Press the [F1] key.	[F1]	V0 ADJUSTMENT <step-1> FRONT V: 90°00'00" ENTER</step-1>		
4	Collimate target A from the telescope properly in normal setting.	Collimate A (Normal)			
5	Press the [F4](ENTER) key.	[F4]	V0 ADJUSTMENT		
6	Collimate target A in reverse telescope setting.	Collimate A (Reverse)	<step-2> REVERSE V: 270°00'00" ENTER</step-2>		
7	Press the [F4](ENTER) key. Measured value is set and carry out normal angle measurement.	[F4]	<set!> V : 270°00'00" HR: 120°30'40" OSET HOLD HSET P1↓</set!>		
8	Check that the total amount of normal and reverse angular travel is 360° collimating the target A by normal and reverse positions.				

17.4 How to Set the Instrument Constant Value

To set the Instrument constant which is obtained in Section 17.1 "Check and adjusting of instrument constant", follow as below.

	Operating procedure	Operation	Display
1	While pressing the [F1] key, turn power switch ON.	[F1] + POWER ON	ADJUSTMENT MODE 1/2 F1:V ANGLE 0 POINT F2:INST. CONSTANT F3:V0 AXIS P↓
2	Press the [F2] key.	[F2]	INST. CONSTANT SET INST. CONSTANT : - 0.6 mm INPUT ENTER 1234 5678 90 [ENT]
3	Enter the constant value. *1),2)	[F1] Enter value [F4]	INST. CONSTANT SET INST. CONSTANT : - 0.7 mm INPUT ENTER
4	Turn power switch OFF.	Power OFF	

^{*1)} Refer to Section 2.6 "How to Enter Alphanumeric characters".

^{*2)} To cancel the setting, press the [ESC] key.

17.5 Adjustment of Compensation Systematic Error of Instrument

(Only for GTS-233W/235W/236W)

	Operating procedure	Operation	Display
1	Level the instrument properly with the plate level.	[F1] + Power ON	ADJUSTMENT MODE 1/2 F1:V ANGLE 0 POINT
2	While pressing the [F1] key, turn power switch ON.	Fower ON	F2:INST. CONSTANT F3:V0 AXIS P↓
3	Press the [F3] key.	[F3]	V0 AXIS F1:MEASUREMENT F2:CONSTANT LIST
4	Press the [F1] key.	[F1]	V0/AXIS ADJUSTMENTS ERROR CORRECTION (A) COLLIMATION (B) H AXIS
5	Collimate target A (around 0° in horizontal within ±3°) in normal telescope setting (FACE (1)).	Collimate A (Normal)	FRONT FACE1 /0 V: 89°55'50" LEVEL ±0 SKIP SET
6	Press the [F4](SET) key. *1) The sample display shows that the measurement is made 5 times in FACE 1.	[F4]	
7	Turn the telescope in reverse telescope setting (FACE (2)).	Turn telescope	REVERSE FACE2 5/5 V: 270°04'20" LEVEL ±0
8	Collimate target A.	Collimate A (Reverse)	SET
9	Press the [F4](SET) key. Repeat the procedures in step 8 and 9 so that the count of measured times matches to the one in FACE(1). *2),3),4)	[F4]	(B) HORIZONTAL AXIS
	The title display will be shown automatically.		
10	Collimate target B (more than ±10° from the level) in reverse telescope setting (FACE(2)). *5)	Collimate B (Reverse)	REVERSE FACE 2 /0 V: 270°04'20" LEVEL ±10°
11	Press the [F4](SET) key. *5)	[F4]	SET
12	Turn the telescope in normal telescope setting (FACE(1)).	Turn telescope	FRONT FACE 1 5/5 V: 89°55'50" LEVEL ±10°
13	Collimate target B.	Collimate B (Normal)	SKIP SET
		[F4]	

14	Press the [F4](SET) key. Repeat the procedures in step 13 and 14 so that the count of measured times matches to the one in FACE(2). Then the display returns to main menu.		COMPLETE
•	To show the constant list of systematic error of instrument		ADJUSTMENT MODE 1/2 F1:V ANGLE 0 POINT F2:INST. CONSTANT F3:V0 AXIS P↓
1	Press the [F3] key from Adjustment Mode menu 1/2.	[F3]	V0 AXIS F1:MEASUREMENT F2:CONSTANT LIST
2	Press the [F2] key. Correction values are displayed.	[F2]	VCo: -1°57'12" HCo: -0°00'20" HAx: -0°00'20" EXIT
3	Press the [F1] key. The display returns to previous menu.	[F1]	

^{*1)} It is able to get the average value from 1 to 10 measurements. To get the average, repeat the procedures in steps **5**, **6** or **10**, **11**. The measured times is counted in the second line of display.

