Oriental motor New 5-Phase Stepping Motor and Driver Packages # **RKII** Series Built-in controller type Pulse input type An affordable stepping motor re-invented with a new concept of high performance. A highly reliable stepping motor that is too user-friendly to resist. # SAVE - Compact size, yet low price Page 4 - Reduction power consumption and running cost ... Page 5 # EASY ## **CONNECTION & SYSTEM** | Easy wiring | Page 6 | |----------------------------------|--------| | Easy selection | | | 2 types of drivers are available | | # HIGH ### PERFORMANCE & RELIABILITY New 5-Phase Stepping Motor and Driver Packages **RKII Series** ## Reduction of total cost. ## **Price** ## **High-efficiency** with Low Price Compared to the conventional products, while achieving the significant improvement in motor performance, easy driver operation and function, the price has been lowered. # Multiple units can be installed in coherently with each other. Conventional Model: **RK** Series ☐ 60 mm Standard Type RKII Series Pulse Input Type ☐ 60 mm Standard Type • For price and lead time, please contact the nearest Oriental Motor office, or visit the Oriental Motor website. # Space Saving ### Slim and Compact This new driver has been created with re-arrangement of the internal components of the previous design, optimizing the usage other, the allowable ambient temperature range is 0 to 40°C of the size within the driver. In addition, drivers can be installed side by side, reducing a significant amount of space When drivers are installed in contact with each Slim & compact driver Conventional Model **RK** Series Installation Area 9405 mm² (165x57=9405) RKII Series Driver Installation Area 6400 mm² (160x40=6400) RKII Series Driver **RK** Series Driver Installation Width 45% Reduction ## MERIT High-efficiency and Compact size, yet cost cost for control board. down. ## **MERIT** **Obtain downed size and** # High Efficiency # Reduces power consumption by up to 47% By optimizing the motor material, 47% of the power consumption has been reduced. This results in the decrease of electricity and CO₂ emission. In addition, with the lower heat generated by the motor, there is a lesser requirement of fans or radiation plate. #### Power Consumption Comparison Operating Condition - · Spin speed : 1000 r/min · Load torque: 0.47 N·m - Operating time: 24 hours (Operation 70%, Stand-by 25%, Stop 5%) 365 days/year ### ● Power Consumption Comparison | Items | Conventional
Model | RKS566AC-◇ | Comparison | | |---|-----------------------|------------|--------------|-------------------| | Power consumption during operation [W] | 204 | 106 | 98 W | Reduced
by 48% | | Power consumption during stand-by [W] | 14 | 13 | 1 W | Reduced
by 7% | | Power consumption [kWh/year] | 1281 | 678 | 603 kWh/year | Reduced
by 47% | | CO ₂ emission equivalent to power consumtion * [kg/year] | 533 | 282 | 251 kg/year | Reduced
by 47% | ※: Conversion rate: 0.416 kg/kWh ## **MERIT** With the maximized motor performance, it is easy to achieve high efficiency and cost savings. ## Lower Heat Generation # Continuous Operation is Achieved Continuous operation is achieved due to the reduction of motor heat generation by utilizing high-efficiency technology, and there is a lesser requirement of fans or radiation plate. #### Motor Surface Temperature Comparison under the Same Conditions #### Distribution of temperature (shown on thermography) ### **MERIT** To reduce cost and procedure to take measures to prevent high-temperature. ## Easy to wire, easy to select. ## Wiring ## Easy Wiring The new I/O connector does not require a screw, eliminating the need for soldering or a special crimping tool. The motor connector can be connected easily by using a dedicated cable. This will reduce wiring time, maintenance and prevent mis-wiring. #### Motor Connector Wiring · No screw tightening - · Wiring time reduction - · Reduce problems caused by mis-wiring #### I/O Connector Wiring - · No soldering - · No crimping tools - · Wiring time reduction - · Less maintenance ## Selection ## **Easy Selection** #### ● Free Motor Selection Service for **Customers:** Send us a motor selection inquiry via our website, fax or e-mail. #### Free Motor Selection Software **Available for Download:** Make your own motor selection for your application by downloading our user friendly motor selection software from our website. ### **MERIT** The driver has been redesigned, making it more compact and allowing side-by -side in contact installation. It is also more user friendly as wiring has been made easier. ## Two types of drivers are available. (FLEX) # Driver ## Pulse Input Type **Built-In Controller** Type Select the control method in accordance with your operation system. #### **Pulse Input Type** ## MFRIT Connects to a **Wide Variety of Host System.