

DT Series

System Introduction

DT-Series is a true full digitized IGBT rectifier double conversion online UPS. It has parallel redundant features. With THDI≤4%, output power factor 0.9, and overall efficiency AC~AC up to 93%, DT-Series can be defined as a high reliability and efficiency green power. It also integrates friendly user communication interface and remote-control system, which is ideal for medium to large data centers, precision equipment, and Telecomm industry.

System Features

High Performance Index

- ◆ Advanced IGBT Rectifier and HF PFC Technology. Input THDI≤4%, Input Power Factor≥0.99 to save more energy;
- ◆ DT Series adapts the 5th generation IGBT Inverter control technology to enhance the output voltage/current performance. Online 3 Phase Input and output double conversion structure to adapt 380/400/415V, 50/60Hz Mains Grid Supply Systems.
- Output Power Factor 0.9 to carry 12.5% load capacities than traditional UPS.
- ♦ Wide Input Voltage Range 380Vac (-45% to +25%) or 210-475 Vac with 50/60Hz ±5% Frequency Range. High adaptive capacity and Generator Capability with ratio of 1.2 : 1.
- ♦ Overall Efficiency upto 94%. Can reach to 98% on ECO Mode.
- ◆ Powerful overload ability with output short circuit protection: 110%-120% overloads for 10 mins.125%-150% for 1 min.
- ◆ Intelligent battery management to extend battery life. Dual DSP control to correct charging parameters, which provides optimized charging solutions based on operational mode, such as float charge or equalized charge. Flexible Battery Configuration. It can be set on the front panel with 28/30/32 Units of Batteries.

Safe, Reliable, and Easy Maintenance

- DT Series adapts dual DSP technology to control UPS all kinds of power function processes (including Parallel function) in order to increase system reliability.
- Flexible Single or Dual Utility Power Input to comprehensively protect load devices.
- Battery Misconnection protection. UPS will not be damaged by reverting the polarities connection.
- Self-Evaluation and Alarm of Phase Misconnection or Lost.
- ♦ 100% 3 Phase Unbalanced Allowance Design.
- Front Modular Maintenance Design. MTBF can be upto 300K Hours.
- 90% of system components are from international famous brands. All devices has been aged and fully tested for at least 24 hours before leaving the factory.

Compatible applications/loads

DT-Series is designed for small and medium important equipment/application systems, such as SME data exchange centers, communication equipment industry, and precision instruments.