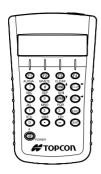
^{*2)} The compensation values of 1) Error of vertical axis (X,Y tilt sensor offset), 2) Collimation error, and 3) Error of vertical angle 0datum will be set and memorized internally.

^{*3)} The operating procedure steps to set compensation value of 4) Error of horizontal axis.

^{*4)} Pressing the [F1](SKIP) key enables to set next step without changing the last compensated value.

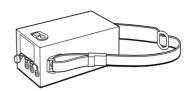
^{*5)} Pressing the [F1](SKIP) key makes end of setting without changing compensation value.

17.6 Reference frequency check mode

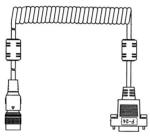

The beam modulated by the reference frequency of EDM is emitted continuously. This mode is used for frequency test mainly.

	Operating procedure	Operation	Display		
1	While pressing the [F1] key, turn power switch ON.	[F1] + POWER ON	ADJUSTMENT MODE 1/2 F1:V ANGLE 0 POINT F2:INST. CONSTANT F3:V0 AXIS P↓		
2	Press the [F4](P \downarrow) key to get the function as in page 2.	[F4]	ADJUSTMENT MODE 2/2 F1:FRQ CHECK MODE		
3	Press the [F1](FRQ CHECK MODE) key.	[F1]	FRQ CHECK MODE		
4	Press the [F1](EXIT) key. The display will return to Adjustment mode menu 2/2.	[F1]	ADJUSTMENT MODE 2/2 F1:FRQ CHECK MODE P↓		

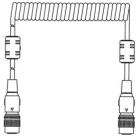
18 PRECAUTIONS


- 1) For transportation, hold by the handle or yoke of the instrument. Never hold by the lens barrel as it can affect the fixing bracket inside and reduce the accuracy of the instrument.
- Never expose the instrument without a filter to direct sunlight. It may damage the components inside the instrument.
- 3) Never leave the instrument unprotected in high temperature. The temperature inside instrument may easily reach up to 70°C or above and will reduce the service life.
- 4) The instrument should be stored in the room temperature range of minus 30°C to plus 60°C.
- 5) When a high degree of precision is required for measurement, provide shade against direct sunlight for the instrument and tripod.
- 6) Any sudden change of temperature to the instrument or prism may result in a reduction of measuring distance range, i.e. when taking the instrument out from a heated vehicle.
- 7) When opening the carrying case and taking out the instrument, place the case horizontally, then open the case.
- 8) When returning the instrument to its case, be sure to match the white positioning marks provided with the case and place the instrument with the eyepiece upward.
- For transportation, provide dampening or a cushion appropriately to avoid sudden shock or vibration.
- 10) For cleaning the instrument after use, remove dust using a cleaning brush, then wipe off with a cloth.
- 11) For cleaning the lens surface, use a cleaning brush to remove the dust, then use a clean lintless cotton cloth. Moisten it with alcohol (or mixture with ether) to wipe gently in a rotational motion from the center out.
- 12) Even if any abnormality occurs, never attempt to disassemble or lubricate the instrument yourself. Always consult with TOPCON or your dealer.
- 13) To remove the dust on the case, never use thinner or benzine. Use a clean cloth moistened with neutral detergent.
- 14) Check each part of the tripod after extended use. Parts (screws or clamps) may work themselves free.

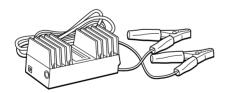
19 SPECIAL ACCESSORIES


Data entry keyboard DK-7W

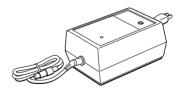
 Occupied point, coordinate data and other data can be input from DK-7W. It is also possible to control GTS-230W series from DK-7W.


Large capacity battery pack BT-3L

- Output voltage : DC 8.4V
- Capacity: 6AH
- External dimensions:
 - $190(L) \times 106(W) \times 74(H) \text{ mm}$
- Weight: 2.8kg


Interface cable F-24

 Cable for communicating an external instrument and GTS-230W by the serial signal connector.