** #### Built-In Controller Type FLEX ■ How to connect (Example: Refer to P. 8 and P. 9) #### ① I/O The function of a built-in pulse generator lets you build an operation system by connecting directly to a PLC. Since no separate pulse generator is required, the drivers of this type save space and simplify systems. #### Speed and moving step angle of motors can be configured by data setting. The burden on the programmable PLC is reduced because the information necessary for motor operations is built into the driver. This simplifies the system configuration for multi-axis control. Set with control module (sold separately), data setting software, or RS-485 communication. #### ② Modbus (RTU)/RS-485 Through RS-485 communication, you can set operating data and parameters and input operation commands. A maximum of 31 drivers can be connected to one serial unit. There is also a function for simultaneously starting multiple axes. The unit also has a feature for starting multiple axes simultaneously. The unit supports the Modbus (RTU) protocol, which makes it easy to connect a PLC or similar device to the driver. By using a Network Converter (sold separately), you can use CC-Link communication and MECHATROLINK communication. Over these links, operating data and parameters can be set, and operation commands can be sent to the driver. ## Built-In Controller Type compatible with FLEX. Example of connection and control of Built-In Controller Type FEXT. FLEX FLEX is a generic name of the products which support Factory Automation network control via I/O control, Modbus (RTU) control and network converter. Build-In Controller Type # Modbus (RTU) Control • Modbus is copyright of Schneider Automation Inc. ## **MERIT** Build-in controller type is compatible with several kinds of system or network. Performance and function to enhance reliability. # High Accuracy ## **High Accurate Positioning** Positioning accuracy of the RKI Series is ±0.05° (± 3 arc min). When the **RK** II Series is used with a ball screw as shown in the below drawing, the stopping accuracy becomes $\pm 1.4 \mu m$. The accuracy of the normal ground ball screw is $\pm 10 \, \mu \text{m}$, thus the accuracy is high enough for positioning operation. · Motor to be used: RK II series #### Stopping Accuracy ±1.4 µ m Positioning Accuracy ±0.05° # High Torque ## Compact and High Torque The RK II Series is compact but produces high torque. The torque of the 42 mm frame size model has increased 50%. This contributes to a reduction in positioning and equipment takt time. The series includes 60 mm and 85 mm framesize models to cover a wide torque range. Note that for 60 mm and 85 mm frame size models, the torque is equivalent to the conventional model. # High Efficiency ## **Shorten Positioning** Time With conventional stepping motors, in applications where heat generation had to be suppressed, the operating current had to be reduced, which also reduced torque. With the RKII Series, thanks to its low heat generating, highly efficient motors, the motor torque can be used fully to reduce positioning Torque Comparison by Operating Current Comparison of Cycle Time (between deferent current of electricity) **Operating Conditions** - Moment of load inertia: 4X10-4 [kg·m²] - · Load torque: 0.2 [N·m] - Traveling Amount: 180 **Shorten time for** ## **MFRIT** High accuracy in positioning ±0.05°. ## **MERIT** **Improve cycle** time of machinery. positioning. ## Low **Vibration** ## Adopt full digital controlled driver Fulltime micro step driver controlled by a full digital system improve its vibration characteristics much better than ever (first in 5-phase step motor). Current control is also done by a digital system, high spec CPU will perform arithmetic process. This model uses PWM control instead of PAM control, current in each phase became sinusoidal wave. In the result, vibration has been reduced drastically. Current Waveform in Motor (theoretical figure) Conventional products: trapezoidal wave Current in motor changed from trapezoidal wave to sinusoidal wave, which resulted in less vibration. #### ● Vibration Characteristics Comparison ## Resolution ## Step angle can be set easily For pulse input type, a wide variety (32 kinds) of step angles can be selected. The user can select depending on their machinery, as well as the data of step angle for two-phase stepping motor is installed. It can be set easily (only select by switch) without any specialized software or Control module. For built-in controller type, can be set its value between 200 p/r - 200,000 p/r. Setting can be done by Control module, software or RS-485 communication. ## **Protective Function** Various kinds of protection are installed Protection function to take immediate measures is installed. Alarm LED will show detail of trouble, the user can specify it immediately from blink count. (Example of alarm) - Main circuit overheating Electrolytic - Overvoltage - Command pulse error - Overcurrent - Undervoltage - capacitor - error EEPROM error - CPU error - Automatic