Specification

	DT100L33	DT150L33	DT200L33	DT300L33	DT400L33	DT600L33	DT800L33	DT1000L33	DT1200L33	DT1400L33
Capacity	10KVA/9KW	15KVA/13.5KW	/ 20KVA/18KW	30KVA/27KW	40KVA/36KW	60KVA/54KW	80KVA/72KW	100KVA/90KW	120KVA/108KW	140KVA/112K
		Host Machine	Specification	ı						
UPS Structure		Online Double C	onversion							
Appearance		High Frequency	Online Design							
Overall Efficiency (AC-AC)	> 93%									
Noise (In 2 Meters)		< 50-65dB								
Working Temp.		-10-40℃								
Storage Temp.		-25 ~ 60℃ (Wit	hout Batteries))						
Humidity		< 95% Non-Con	desing							
National Standard		GB4943	-							
International Standard		EN 50091-1/2	EN62040-1 EI	N62040-2						
Parallel Redundancy		Parallel Redund								
Protection		Overload, Short			wer Voltage H	ligh/low BAT V	oltage High/low			
DC Start		Available	oneun, over i	remp., ounty r	wer voltage i	igniow, bitt v	Shage High tow			
Generator Compatibility		Available								
Display		5 Inch LCD Colo	r Touch Screer	n (multi-langua	ne) + LED		7 Inch Colo	r Touch LCD(mu	ulti-language)	
Mute		Auto		r (mana hangada	jo) · 225		1 11011 0 010		ini langaago)	
Cabinet Standard		IP20								
Cooling System		Intelligent Spee	d Control Cooli	ng Fan						
Elevation		<1500M, witho		ing run						
Lievation		Rectifier Speci								
Input Voltage		380Vac+N+W, 3								
Input Voltage Range		380Vac+14+14, 3		ut Voltage / 75	% Output Po	ver Derated)				
Input Frequency Range		40-70Hz	s /o (windininp	at voltage < / 0	,.,					
Soft-Start		> 20 Seconds								
Input PF		0.99								
THDI		< 3.5%								
Input Current	20A	30A	40A	57A	77A	115A	153A	192A	230A	268A
		Output Specif	ication							
			0	0 Dh \/-!4		40() 40				
Output Voltage		Line Voltage: 38	0× (1±1%) A	C or Phase Volt	age: 220× (1	±1%) AC				0.0
Output Power Factor		0.9					9/ (100.09/ 5	Idan Changa)		0.8
Output Power Factor Output Voltage Regulation		0.9 380Vac±1%(Sta	tic Load); 380\	/ac±2%(50-0%	5 Sudden Char	nge); 380Vac±3				
Output Power Factor Output Voltage Regulation Output Frequency		0.9 380Vac±1%(Sta ±8% at 50Hz: O	tic Load); 380\ nline Mode trac	/ac ± 2%(50-0% cking input and	5 Sudden Char bypass freq.; :	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Fu	tic Load); 380\ nline Mode trac ull Load) , <3'	/ac ± 2%(50-0% cking input and % (Non-Linear	5 Sudden Char bypass freq.; :	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Fu Allow 3 Phase 1	tic Load); 380\ nline Mode trac ull Load) , <3' 00% Unbalanc	/ac ± 2%(50-0% cking input and % (Non-Linear ed	5 Sudden Char bypass freq.; : Full Load)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Fu Allow 3 Phase 1 ≤1%(Balanced L	tic Load); 380\ nline Mode trac ull Load) , <3' 00% Unbalanc .oad); ≤2%(50%	Vac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Loa	5 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Fu Allow 3 Phase 1	tic Load); 380\ nline Mode trac ull Load) , <3' 00% Unbalanc .oad); ≤2%(50%	Vac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Loa	5 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range		0.9 380Vac±1%(Sta ±8% at 50Hz: Oi < 1% (Linear Fu Allow 3 Phase 1 ≤1%(Balanced L ≤1°(Balanced L 46-54Hz	tic Load); 380∖ nline Mode trac ull Load) , <3' 00% Unbalanc .oad); ≤2%(50% l oad); ≤2°(50% l	Vac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Loa	5 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift		0.9 380Vac±1%(Sta ±8% at 50Hz: Oi < 1% (Linear Ft Allow 3 Phase 1 ≤1%(Balanced L ≤1°(Balanced L	tic Load); 380∖ nline Mode trac ull Load) , <3' 00% Unbalanc .oad); ≤2%(50% l oad); ≤2°(50% l	Vac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Loa	5 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range		0.9 380Vac±1%(Sta ±8% at 50Hz: Oi < 1% (Linear Fu Allow 3 Phase 1 ≤1%(Balanced L ≤1°(Balanced L 46-54Hz	tic Load); 380\ nline Mode trac ull Load) , <3' 00% Unbalance .oad); ≤2%(50% l oad); ≤2°(50% l	Vac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Loa	5 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range		0.9 380Vac±1%(Sta ±8% at 50Hz: Oi < 1% (Linear Fit Allow 3 Phase 1 ≤1%(Balanced L ≤1°(Balanced L 46-54Hz Pure Sine Wave	tic Load); 380\ nline Mode trac JI Load) , <3' 00% Unbalanc .oad); ≤2%(50% I pad); ≤2°(50% I an 10 mins	Vac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Loa	5 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase T ≤1%(Balanced L 46-54Hz Pure Sine Wave <125%: More th	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalanc: .oad); ≤2%(50% I oad); ≤2°(50% I an 10 mins an 1 min	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load	5 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 1 ¹ ≤1%(Balanced L ≤1°(Balanced L 46-54Hz Pure Sine Wave <125%: More th >125%: More th	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalanc: .oad); ≤2%(50% I oad); ≤2°(50% I an 10 mins an 1 min	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load	5 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload		0.9 380Vac±1%(Sta ±8% at 50Hz: Oc < 1% (Linear Fi Allow 3 Phase 11 ≤1%(Balanced L ≤1°(Balanced L 46-54Hz Pure Sine Wave <125%: More th >125%: More th	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalanc: .oad); ≤2%(50% I oad); ≤2°(50% I an 10 mins an 1 min	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load	5 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio		0.9 380Vac±1%(Sta ±8% at 50Hz: Or < 1% (Linear Fr Allow 3 Phase 1) ≤1%(Balanced L ≤1°(Balanced L 46-54Hz Pure Sine Wave < 125%: More th >125%: More th > 150%: More th 3 : 1	tic Load); 380\ nline Mode trac III Load) , <3' 00% Unbalanc: .oad); ≤2%(50% bad); ≤2°(50% I an 10 mins an 1 min tan 300ms tran	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency		0.9 380Vac±1%(Sta ±8% at 50Hz: Or < 1% (Linear Fr Allow 3 Phase 1) ≤1%(Balanced L ≤1°(Balanced L 46-54Hz Pure Sine Wave < 125%: More th > 125%: More th 3 : 1 > 93%	tic Load); 380\ nline Mode trac III Load) , <3' 00% Unbalanc: .oad); ≤2%(50% I an 10 mins an 1 min tan 300ms tran tection, Bypass	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit		0.9 380Vac±1%(Sta ±8% at 50Hz: Or < 1% (Linear Fit Allow 3 Phase 1) ≤1%(Balanced L ≤1°(Balanced Lc 46-54Hz Pure Sine Wave < 125%: More th > 150%: More th 3 : 1 > 93% Circuit Auto-Pro	tic Load); 380\ nline Mode trac ull Load), <3' 00% Unbalanc 	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Voltage Regulation Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 1 ≤1%(Balanced Lc 46-54Hz Pure Sine Wave < 125%: More th > 125%: More th > 150%: More th 3 : 1 > 93% Circuit Auto-Pro INV. Output Auto Bypass Specifi	tic Load); 380\ nline Mode trac ull Load), <3' 00% Unbalanc 	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Voltage Regulation Output Frequency 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 11 ≤1%(Balanced L 46-54Hz Pure Sine Wave <125%: More th >125%: More th >150%: More th 3 : 1 > 93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms	tic Load); 380\ nline Mode trac ull Load) , <3' 00% Unbalanc: .oad); ≤2%(50%) an 10 mins an 1 min an 300ms tran tection, Bypas: b-Locked Prote cation	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 11 ≤1%(Balanced L ≤1°(Balanced L ≤1°(Ba	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalanc: .oad); <2%(50% l an 10 mins an 1 min an 300ms tran tection, Bypasa Locked Prote cation	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir cction	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range		0.9 380Vac±1%(Sta ±8% at 50Hz: Oc < 1% (Linear Fr Allow 3 Phase 1 ¹¹ ≤1%(Balanced L ≤1°(Balanced L 46-54Hz Pure Sine Wave <125%: More th >125%: More th >150%: More th 3 : 1 > 93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~+ ±1Hz, ±2Hz, ±	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalanc: .oad); <2%(50% l an 10 mins an 1 min an 300ms tran tection, Bypasa Locked Prote cation	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir cction	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 11 ≤1%(Balanced L ≤1°(Balanced L ≤1°(Ba	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalanc: .oad); <2%(50% l an 10 mins an 1 min an 300ms tran tection, Bypasa Locked Prote cation	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir cction	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Iransfer Time Static Bypass Iransfer Time Frequency Range Pypass -> INV Transfer Time Frequency Tracking Speed		0.9 380Vac±1%(Sta ±8% at 50Hz: Or < 1% (Linear Fr Allow 3 Phase 1) ≤1%(Balanced L ≤1°(Balanced L 46-54Hz Pure Sine Wave < 125%: More th >125%: More th >150%: More th 3 : 1 > 93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~++ ±1Hz, ±2Hz, ± 2ms	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalanc: .oad); <2%(50% l an 10 mins an 1 min an 300ms tran tection, Bypasa Locked Prote cation	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir cction	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Iransfer Time Static Bypass Iransfer Time Frequency Range Pypass -> INV Transfer Time Frequency Tracking Speed		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 1 ≤1%(Balanced L 46-54Hz Pure Sine Wave <1°(Balanced L 46-54Hz Pure Sine Wave <1°(Stalanced L 46-54Hz Pure Sine Wave <1°(Stalanced L 46-54Hz Pure Sine Wave <1°(Stalanced L 5%: More th >15%: More th >15%: More th >15%: More th >15%: More th 3: 1 >93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~++ ±1Hz, ±2Hz, ± 2ms 0.5-2hz/s Available	tic Load); 380\ nline Mode trac ull Load) , <3' 00% Unbalanc: .oad); ≤2%(50%) an 10 mins an 1 min an 300ms tran tection, Bypas: b-Locked Prote cation 15%) 3Hz Selectable	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir cction	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range Bypass> INV Transfer Time Frequency Tracking Speed Vanual Maintenance Bypass		0.9 380Vac±1%(Sta ±8% at 50Hz: O; < 1% (Linear Ft Allow 3 Phase 1 ≤1%(Balanced Lc 46-54Hz Pure Sine Wave < 125%: More th > 125%: More th > 125%: More th > 125%: More th 3 : 1 > 93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~+ ±1Hz, ±2Hz, ± 2ms 0.5-2hz/s	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalance .coad); ≤2%(50% I an 10 mins an 1 min an 300ms tran tection, Bypass Locked Prote cation 15%) 3Hz Selectable ication	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load sfer to bypass s Switch Trippir ction e	6 Sudden Char bypass freq.; : Full Load) id)	nge); 380Vac±3			e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Sypass -> INV Transfer Time Frequency Tracking Speed Wanual Maintenance Bypass		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 11 ≤1%(Balanced L 46-54Hz Pure Sine Wave <125%: More th >125%: More th >125%: More th >150%: More th 3 : 1 > 93% Circuit Auto-Pro INV. Output Auto Bypass Specifi 0ms 380Vac (-15~++ ±1Hz, ±2Hz, ± 2ms O.5-2hz/s Available Battery Specifi Sealed Lead Act	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalancc .oad); ≤2%(50% I an 10 mins an 1 min an 300ms tran tection, Bypass Locked Prote cation 15%) 3Hz Selectable ication id Maintenance	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load sfer to bypass s Switch Trippir ction e P Free	6 Sudden Char bypass freq.; : Full Load) id))	nge); 380Vac±3 £0.1%: when in			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range Pypass -> INV Transfer Time Frequency Tracking Speed Manual Maintenance Bypas		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 1 ¹¹ ≤1%(Balanced L ≤1°(Balanced L 46-54Hz Pure Sine Wave <125%: More th >125%: More th >125%: More th >150%: More th 3:1 >93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~++ ±1Hz, ±2Hz, ± 2ms 0.5-2hz/s Available Battery Specifi Sealed Lead Act ±168Vdc (28 U	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalanc: .oad); <2%(50% Jacobic Sector an 10 mins an 1 min an 300ms tran tection, Bypase -Locked Prote cation 15%) 3Hz Selectable ication id Maintenance Inits) , ±180Vc	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load sfer to bypass s Switch Trippir ction e P Free	6 Sudden Char bypass freq.; : Full Load) id))	nge); 380Vac±3 £0.1%: when in			e than ±8% or und	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Sypass -> INV Transfer Time Frequency Tracking Speed Manual Maintenance Bypass		0.9 380Vac±1%(Sta ±8% at 50Hz: Oc < 1% (Linear Fr Allow 3 Phase 1) ≤1%(Balanced L ≤1°(Balanced L 46-54Hz Pure Sine Wave <125%: More th >125%: More th >150%: More th 3 : 1 > 93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~++ ±1Hz, ±2Hz, ± 2ms 0.5-2hz/s Available Battery Specifi Sealed Lead Aci ±168Vdc (28 U Shutdown Prote	tic Load); 380\ nline Mode trac ull Load) , <3' 00% Unbalanc: .oad); <2%(50% bad); <2%(50% an 10 mins an 10 mins an 1 min tection, Bypass o-Locked Prote cation 15%) 3Hz Selectable ication id Maintenance Inits), ±180Vd ction	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippin rection e e Free dc (30 Units) ,	6 Sudden Char bypass freq.; : Full Load) id))	nge); 380Vac±3 £0.1%: when in			e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range Bypass> INV Transfer Time Frequency Tracking Speed Manual Maintenance Bypass Type BAT Rated Volts/Units BAT Low		0.9 380Vac±1%(Sta ±8% at 50Hz: O: < 1% (Linear Ft Allow 3 Phase 1 <1%(Balanced Lo <1*(Balanced Lo <1*	tic Load); 380\ nline Mode trac ull Load) , <3' 00% Unbalance .oad); ≤2%(50% an 10 mins an 10 mins an 10 mins an 1 min tan 300ms tran tection, Bypass Locked Prote cation 15%) 3Hz Selectable ication id Maintenance Inits) ,±180Vo ction on Specificati	/ac ± 2%(50-0% sking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippin storn e Free iction	5 Sudden Char bypass freq.; : Full Load) (d)) ng ±192Vdc (32	nge); 380Vac±3 £0.1%: when in			e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Voltage Regulation 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range Sypass -> INV Transfer Time Frequency Tracking Speed Manual Maintenance Bypass Frequency Tracking Speed Manual Maintenance Bypass		0.9 380Vac±1%(Sta ±8% at 50Hz: O; < 1% (Linear Ft Allow 3 Phase 1 <1%(Balanced L <1*(Balanced L <1*(Bal	tic Load); 380\ nline Mode trac ull Load) , <30 00% Unbalance .coad); ≤2%(50%) an 10 mins an 10	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir istoin e e Free dc (30 Units), it (Optional Ac	s Sudden Char bypass freq.; : Full Load) (d)) (d)) tg ±192Vdc (32 cessory)	nge); 380Vac±3 ±0.1%: when in	put or bypass fr	equency is more	e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Frequency Distortion 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range Bypass> INV Transfer Time Frequency Tracking Speed Manual Maintenance Bypass Type BAT Rated Volts/Units BAT Low		0.9 380Vac±1%(Sta ±8% at 50Hz: O; < 1% (Linear Ft Allow 3 Phase 1 ≤1%(Balanced Lc 46-54Hz Pure Sine Wave < 125%: More th > 125%: More th > 125%: More th > 150%: More th 3 : 1 > 93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~+ ±1Hz, ±2Hz, ± 2ms 0.5-2hz/s Available Battery Specifi Sealed Lead Aci ±168Vac (28 U Shutdown Prote Communicatio RS232/SNMP/4 Multi-functional	tic Load); 380\ nline Mode trac ull Load) , <30 00% Unbalance .coad); ≤2%(50%) an 10 mins an 10 mins an 10 mins an 1 min tection, Bypass b-Locked Prote cation 15%) 3Hz Selectable id Maintenance Inits) , ±180Vc ction on Specificati 85/Dry Contac Monitoring Sys	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir istoin e e Free dc (30 Units), it (Optional Ac	s Sudden Char bypass freq.; : Full Load) (d)) (d)) tg ±192Vdc (32 cessory)	nge); 380Vac±3 ±0.1%: when in	put or bypass fr	equency is more	e than ±8% or unde	