Interface cable P-14

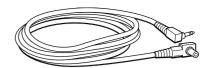
 Cable for communicating DK-7W and GTS-230W by the serial signal connector.

Auto converter AC-5

- Input voltage:12V DC
- Output voltage :DC 8.4V
- Cable length:3m approx.
- External dimensions: 100(L)×53(W)×47(H) mm
- Weight: 0.3kg

Battery charger BC-6 (for BT-3L)

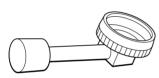
- Input voltage:100, 120, 220, 240V
 AC: ±10% 50/60 Hz
- Power consumption: 15VA approx.
- Charging time:
 - approx. 15 hour (+20°C) to charge BT-3L
- Operation temperature range: +10°C to +40°C (+50 to +104°F)
- External dimensions: 142(L) × 96(W) × 64(H) mm
- Weight:1.0kg


Power cord PC-3 (For AC-5)

- L-shape plug provided
- Cord length: 2m approx.

Trough compass, Model 6

 Shock proof construction. No clamp is necessary when carrying the instrument.


Power cord PC-6 (For BT-3L)

- L-shape plug provided
- Cord length: 2m approx.

Solar reticle, Model 6

A reticle designed for collimation of the sun.
 Can be used together with Solar Filter.

Diagonal eyepiece, Model 10

Observation in an easy posture will be provided up
 to the zenith position

Solar filter, Model 6

 A filter designed exclusively for direct collimation of the sun.
 Solar filter of flap-up type.



Mini prism

- The mini prism (25.4mm) is made from precision ground glass and mounted in high impact plastic housings.
- The mini has the unique capability of being positioned either at a "0" or "-30" with the same prism

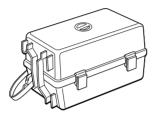
Prism sets

 See the description on Chapter 21 "PRISM SYSTEM"

Optical plummet tribrach

 This is detachable tribrach having built-in optical plummet telescope.
 (Compatible with Wild)

Back pack, Model 2


Convenient for use in mountainous terrain.

Gadget case, Model 1

A case to store and carry accessories.

- External dimensions: 300(L)×145(W)×220(H) mm
- Weight:1.4kg

Prism unit case, Model 3

This is the plastic case to store and carry various sets Fixed 9 prisms unit or tilting 3 prisms unit can be of prisms.

The case covers one of the following prism sets:

- Tilt single prism set
- Tilt single prism set with a target plate
- Fixed triple prism unit
- Fixed triple prism unit with a target plate
- External dimensions: 427(L)×254(W)×242(H) mm
- Weight:3.1kg

Prism unit case, Model 6

stored in this case. Especially, this is a very easy case to carry. Soft material is used.

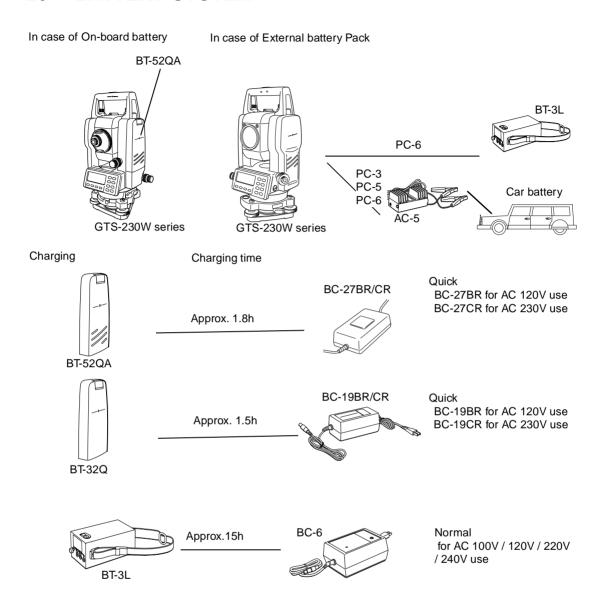
- External dimensions:
 - 250(L)×120(W)×400(H) mm
- Weight:0.5kg

Prism unit case. Model 5

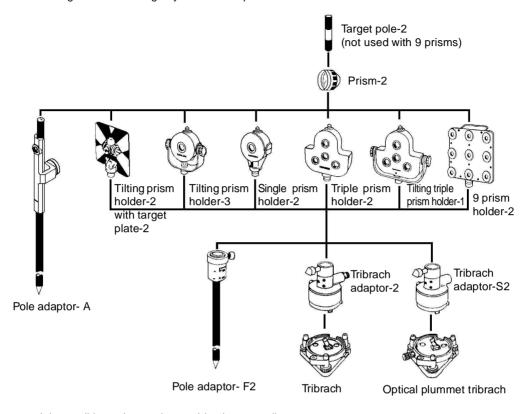
1 prisms unit or fixed 3 prisms unit can be stored in this case. Especially, this is a very easy case to carry. Soft material is used.