electromagnetic brake control ## MFRIT ## **MERIT** Vibration has been Optimal resolutions Check troubles reduced drastically. can be selected. ## **MFRIT** with protection function. ## Lineup #### List of drivers and motors | Driver Type | Motor Type | Frame
Size | Electro-
magnetic
Brake | Power Input | |-----------------------------|--|-------------------------|-------------------------------|--| | Built-in Controller
Type | Standard Type | 42 mm
60 mm
85 mm | • | | | | Standard Type
with Encoder | 42 mm
60 mm
85 mm | _ | Single Phase
100-120 VAC
Single Phase
200-240 VAC | | | TS Geared Type PS Geared Type Harmonic Geared Type | 42 mm
60 mm
90 mm | • | | | Driver Type | Motor Type | Frame
Size | Electro-
magnetic
Brake | Power Input | |------------------|--|-------------------------|-------------------------------|-----------------------------| | Pulse Input Type | Standard Type | 42 mm
60 mm
85 mm | • | Single Phase | | | TS Geared Type PS Geared Type Harmonic Geared Type | 42 mm
60 mm
90 mm | • | Single Phase
200-240 VAC | #### ● List of Standard Type, Geared Type and Features *We provide encoder installed model, but only for the built-in controller models. | | Туре | Features | Permission
Torque, Maximum
Torque (N·m) | Backlash
(arc min) | Basic Resolution (°/pulse) | Output Shaft
Speed (r/min) | |---------------|---|---|---|-----------------------|----------------------------|-------------------------------| | | Standard
type with Encoder* | Basic model of the RKII series with Encoder For encoder installed model, functions for monitoring positioning data, detecting positioning gap are available. Resolution of encoder installed: 500 p/r. | Maximum
holding
torque
6.3 | _ | 0.72 | 6000 | | ess | TS Geared Type
(Spur Gear Mechanism) | High torque (Double of existing products) A wide variety of reduction gear ratios, high-speed operations Gear ratio types 3.6, 7.2, 10, 20, 30 | Permission
torque,
Maximum
torque
25 45 | 10 | 0.024 | 833 | | Backlash-less | PS Geared Type
(Planetary Gear
Mechanism) | Less backlash (comparing with existing products) High permission torque, maximum torque A various reduction gear ratio lineup make easy to detect angle Center shaft Gear ratio types 5, 7.2, 10, 25, 36, 50 | Permission
torque,
Maximum
torque | 7 | 0.0144 | 600 | | Non backlash | Harmonic Geared Type (Harmonic Drive) | Longer mechanical life (Double of existing products) Higher torque (1.3 times of existing products) High accuracy in positioning High permission torque, maximum torque High reduction ratio, high resolution Center shaft Gear ratio types 50, 100 | Permission
torque,
Maximum
torque | 0 | 0.0072 | 70 | Note - Above values can be referred to know the difference between each types. Such values can be changed depending on setting angle or reduction ratio. - Harmonic drive and are registered trademarks of Harmonic drive systems Inc or trademarks. We also provide the geared motor (a kind of variation of Stepping motor). Geared motors also has various specification, the user can select the optimal one by considering about torque, accuracy (backlash) or price. ### Standard Type with Encoder (Built-in controller type only) Encoder installed model make it possible to monitor present position and detect the gap. It contributes to carry more reliability to machinery. #### Positioning monitor The user can detect position of the motor. For instance, comparing with command position, the user can confirm normal operation. ## Return-to-Home operation by using Z-phase signal Z-phase signal can be utilized to home return operation. Using Z-phase signal, the home return point will be detected with higher accuracy than single use of the home return sensor. #### Detecting the gap The encoder will compare command position and encoder-count, if deviation exceeds set value STEPOUT signal will be output. So that if acute change happened in current and cause gap in position, the user can figure it out. Alarm or warning sign for abnormality in deviation