Output Power Factor Output Voltage Regulation Output Voltage Regulation Output Frequency 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range Bypass -> INV Transfer Time Frequency Tracking Speed Manual Maintenance Bypass Frequency Tracking Speed Manual Maintenance Bypass Autor BAT Rated Volts/Units BAT Low		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 11 <1%(Balanced L 46-54Hz Pure Sine Wave <1°(Balanced L 46-54Hz Pure Sine Wave <125%: More th >125%: More th >125%: More th >150%: More th 3 : 1 >93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~++ ±1Hz, ±2Hz, ± 2ms 0.5-2hz/s Available Battery Specif Sealed Lead Aci ±168Vdc (28 U Shutdown Prote Communicatio RS232/SNMP/4 Multi-functional Physical Param	tic Load); 380\ nline Mode trac 111 Load) , <30 00% Unbalance .coad); ≤2%(50%) an 10 mins an 10 mins an 10 mins an 1 min Ian 300ms tran tection, Bypass b-Locked Prote cation 15%) 3Hz Selectable ication ication id Maintenance Inits), ±180Vd ction on Specificati 85/ Dry Contac Monitoring Sys neters	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load Balanced Load sfer to bypass s Switch Trippir istoin e e Free dc (30 Units), it (Optional Ac	s Sudden Char bypass freq.; : Full Load) (d)) (d)) tg ±192Vdc (32 cessory)	nge); 380Vac±3 ±0.1%: when in Units) tatus, BAT Faul	put or bypass fr	equency is more		er BAT Mode
Output Power Factor Output Voltage Regulation Output Voltage Regulation 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range Bypass -> INV Transfer Time Frequency Tracking Speed Manual Maintenance Bypass Frequency Tracking Speed BAT Rated Volts/Units BAT Low		0.9 380Vac±1%(Sta ±8% at 50Hz: O, < 1% (Linear Ft Allow 3 Phase 11 ≤1%(Balanced Lc 46-54Hz Pure Sine Wave <125%: More th >125%: More th >125%: More th >125%: More th > 93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~++ ±1Hz, ±2Hz, ± 2ms O,5-2hz/s Available Battery Specifi Sealed Lead Aci ±168Vdc (28 U Shutdown Prote Communicational Physical Param 370 × 705 × 1030	tic Load); 380\ nline Mode trac 11 Load) , <3' 00% Unbalanc: .oad); <2%(50% l an 10 mins an 1 min .an 300ms tran tection, Bypase -Locked Prote cation 15%) 3Hz Selectable ication id Maintenance Inits) , ±180Vc ction on Specificati 85/ Dry Contac Monitoring Sys neters	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load sfer to bypass s Switch Trippir ction e Free free free (30 Units) , ion	5 Sudden Char bypass freq.; : Full Load) (d)) (d)) td) td) td) td) td) td) td) td) td)	nge); 380Vac±3 ±0.1%: when in Units) tatus, BAT Faul	put or bypass fr	equency is more	700×75	er BAT Mode
Output Power Factor Output Voltage Regulation Output Voltage Regulation Output Frequency 3 Phase Unbalanced Output Volt Unbalanced Degree Input/Output Phase Swift Frequency Tracking Range Output Waveform Overload Crest Ratio Efficiency Short-Circuit Output Abnormal Static Bypass Transfer Time Static Bypass Input Range Frequency Range Bypass -> INV Transfer Time Frequency Tracking Speed Manual Maintenance Bypass Frequency Tracking Speed Manual Maintenance Bypass Autor BAT Rated Volts/Units BAT Low		0.9 380Vac±1%(Sta ±8% at 50Hz: O < 1% (Linear Ft Allow 3 Phase 11 <1%(Balanced L 46-54Hz Pure Sine Wave <1°(Balanced L 46-54Hz Pure Sine Wave <125%: More th >125%: More th >125%: More th >150%: More th 3 : 1 >93% Circuit Auto-Pro INV. Output Auto Bypass Specifi Oms 380Vac (-15~++ ±1Hz, ±2Hz, ± 2ms 0.5-2hz/s Available Battery Specif Sealed Lead Aci ±168Vdc (28 U Shutdown Prote Communicatio RS232/SNMP/4 Multi-functional Physical Param	tic Load); 380\ nline Mode trac JII Load) , <3' 00% Unbalanc: .oad); <2%(50% Jan 10 mins an 10 mins an 1 min an 300ms tran tection, Bypass Locked Prote cation 15%) 3Hz Selectable ication id Maintenance Inits) , ±180Vo ction on Specificati 85/ Dry Contac Monitoring Sys netters 0 89	/ac ± 2%(50-0% cking input and % (Non-Linear ed % Balanced Load sfer to bypass s Switch Trippir ction e e Free dc (30 Units), it (Optional Ac stem, Online an 106	s Sudden Char bypass freq.; : Full Load) (d)) (d)) tg ±192Vdc (32 cessory)	nge); 380Vac±3 ±0.1%: when in Units) tatus, BAT Faul	put or bypass fr	equency is more		er BAT Mode

Note:Specifications are subject to change without further notice

5/7 inch color touch screen+LED

DSP Controller

NIMAC POWER SYSTEMS (M) SDN BHD (425245-D) No. 9, Jalan SC 8, Taman Perindustrian Sungai Chua, 43000 Kajang. Selangor Darul Ehsan, Malaysia. Tel: +603-8733 9163 / 8737 0168 / 8736 5168 Fax: +603-8735 0999 / 8734 6641 E-mail: alee@nimac.com.my Website: http://www.nimac.com.my GST No. 001620312064

Click / Scan Here