- External dimensions: 200(L)×200(W)×350(H) mm
- Weight:0.5kg

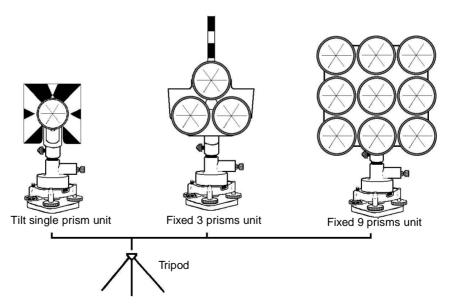
Aluminum extension leg tripod, Type E


● Flat head 5/8" × 11 threads with adjustable legs.

Wide-frame extension leg tripod, Type E (Wood)


Flat head 5/8" × 11 threads with adjustable legs.

20 BATTERY SYSTEM



21 PRISM SYSTEM

Arrangement according to your needs is possible.

It is possible to change the combination according purpose.

Use the above prisms after setting them at the same height as the instruments. To adjust the height of prism set, change the position of 4 fixing screws.

22 ERROR DISPLAYS

Error code	Description	Countermeasures		
3 points required	When area calculating, there are less than 3 points coordinate data in selected file.	Confirm the file data and calculate again.		
CALC Calculation is impossible from the data input.		Confirm the input data.		
DELETE ERROR	When deleting coordinate data, it can not be done successful.	Confirm the data and delete again.		
E35	Displayed when REM measurement carried out to the range from zenith or nadir ±6°.	Operate in the range out of \pm 6° from the zenith or nadir.		
E60's	Any abnormality occurs with EDM (distance measuring system).	Repair is required.		
E71	Displayed when vertical angle 0 position is set with incorrect procedure.	Confirm the procedure and readjust.		
E72	Displayed when Vertical angle -position is adjusted in wrong position.	Repair is required.		
E73	The instrument was not leveled when Vertical angle 0-position is adjusted.	Level the instrument then carry the adjustment work.		
Mainly at the time data transmission E80's between GTS-230W series and external instrument.		Confirm operation procedure is correct or the connection cables are correct.		
E90's Abnormality in internal memory system.		Repair is required.		
FILE The same file name exists.		Use another file name.		
FULL FILES	When making a file, 30 files already exist.	If necessary, send or delete files.		
FAILED Initializing can not be done successful.		Confirm initializing data and try to initialize again.		
LIMIT OVER	Limit of input data exceeded.	Input again.		
MEMORY ERROR	Any abnormality occurs with internal memory.	Initialize the internal memory.		
MEMORY Shortage of capacity of the internal memory.		Download data from internal memory to PC.		
NO DATA The data is not found in the search mode		Confirm the data and search again.		
NO FILE There is no file in internal memory.		If necessary, make files.		
FILE NOT SELECTED When using a file, no file is selected.		Confirm the file and select a file.		
P1-P2 When in point to line measurement, the horizontal distance between first point and second point is within 1m.		The horizontal distance between first point and second point must be more than 1m.		
CIRCULAR Known points and occupied point are on the same circle at the resection mode.		Take the different point.		

■ PI# FXISI I '		Confirm the new point name and input again.		
PT# DOES When you enter incorrect name or PT# does not exist in the internal memory.		Enter the correct name or enter point in the internal memory.		
RANGE When setting a new point, calculation is impossible from the measured data.		Measure again.		
Tilt Over Instrument tilts over more than 3 minutes.		Level the instrument properly.		
V ANGLE ERROR				
H ANGLE ERROR Abnormality in angle measuring system.		If this error code continues to display, repair required.		
VH ANGLE ERROR				

[•] If error still persist after attempting to clear them, contact your local Topcon dealer or Topcon head office.