is also available. ## **TS** Geared Type This type is made with simple spur gear design. The torque and speed have been improved while its affordable price, if compare with existing type. #### Mechanism Because of its high accuracy, this type has same level of accuracy with existing **TH**Gearhead even it does not have tapered gear. #### Torque and speed are improved (compare with existing type) This type realizes the improvement of permissible torque, at the same time, it can exert its maximum torque. Not only these improvement, the rated input speed is increased to 3,000 r/min, and it permissible speed range of output shaft the drastically (compare with existing type). The motor experts higher torque and shortens time for positioning, because maximum torque range can be used acceleration/deceleration. ## **PS** Geared Type The PS gear mechanism is comprised primarily of a sun gear, planetary gears and an internal tooth gear. The planetary gears design realizes higher torque. #### Mechanism There are some gears inside and they distribute torque, so that this design permit to use higher torque than spur gear design. As well as, this type uses high accuracy gear, it make backlash smaller if compare with spur gear design. ## Reduce backlash (Compare with existing type) Optimal design of gears have reduced their backlash. (Except: \square 42 mm) It realize positioning with higher accuracy. ## Features of New Lineup ### **Harmonic Geared Type** This type newly adopted high torque harmonic gears. The mechanical life, permissible torque and maximum torque are improved (compare with conventional model). #### ● Improved rated life time (Twice the length of conventional models) The rated life time has been increased from 5,000 hours (conventional models) to 10,000 hours. (Except ☐ 42 mm) [Condition for rated life time] Torque : Permissible torque Type of load : Uniform load Input speed : 1,500 r/min Radial load : Permissible radial load Axial load : Permissible axial load #### High torque If compares with the existing type, the permissible torque and maximum torque has been increased drastically. It makes the motor to drive more load while the size of motor is same as before. #### Structure #### Comparison of specification | Products name | | RKS564AC
-HS100-◇ | conventional
model | |---------------|------------------------------|-------------------------------------|-----------------------| | | Permissible torque N·m | 10 | 8 | | | Maximum torque N·m | 36 | 28 | | | Gear ratio | 10 | 00 | | | Lost motion
(Load torque) | 0.7 arc min or less
(+ 0.39 N·m) | | #### Comparison of torque characteristics #### Surface Installation of load is available This type permits installation of load directly on the rotating surface integrated with the shaft. (Except: ☐ 90 mm) rotating surface for load installation #### Application: Index Table This type not only reduces the number of parts/processes, but also improves reliability. They are also suitable for operating loads that receive moment loads. Harmonic drive and are registered trademarks of Harmonic Drive systems Inc or trademarks. ## Advantage of geared motor Using geared motors bring the user lots of advantages, such as speed reduction / high torque / high resolution etc. ## The motor can drive a large inertial load If compared with a standard motor, the geared motors can drive larger inertial load, because it's permissible load moment of inertia increases with the square of reduction ratio. #### Comparison of load moment of inertia | | Motor Type | Motor product name | Load moment
of inertia
(10 times of
Rotor Inertia) | Diameter of
inertial load
(Thickness:
20 mm, material:
Aluminum) | Speed range | |----------|-------------------------------------|--------------------|---|--|--------------------| | | Standard
Type | RKS564AC-◇ | 1.6x10 ⁻⁴
kg · m² | 72 mm | 0 ~ 6,000
r/min | | a | PS
Geared Type
(Gear ratio 5) | RKS566AC-
PS5-◇ | 40x10⁻⁴
kg · m² | 164 mm | 0 ~ 600
r/min | # Damping characteristic at starting/stopping will be improved. When the motor works under large inertial load or need to accelerate/decelerate in a short time, it is better to use the geared motor than the standard motor. Because it can reduce damping and it can also drive stably. So that the geared motor is suitable for work that requires to position a large load (i.e. index table, arm) in a short time. ## High stiffness, not twisting easily. The geared motor has a high stiffness and it cannot be twisted easily, so that it do not profoundly affected by changes of load torque (compared with standard motor). #### Application: Lifter The geared motor can stop with high accuracy, if the user uses it with machinery that drives vertically such as a lifter, even its number of work or load changes. Application: Security Camera The motor can stand stably even the camera is shaken by strong wind. #### **Downsizing** If comparing the standard motor and the geared one which have similar maximum holding torque, the setting angle of the geared motor is smaller than the other. This characteristic the motor downsizes both in quantity and volume. So that