23 SPECIFICATIONS

Telescope

Length : 150mm

Objective lens : 45mm (EDM 50mm)

Magnification: 30×Image: ErectField of view: 1°30'Resolving power: 2.5"Minimum focus: 1.3mReticle illumination: Provided

Distance measurement

Measurement range

Model	Prism	Atmospheric conditions			
Wodei	Prisin	Condition 1	Condition 2		
	Mini prism	1,000m (3,300ft)			
GTS-233W GTS-235W			3,500m (11,500ft)		
GTS-236W	3 prisms	prisms 4,000m (13,200ft) 4,700m			
	9 prisms	5,000m (16,400ft)	5,800m (19,000ft)		
	Mini prism	900m (3,000ft)			
GTS-239W	1 prism	2,000m (6,600ft)	2,300m (7,500ft)		
010-239W	3 prisms	2,700m (8,900ft)	3,100m (10,200ft)		
	9 prisms	3,400m (11,200ft)	4,000m (13,200ft)		

Condition 1: Sight haze with visibility about 20km (12.5miles) moderate sunlight with light heat

Condition 2: No haze with visibility about 40km(25 miles), overcast with no heat shimmer.

Measurement accuracy

GTS-233W/235W/236W: \pm (2mm +2ppm × D) m.s.e. GTS-239W: \pm (3mm +3ppm × D) m.s.e. D:Measuring distance (mm)

Least Count in Measurement

Fine measurement mode : 1mm (0.005ft.) / 0.2mm (0.001ft.)

Coarse measurement mode : 10mm (0.02ft.) / 1mm (0.005ft.)

Tracking measurement mode : 10mm (0.02ft.)

Measurement Display : 12 digits : max. display 99999999.9999

Measurement Time

Fine measurement mode : 1mm : 1.2sec. (Initial 4 sec.) 0.2mm : 2.8sec. (Initial 5 sec.)

Coarse measurement mode : 0.7sec. (Initial 3 sec.)
Tracking measurement mode : 0.4sec. (Initial 3 sec.)

(The initial time will be different by a condition and

setting EDM off time.)

Atmospheric Correction Range : -999.9 ppm to +999.9 ppm , in 0.1 ppm increments
Prism Constant Correction Range : -99.9 mm to +99.9 mm , in 0.1 mm increments

Coefficient Factor : Meter / Feet

 $\begin{array}{ll} \mbox{International feet} & \mbox{1meter} = 3.2808398501 \mbox{ ft.} \\ \mbox{US SURVEY feet} & \mbox{1meter} = 3.28083333333 \mbox{ ft.} \\ \end{array}$

Electronic Angle Measurement

Method : Absolute reading

Detecting system:

Horizontal angle

GTS-233W/235W : 2 sides GTS-236W/239W : 1 side Vertical angle : 1 side

Minimum reading

GTS-233W/235W/236W : 5" / 1" (1mgon / 0.2mgon) reading : 10" / 5" (2mgon / 1mgon) reading GTS-239W

Accuracy(Standard deviation based on DIN 18723)

GTS-233W : 3"(1mgon) GTS-235W : 5"(1.5mgon) GTS-236W : 6"(1.8mgon) GTS-239W : 9"(2.7mgon) : Less than 0.3 sec.

Measuring time Diameter of circle : 71 mm

Bluetooth™ Unit

Bluetooth™ Standard : Bluetooth™ Specification v1.1

Bluetooth™ profiles : Generic Access Profile

Service Discovery Application Profile

Serial Port Profile

BD Address : IEEE std802 48bit LAN MAC Address Bluetooth™ PASSKEY (PIN) : Enable to set(Default: "1111" ASCII)

Bluetooth™ Transmitting : Output Class2 Bluetooth™ Communication distance : About 5m

(The range will be different by a condition)

Tilt Correction (Automatic index)

Tilt sensor

GTS-233W/235W/236W : Automatic vertical and horizontal compensator

GTS-239W : Automatic vertical compensator

Method : Liquid type

Compensating Range : ±3'

Correction unit : 1" (0.1mgon)

Others

: 176mm (6.93in) Base unit detachable Instrument height

(Height from the tribrach dish to the center of

telescope)

Level sensitivity

Circular level : 10'/2mm

Plate level

GTS-233W/235W : 30"/2 mm GTS-236W/239W : 40"/2 mm

Optical Plummet Telescope

Magnification : 3×

Focusing range : 0.5m to infinity

Image : Erect

Field of view : 5°(ø114mm/1.3m) Laser Plummet (only for Laser plummet type)

Light source : L.D (Visible laser)

Wave length : 633nm

Out put : 1mW maximum

Laser class : CLASS 2 (II) laser product

Dimension : $336(H)\times184(W)\times174(L)$ mm

 $(13.2(H)\times7.2(W)\times6.9(L) in)$

Weight

Instrument

 (with battery)
 : 4.9kg (10.8 lbs)

 (without battery)
 : 4.6kg (10.1 lbs)

 Plastic carrying case
 : 3.7kg (8.2 lbs)

(Weight of the carrying case may be slightly different

due to specific market.)