the geared motor is recommended, if equipment needs to be downsized or to save weight. #### System Configuration #### Built-In Controller Package Standard Type with Electromagnetic Brake An example of a system configuration when used with either I/O control or RS-485 communication. - *1 Not supplied. - *2 Only with the type supplied with - a connection cable #### System Configuration Example | DK II andre | | Sold separately | | | |-------------|---|---------------------------|-------------------|-------------------------------| | RKII series | + | Motor Mounting
Bracket | Flexible Coupling | General-Purpose
Cable (1m) | | RKS566MCD-3 | | PAL2P-5 | MCV251010 | CC16D010B-1 | The system configuration shown above is an example. Other combinations are available. #### System Configuration RKII Series RKS566MC-3 Pulse Input Type/Standard Type with Electromagnetic Brake A single-axis system configuration with the controller EMP400 Series. *1 Not supplied *2 Only the model includes connecting cable **Sold Separately** MCV251010 CC16D010B-1 CC50T10E The system configuration shown above is an example. Other combinations are available. PAL2P-5 EMP401-1 #### Product Number Code ## RKS 5 6 4 R C D 2 - 3 2 3 4 5 6 7 8 ## RKS 5 6 4 M C D - HS 50 - 2 3 4 5 6 7 (9) | 1 | Series Name | RKS : RKII series | | | |-----|----------------------|--|--|--| | 2 | 5 : 5-Phase | | | | | 3 | Motor Frame Size | 4 : 42 mm 6 : 60 mm
9 : 85 mm (Motor Frame Size for Geared Type 90 mm) | | | | 4 | Motor Case Length | | | | | 5 | Motor Type | A : Single shaft B : Double shaft R : Encoder Type M : Electromagnetic Brake Type | | | | 6 | Power Supply Voltage | A : Single-Phase 100-120 VAC C : Single-Phase 200-240 VAC | | | | 7 | Driver Type | D : Built-In Controller Type
Blank : Pulse Input Type | | | | 8 | Serial Number | | | | | 9 | Gearhead Type | Blank : Standard Type TS : TS Geared Type PS : PS Geared Type HS : Harmonic Geared Type | | | | 10 | Gear Ratio | | | | | 11) | Connecting Cable | Numeric value : Cable length (included in package) 1 : 1 m 2 : 2 m 3 : 3 m Blank : Package without cable | | | #### Product Line #### Built-In Controller Type #### Product Name (Single Shaft) RKS543AD-RKS544AD-RKS545A D-RKS564A D-RKS566A D-RKS569A_D-\ RKS596ADD-RKS599A D-RKS5913A D- Product Name (Double Shaft) RKS543B D- C RKS545B D-RKS564B D-RKS566B D-RKS569B_D-♦ RKS596B_D- # RKS599B D-RKS5913B_D-\ #### **Product Name Product Name** (Single Shaft) (Double Shaft) RKS543A_D-TS3.6-RKS543B_D-TS3.6-\ RKS543A D-TS7.2-RKS543B D-TS7.2-RKS543A D-TS10-RKS543B D-TS10-RKS543A D-TS20-RKS543B_D-TS20-RKS543A D-TS30-RKS564A D-TS3.6-RKS543B D-TS30-RKS564B_D-TS3.6-RKS564A D-TS7.2-RKS564B D-TS7.2-RKS564A_D-TS10-RKS564B D-TS10-RKS564AD-TS20-RKS564BD-TS20-RKS564A D-TS30-RKS564B D-TS30-RKS596A D-TS3.6-RKS596B_D-TS3.6-RKS596A D-TS7.2-RKS596B D-TS7.2-♦ RKS596A_D-TS10-♦ RKS596B_D-TS10-\ RKS596AD-TS20-RKS596B D-TS20-RKS596A D-TS30-RKS596B D-TS30-♦ #### **Electromagnetic Brake** | Product Name | |--| | RKS543M□D-♦
RKS544M□D-♦
RKS545M□D-♦ | | RKS564M□D-♦
RKS566M□D-♦
RKS569M□D-♦ | | RKS596M_D-♦
RKS599M_D-♦
RKS5913M_D-♦ | #### **Encoder** | Product Name | |---| | RKS543R D2-♦
RKS544R D2-♦
RKS545R D2-♦ | | RKS564R D2-♦
RKS566R D2-♦
RKS569R D2-♦ | | RKS596R_D2-♦
RKS599R_D2-♦
RKS5913R_D2-♦ | | | #### **♦ TS** Geared Type with Electromagnetic Brake | Product Name | |---------------------------------------| | (Single Shaft) | | RKS543M_D-TS3.6-♦ | | RKS543M□D-TS7.2-♦ | | RKS543M□D-TS10-♦ | | RKS543MD-TS20- | | RKS543MD-TS30- | | RKS564M \square D-TS3.6- \Diamond | | RKS564M□D-TS7.2-♦ | | RKS564M_D-TS10-\(\cappa\) | | RKS564MD-TS20- | | RKS564M D-TS30- | | RKS596M_D-TS3.6-♦ | | RKS596M□D-TS7.2-♦ | | RKS596M_D-TS10-\(\circ\) | | RKS596M□D-TS20-♦ | | RKS596M D-TS30- | Note [●] Either A (single-phase 100-120 VAC) or C (single-phase 200-240 VAC) indicating the power supply input is entered where the box 🔲 is located within the product name. A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box 🔾 is located within the product name. Oriental Motor Corp. provide user's manual for this product. For more detail, please contact to our branch, sales office or the user can download it from our website. http://www.orientalmotor.co.th The cable on the Electromagnetic Brake or Encoder cannot be connected to the driver directly. To connect to the driver, please purchase connection cable separately or choose the package come with the connection cable (The package includes a connection cable) #### ◇PS Geared type | Product Name
(Single Shaft) | |--------------------------------| | RKS545A□D-PS5-♦ | | | | RK\$545A□D-P\$7.2-♦ | | RK\$545A D-P\$10-♦ | | RKS543A□D-PS25-♦ | | RKS543A□D-PS36-♦ | | RKS543A <u></u> D-PS50-♦ | | RKS566A□D-PS5-♦ | | RKS566A_D-PS7.2-♦ | | RKS566AD-PS10- | | RKS564A_D-PS25-♦ | | RKS564A□D-PS36-♦ | | RKS564A_D-PS50- | | RKS599A_D-PS5-♦ | | RKS599A_D-PS7.2-♦ | | RKS599A D-PS10-♦ | | RKS596A <u></u> D-PS25-♦ | | RKS596A□D-PS36-♦ | | RKS596A□D-PS50-♦ | #### Product Name (Double Shaft) | (Double Shaft) | |-------------------------------------| | RKS545B_D-PS5-♦ | | RK\$545B_D-P\$7.2-\(\triangle\) | | RKS545B□D-PS10-♦ | | RKS543B_D-PS25-♦ | | RKS543B□D-PS36-♦ | | RKS543B_D-PS50-♦ | | RKS566B_D-PS5-♦ | | RKS566B □ D-PS 7.2- ♦ | | RKS566B□D-PS10-♦ | | RKS564BD-PS25- | | RKS564B□D-PS36-♦ | | RKS564B□D-PS50-♦ | | RKS599B□D-PS5-♦ | RKS599B D-PS7.2-♦ RKS599B D-PS10-♦ RKS596B D-PS25-♦ RKS596B D-PS36-♦ RKS596B_D-PS50- #### **○PS** Geared type with Electromagnetic Brake | Product Name | |-------------------------------| | (Single Shaft) | | | | RKS545M_D-PS5-♦ | | RKS545M□D-PS7.2-♦ | | RKS545M [□] D-PS10-♦ | | RKS543M <u></u> D-PS25-♦ | | RKS543M□D-PS36-♦ | | RKS543M D-PS50-♦ | | RKS566M_D-PS5-♦ | | RKS566M□D-PS7.2-♦ | | RKS566M D-PS10-♦ | | RKS564M D-PS25-♦ | | RKS564M D-PS36- | | RKS564M D-PS50- | | RKS599M D-PS5-♦ | | RKS599M D-PS7.2- | | RKS599M D-PS10-♦ | | RKS596M D-PS25-♦ | | | | | | RKS596M_D-PS50-♦ | #### **♦** Harmonic Geared Type | Product Name
(Single Shaft) | |--------------------------------| | RKS543A <u></u> D-HS50-♦ | | RKS543A D-HS100- | | RKS564A D-HS50- | | RKS564A D-HS100- | | RKS596A□D-HS50-♦ | | RKS596A_D-HS100- | | | #### Product Name (Double Shaft) | (Douk | ole Shaft) | |---------|------------------| | RKS543B | D-HS50-♦ | | RKS543B | D-HS100- | | RKS564B | D-HS50-♦ | | RKS564B | D-HS100-🔷 | | RKS596B | D-HS50-♦ | | RKS596B | _D-HS100-♦ | #### **♦ Harmonic Geared Type with Electromagnetic Brake** | Product Name | |------------------| | RKS543M_D-HS50-♦ | | RKS543M D-HS100- | | RKS564MD-HS50- | | RKS564M D-HS100- | | RKS596M□D-HS50-♦ | | RKS596M_D-HS100- | ## ●Pulse Input Type ♦ Standard Type | Product Name
(Single Shaft) | |--------------------------------| | RKS543A <u></u> ♦ | | RKS544A <u></u> ♦ | | RKS545A□-◇ | | RKS564A□-♦ | | RK\$566A <u></u> ♦ | | RKS569A <u></u> ♦ | | RKS596A <u></u> -♦ | | RKS599A <u></u> ♦ | | RKS5913A <u></u> -♦ | #### Product Name (Double Shaft) | (Double Shaft) | |---------------------| | RK\$543B <u></u> ♦ | | RKS544B <u></u> ♦ | | RKS545B□-◇ | | RKS564B□-♦ | | RKS566B <u></u> -♦ | | RKS569B □ -♦ | | RKS596B <u></u> ♦ | | RKS599B □ -♦ | | RKS5913B <u></u> -♦ | #### **♦** Standard Type with Electromagnetic Brake | Product Name | | |---------------------------|--| | RKS543M <u></u> -♦ | | | RKS544M <u></u> ♦ | | | RKS545M□-◇ | | | RK\$564M □ -♦ | | | RKS566M <mark>□</mark> -♦ | | | RK\$569M □ -♦ | | | RK\$596M <u></u> ♦ | | | RKS599M □ -♦ | | | RKS5913M□-♦ | | #### Note [■] Either A (single-phase 100-120 VAC) or C (single-phase 200-240 VAC) indicating the power supply input is entered where the box is located within the product name. A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box is located within the product name. ■ Oriental Motor Corp. provide user's manual for this product. For more detail, please contact to our branch, sales office or the user can download it from our website. http://www.orientalmotor.co.th [•] The cable on the Electromagnetic Brake or Encoder cannot be connected to the driver directly. To connect to the driver, please purchase connection cable separately or choose the package come with the connection cable (The package includes a connection cable). #### **♦ TS** Geared Type | Product Name
(Single Shaft) | Product Name
(Double Shaft) | |--------------------------------|--------------------------------------| | RKS543A□-TS3.6-♦ | RKS543B □ -TS3.6-♦ | | RKS543A□-TS7.2-♦ | RKS543B□-TS7.2-◇ | | RKS543A <u></u> -TS10-♦ | RKS543B □ -TS10-♦ | | RKS543A□-TS20-♦ | RKS543B □ -TS20-♦ | | RKS543A <u></u> -TS30-♦ | RKS543B □ -TS30-♦ | | RKS564ATS3.6-♦ | RKS564B <u></u> -TS3.6-♦ | | RKS564A-TS7.2- | RK\$564B □ -T\$ 7.2 -♦ | | RKS564A ⁻ -TS10-♦ | RKS564B □ -TS10-♦ | | RKS564A <u></u> -TS20-♦ | RKS564B □ -TS20-♦ | | RKS564A□-TS30-♦ | RKS564B □ -TS30-♦ | | RKS596A□-TS3.6-♦ | RKS596B□-TS3.6-♦ | | RKS596A <u></u> -TS7.2-♦ | RKS596B <u></u> -TS7.2-♦ | | RKS596A <u></u> -TS10-♦ | RKS596B <u></u> -TS10-♦ | | RKS596A□-TS20-♦ | RKS596B □ -TS20-♦ | | RKS596ATS30- | RKS596B □ -TS30-♦ | | | | #### **♦ TS** Geared Type with Electromagnetic Brake | Product Name