Durability

Protection against water and dust : IP66 (with BT-52QA)

(Based on the standard IEC60529)
Ambient Temperature Range : -20°C to +50°C (-4°F to +122°F)

Battery BT-52QA (This battery does not contain mercury.)

Out put voltage : 7.2 V

Capacity : 2.7 AH (Ni-MH)
Weight : 0.3kg (0.7 lbs)
Maximum operating time (when fully recharged) at +20°C (+68°F)

Select Bluetooth™ Port

Including distance measurement : Approx. 8.5hours (10,200 points)

Angle measurement only : Approx. 25hours

Select RS-232C Port

Including distance measurement : Approx. 10hours (12,000 points)

Angle measurement only : Approx. 45hours

Battery Charger BC-27BR / BC-27CR

Input voltage : AC 120V(BC-27BR), AC 230V(BC-27CR)

Frequency : 50/60Hz

Recharging time (at +20°C /+68°F)

Battery BT-52QA : 1.8 hours

Discharging time (at +20°C /+68°F)

Battery BT-52QA : 8 hours (in case of full charge)
Operating temperature : +10°C to +40°C (+50°F to 104°F)

Charging signal : Red lamp illumination
Refreshing signal : Yellow lamp illumination
Finishing signal : Green lamp illumination

Weight : 0.5kg (1.1 lbs)

 Battery using time will vary depending on environmental conditions and operations done with GTS-230W series.

APPENDIX

1 Dual Axis Compensation

Inclination of the vertical axis with respect to true vertical will result in incorrectly measured horizontal angles. The extent of the error in horizontal angle measurement due to axis tilt depends on three factors:

- the amount of the tilt of axis
- the elevation of the target
- the horizontal angle between the direction of till of the vertical axis and the target.

These factors are related by the following formula:

where v = tilt of axis in arcseconds

 α = azimuth angle between vert. axis direction and target

h = elevation of target

Hz_{err} = error in horizontal angle

Example: When the vertical axis is tilted by 30 arcseconds, the target is 10° above the horizon and rotated 90 in azimuth from the direction of the vertical axis error.

$$Hz_{err} = 30" \cdot \sin \alpha \cdot \tan 10^{\circ}$$

 $Hz_{err} = 30" \cdot 1 \cdot 0.176326=5.29"$

From the above example it can be seen that horizontal angle errors will increase with steeper vertical sights (tangent will increase as vertical angle increases) and will be at a maximum when the target is at right angles ($\sin 90^\circ=1$) to the direction of the vertical axis error. Errors will be at a minimum when the sights are nearly horizontal (h=0, $\tan 0=0$) and in the same direction as the vertical axis error ($\alpha=0$, $\sin 0=0$). Please refer to the table below to see the relationship between axis tilt (v) and elevation (h) and the error in horizontal angles which results from these factors.

V h	0°	1°	5°	10°	30°	45°
0"	0"	0"	0"	0"	0"	0"
5"	0"	0.09"	0.44"	0.88"	2.89"	5"
10"	0"	0.17"	0.87"	1.76"	5.77"	10"
15	0"	0.26"	1.31"	2.64"	8.66"	15"
30"	0"	0.52"	2.62"	5.29"	17.32"	30"
1'	0"	1.05"	5.25"	10.58"	34.64"	1'

It is clear from the table that dual axis compensation has the most benefit when the elevation of the target is greater then 30° and the axis is tilted more than 10". The entries indicated in bold in the table show, in fact, that for many common surveying applications i.e. target elevation <30° and axis error <10", virtually no correction would be required. Dual axis compensation is especially suited then for applications where the sights are very steep.

Even though the compensators can correct horizontal angles for vertical axis errors, it is still important to use care in setting up the instrument.

Centering error, for instance, cannot be corrected by the compensators. If the vertical axis is tilted by 1' with the instrument 1.4meters above the ground, a centering error of approx. 0.4mm will result. The maximum effect of this error at 10m is about 8" of horizontal angle error.

In order to maintain the increased accuracy possible through dual axis compensation, it is necessary to keep the compensators in proper adjustment. The compensators must agree with the actual level condition of the instrument. Through various environmental stresses, the agreement between the level condition sensed by the compensators and the true level condition of the instrument may be disturbed. In order to reestablish the correct relationship between the compensator and the true level condition of the instrument, it is necessary to carry out the vertical indexing procedure listed on chapter 17.3.7 "Adjustment of Vertical Angle 0 Datum". This adjustment will both reset the vertical index (cause a direct + indirect zenith reading to the same elevation to equal 360°) and zero the level reference for the horizontal compensator. While correct vertical angles can be obtained by averaging direct and indirect reading even when the index is improperly adjusted, the same is not true for horizontal angles. Since the vertical axis error is fixed for a given setup, its effect cannot be removed by averaging two readings. For this reason, it is extremely important to maintain the vertical indexing adjustment to insure proper correction of the horizontal angles.

2 Precaution when Charging or Storing Batteries

The capacity of battery will be affected and its service life shortened in any of the following cases while it is recharged, dischrged or stored.

1) Recharging

Fig. 1 shows how ambient temperature at recharging is related to charging efficiency or as affecting discharge capacity. As seen from the figure, charging at normal temperature is best, and the efficiency decreases as the temperature rises. It is best, therefore, to always recharge the battery at normal temperature to obtain full use of battery capacity and enjoy maximum operation per charge. And the service life of your battery will be shortened if it is frequently overcharged or recharged at high temperature.

Note: 0.1C charge means that the battery is recharged with 0.1 -time current as against its capacity.

2) Discharge

Fig. 2 shows discharge temperature characteristics. Discharge characteristics at high temperature are the same as those at normal temperatures. The battery is likely to have reduced discharge capacity as well as lower discharged voltage when discharged at low temperature. And the service life of your battery will be shortened if it is greatly overcharged.

Note: 1C discharge means one with 1 -time current over battery capacity.

3) Storage

See Fig. 3 for how storing period at different temperature levels is related to the remaining capacity. The battery will lose its capacity as storage temperature rises and the storage period increases. This does not mean, however, that the battery performance is damaged when the battery is stored. The battery, reduced in capacity, will be restored once it is recharged. Always recharge your battery before use. And recharge and discharge the battery 3 or 4 times to restore its capacity if it has been stored for a long period or at high temperature. Storing at high temperature can adversely affect the service life of your battery.

Your battery has been fully charged before leaving the factory, but its capacity may be affected considerably when it takes several months to reach you, if it is stored at high temperature area or passes through a high-temperature region. Then, the battery must be recharged and discharged 3~4 times to fully restore its capacity.

And the battery should always be stored at normal temperature or lower if it will not be used for any long period. This helps your battery have a longer service life.

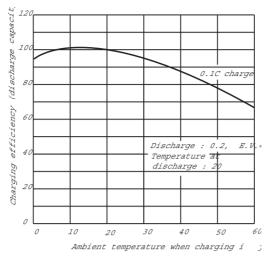


Fig.1 Recharging

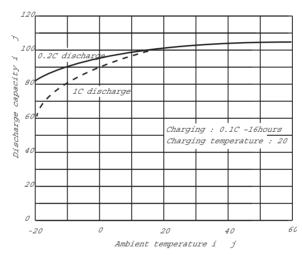


Fig. 2 Discharge

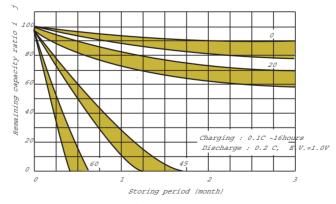


Fig. 3 Storage

Regulatory Information

U.S.A

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is used in a commercial or residential environment. This equipment generates, uses and can radiate radio frequency energy and, if not used in accordance with the instruction manual, may cause harmful interference to radio communications.

Operation of this equipment is subject to the following two conditions:

- (1) The device may not cause harmful interference.
- (2) This device must accept any interference received, including interference that may cause undesired operation.

Bluetooth[™] and the Bluetooth[™] logos are trademarks owned by Bluetooth[™] SIG, Inc., USA and licensed to Topcon Corporation.

ELECTRONIC TOTAL STATION

GTS-230W series

TOPCON POSITIONING SYSTEMS, INC.