(Single Shaft) | |---| | RKS543M□-TS3.6-♦ | | RKS543M□-TS7.2-♦
RKS543M□-TS10-♦ | | RKS543MTS20-\(\triangle\) RKS543MTS30-\(\triangle\) | | RKS564MTS3.6-◇
RKS564MTS7.2-◇ | | RK\$564M□-T\$10-◇
RK\$564M□-T\$20-◇ | | RKS564M□-TS30-♦
RKS596M□-TS3.6-♦ | |
RKS596M□-TS7.2-◇
RKS596M□-TS10-◇ | | RKS596M□-TS20-◇
RKS596M□-TS30-◇ | #### ◇PS Geared Type | <u> </u> | |--------------------------------| | Product Name
(Single Shaft) | | | | RKS545A□-PS5-◇ | | RK\$545A□-P\$7.2-♦ | | | | RKS545A <u></u> -PS10-♦ | | RKS543A -PS25-♦ | | RKS543A□-PS36-♦ | | | | RK\$543A□-P\$50-♦ | | RKS566A <u></u> -PS5-♦ | | RKS566A□-PS7.2-♦ | | RK\$566A -P\$10-♦ | | | | RK\$564A □ -P\$25-♦ | | RKS564A □ -PS36-♦ | | RKS564APS50-♦ | | RKS599A□-PS5-◇ | | RKS599A <u></u> -PS7.2-♦ | | RKS599APS10-♦ | | RKS596A□-PS25-♦ | | RKS596A PS36-♦ | | RKS596A□-PS50-♦ | | | #### Product Name (Double Shaft) | (Double Shaft) | |--------------------------| | RKS545B -PS5- | | RKS545BPS7.2-♦ | | RKS545B □ -PS10-♦ | | RKS543B □ -PS25-♦ | | RKS543B <u></u> -PS36-♦ | | RKS543B □ -PS50-♦ | | RKS566B <u></u> -PS5-♦ | | RKS566BPS7.2- | | RKS566B <u></u> -PS10-♦ | | RKS564BPS25- | | RKS564B □ -PS36-♦ | | RKS564B <u></u> -PS50-♦ | | RKS599B□-PS5-♦ | | RKS599BPS7.2-♦ | | RKS599B □ -PS10-♦ | | RKS596B □ -PS25-♦ | | RKS596B <u></u> -PS36-♦ | | RKS596B □ -PS50-♦ | | | #### **○PS** Geared Type with Electromagnetic Brake | Product Name | |------------------------------------| | (Single Shaft) | | (onigio oriait) | | RKS545M□-PS5-♦ | | RKS545M □ -PS7.2-♦ | | RKS545M □ -PS10-♦ | | RKS543M□-PS25-♦ | | RKS543M <u></u> -PS36-♦ | | RKS543M□-PS50-♦ | | RKS566M—-PS5- \diamondsuit | | RKS566M □ -PS 7.2- ♦ | | RKS566M <u></u> -PS10-♦ | | RKS564M □ -PS25-♦ | | RKS564M □ -PS36-♦ | | RKS564MPS50- | | RKS599M□-PS5-◇ | | RKS599M <u></u> -PS7.2-♦ | | RKS599M □ -PS10-♦ | | RKS596M □ -PS25-♦ | | RKS596M □ -PS36-♦ | | RKS596M□-PS50-♦ | | | #### ♦ Harmonic Geared Type | Product Name
(Single Shaft) | |--------------------------------| | RKS543AHS50- | | RKS543A-HS100- | | RKS564AHS50- | | RKS564A-HS100-♦ | | RKS596AHS50-♦ | | RKS596AHS100-♦ | | | | Product Name
(Double Shaft) | |--------------------------------| | RKS543B <u></u> -HS50-♦ | | RKS543B ☐-HS100-♦ | | RKS564B <u></u> -HS50-♦ | | RKS564B-HS100- | | RKS596B <u></u> -HS50-♦ | | RKS596B □ -HS100-♦ | #### **♦ Harmonic Geared Type with Electromagnetic Brake** | Product Name | |-------------------------| | RKS543M <u></u> -HS50-♦ | | RKS543M□-HS100-♦ | | RKS564M <u></u> -HS50-♦ | | RKS564M□-HS100-♦ | | RKS596M <u></u> -HS50-♦ | | RKS596M□-HS100-♦ | Note [■] Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box 📃 is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box 🔷 is located within the product name. Oriental Motor Corp. provide user's manual for this product. For more detail, please contact to our branch, sales office or the user can download it from our website. http://www.orientalmotor.co.th [•] The cable on the Electromagnetic Brake or Encoder cannot be connected to the driver directly. To connect to the driver, please purchase connection cable separately or choose the package come with the connection cable (The package includes a connection cable). ## Standard Type Frame Size 42 mm, 60 mm Standard Type with Electromagnetic Brake Frame Size 42 mm, 60 mm Standard Type with Encoder Frame Size 42 mm, 60 mm #### ■ Specifications (RoHS) **₽**1°us € | Droduot | Nama | Built-In Controller Ty | ре | RKS543□ DIII-♦ | RKS544 DI- | RKS545□■D■-♦ | RKS564□ DIII-♦ | RK\$566□ _D_ | RKS569□ □ D □ -♦ | |----------------------------|-----------------|------------------------|---------|---|---|---|--|--|--| | Product Name | | Pulse Input Type | | RKS543□ <u>-</u> -♦ | RKS544□ <u>-</u> -♦ | RKS545□ <u>-</u> -♦ | RKS564□ <u>-</u> -♦ | RK\$566□ <u>-</u> -♦ | RKS569□ <u></u> -◊ | | Maximum Holding Torque N·m | | N⋅m | 0.14 | 0.21 | 0.27 | 0.52 | 0.96 | 1.77 | | | Holding Torque a | at Motor | Power ON | N⋅m | 0.07 | 0.10 | 0.13 | 0.26 | 0.48 | 0.88 | | Standstill | | Electromagnetic Bra | ke N·m | 0.07 | 0.10 | 0.13 | 0.26 | 0.48 | 0.88 | | Rotor Inertia | | J : | kg·m² | 30×10 ⁻⁷
[45×10 ⁻⁷]*1
(31×10 ⁻⁷)*2 | 47×10 ⁻⁷
[62×10 ⁻⁷]*1
(48×10 ⁻⁷)*2 | 64×10 ⁻⁷
[79×10 ⁻⁷]*1
(65×10 ⁻⁷)*2 | 160×10 ⁻⁷
[320×10 ⁻⁷]*1
(160×10 ⁻⁷)*2 | 270×10 ⁻⁷
[430×10 ⁻⁷]* ¹