5758 West Las Positas Blvd., Pleasanton, CA 94588, U.S.A. Phone: 925-460-1300 Fax: 925-460-1315 www.topcon.com

TOPCON CALIFORNIA

3380 Industrial Blvd. Suite 105. West Sacramento, CA 95691, U.S.A. Phone: 916-374-8575 Fax: 916-374-8329

TOPCON MIDWEST

891 Busse Boad, Elk Grove Village, IL 60007, U.S.A. Phone: 847-734-1700 Fax: 847-734-1712

TOPCON EUROPE B.V.

Essebaan 11, 2908 LJ Capelle a/d IJssel, The Netherlands. Phone: 010-4585077 Fax: 010-4585045 www.topconeurope.com

TOPCON BELGIUM

Preenakker 8, 1785 Merchtem, Belgium Phone: 052-37.45.48 Fax: 052-37.45.79

TOPCON DEUTSCHLAND G.m.b.H. Weidkamp 180, 45356 Essen, GERMANY

Phone: 0201-8619-100 Fax: 0201-8619-111 ps@topcon.de www.topcon.de

TOPCON S.A.R.L.

89, Rue de Paris, 92585 Clichy, Cedex, France. Phone: 33-1-41069490 Fax: 33-1-47390251 topcon@topcon.fr

TOPCON ESPAÑA S.A.

HEAD OFFICE

Frederic Mompou 5, ED. Euro 3, 08960, Sant Just Desvern Barcelona, Spain. Phone: 93-473-4057 Fax: 93-473-3932 www.topconesp.com

MADRID OFFICE

Avenida Burgos, 16E, 1∞28036, Madrid, Spain Phone: 91-302-4129 Fax: 91-383-3890

TOPCON SCANDINAVIA A. B.

Neongatan 2 S-43151 Mölndal, SWEDEN Phone: 031-7109200 Fax: 031-7109249

TOPCON (GREATBRITAIN) LTD.

Topcon House Kennet Side, Bone Lane, Newbury, Berkshire RG14 5PX U.K. Phone: 44-1635-551120 Fax: 44-1635-551170 survey.sales@topcon.co.uk laser.sales@topcon.co.uk

TOPCON SOUTH ASIA PTE. LTD.

Blk 192 Pandan Loop, Pantech Industrial Complex, #07-01, Singapore 128381 Phone: 62780222 Fax: 62733540 www.topcon.com.sg

TOPCON AUSTRALIA PTY, LTD.

408 Victoria Road, Gladesville, NSW 2111, Australia

Phone: 02-9817-4666 Fax: 02-9817-4654 www.topcon.com.au

TOPCON INSTRUMENTS (THAILAND) CO., LTD.

77/162 Sinn Sathorn Tower, 37th Fl., Krungdhonburi Rd., Klongtonsai, Klongsam, Bangkok 10600 Thailand. Phone: 662-440-1152~7 Fax: 662-440-1158

TOPCON INSTRUMENTS (MALAYSIA) SDN. BHD.

Excella Business Park Block C, Ground & 1st Floor, Jalan Ampang Putra, Taman Ampang Hilir, 55100 Kuala Lumpur, MALAYSIA Phone: 03-42701068 Fax: 03-42704508

TOPCON KOREA CORPORATION

2F Yooseoung Bldg., 1595-3, Seocho-Dong, Seocho-gu, Seoul, 137-876, Korea. Phone: 82-2-2055-0321 Fax: 82-2-2055-0319 www.topcon.co.kr

TOPCON OPTICAL (H.K.) LIMITED

2/F., Meeco Industrial Bldg., No. 53-55 Au Pui Wan Street, Fo Tan Road, Shatin, N.T., Hong Kong Phone: 2690-1328 Fax: 2690-2221 www.topcon.com.hk

TOPCON CORPORATION BEIJING OFFICE

Room No. 962 Poly Plaza Building, 14 Dongzhimen Nandajie, Dongcheng District, Beijing, 100027, China Phone: 10-6501-4191~2 Fax: 10-6501-4190

TOPCON CORPORATION BEIRUT OFFICE

P. O. BOX 70-1002 Antelias, BEIRUT-LEBANON Phone: 961-4-523525/961-4-523526 Fax: 961-4-521119

TOPCON CORPORATION DUBAI OFFICE

P.O.Box 28595, 102, Al Naily Bldg., 245 Abu Hail Road, Deira, Dubai, UAE Phone: 971-4-2696511 Fax: 971-4-2695272

TOPCON CORPORATION

75-1 Hasunuma-cho, Itabashi-ku, Tokyo 174-8580, Japan Phone: 3-3558-2520 Fax: 3-3960-4214 www.topcon.co.jp