(270×10 ⁻⁷)* ² | 540×10 ⁻⁷
[700×10 ⁻⁷]*1
(540×10 ⁻⁷)*2 | | Rated Current | | Д | / Phase | 0.35 0.75 | | | | | | | Basic Step Angle |) | | | 0.72° | | | | | | | Davies Consile | Voltage / Frequ | iency | | Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz | | | | | | | Power Supply
Input | Input Current | Single-Phase 100- | 120 VAC | 2.1 | 1.9 | 1.9 | 4.0 | 3.8 | 4.0 | | Input | Α | Single-Phase 200- | 240 VAC | 1.3 | 1.2 | 1.2 | 2.4 | 2.4 | 2.5 | | Excitation Mode | | | | Microstep | | | | | | | Control Power Supply*3 | | | | 24 VDC±5% 0.2 A | | | | | | | Electromagnetic | Brake*4 | Power Supply Input | : | 24 VDC±5%*5 0.08 A 24 VDC±5%*5 0.25 A | | | | | 4 | **Definition** → Refer to page 22 Note - 🛮 For Built-in Controller package, either A (single shaft), B (double shaft), M (electromagnetic brake) or R (encoder) indicating the configuration is entered where the box 🗆 is located within the product name. - For Pulse Input package, either **A** (single shaft), **B** (double shaft) or **M** (electromagnetic brake) indicating the configuration is entered where the box \square is located within the product name. - Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 🔲 is located within the product name. - For encoder type, **2** will be entered where is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name. - *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. *2 The values inside the brackets () represent the specification for the encoder type. - *3 For Built-in Controller package, the control power supply is required. *4 For pulse input package, a separate power supply for electromagnetic brakes is required. - *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. #### Speed -Torque Characteristics fs: Maximum Starting Frequency Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case For the Encoder type, in order to protect encoder, be sure to keep the temperature of the motor case under 85°C. ## Standard Type Frame Size 85 mm ## Standard Type with Electromagnetic Brake Frame Size 85 mm Standard Type with Encoder Frame Size 85 mm #### Specifications (RoHS) | Droduot | Nama | Built-In Controller Type | | RKS596□ □ D □ -♦ | RKS599□ <mark>□</mark> D Ⅲ -♦ | RKS5913□ <mark>□</mark> D □ -♦ | | | |----------------------------|----------------|--|------|---|---|---|--|--| | Product Name | | Pulse Input Type | | RKS596□ | RKS599□ □-♦ | RKS5913□ | | | | Maximum Holding Torque N·m | | | N∙m | 2.1 | 4.1 | 6.3 | | | | Holding Torque a | at Motor | Power ON | N∙m | 1.05 | 2.05 | 3.15 | | | | Standstill | | Electromagnetic Brake | N·m | 1.05 | 2.05 | 3.15 | | | | Rotor Inertia | | J : kg | ·m² | 1100×10 ⁻⁷
[2200×10 ⁻⁷]*1
(1100×10 ⁻⁷)*2 | 2200×10 ⁻⁷
[3300×10 ⁻⁷]*1
(2200×10 ⁻⁷)*2 | 3300×10 ⁻⁷
[4400×10 ⁻⁷]*1
(3300×10 ⁻⁷)*2 | | | | Rated Current | | A / F | hase | 0.75 | | | | | | Basic Step Angle |) | | | 0.72° | | | | | | Danier Conseli | Voltage / Freq | uency | | Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz | | | | | | Power Supply
Input | Input Current | single-Phase 100-120 VAC
Single-Phase 200-240 VAC | | 3.6 | 3.5 | 3.5 | | | | input | Α | | | 2.1 | 2.2 | 2.2 | | | | Excitation Mode | | | | Microstep | | | | | | Control Power Supply*3 | | | | 24 VDC±5% 0.2 A | | | | | | Electromagnetic | Brake*⁴ | Power Supply Input | | 24 VDC±5%*5 0.24 A | | | | | **Definition** → Refer to the list in following box. 🛮 For Built-in Controller package, either 🗛 (single shaft), 🖪 (double shaft), 🖪 (deuctromagnetic brake) or R (encoder) indicating the configuration is entered where the box 🗌 is located within the product name For Pulse Input package, either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box 🗌 is located within the product name. Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where is located within the product name. For encoder type, 2 will be entered where I is located within the product name A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the
product name. *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. *2 The values inside the brackets () represent the specification for the encoder type. *3 For Built-in Controller package, the control power supply is required. *4 For pulse input package, a separate power supply for electromagnetic brakes is required. *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. #### Speed -Torque Characteristics fs: Maximum Starting Frequency Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor. case under 100°C. For the Encoder type, in order to protect encoder, be sure to keep the temperature of the motor case under 85°C. #### **Definition** Maximum Holding Torque : Maximum Holding Torque (holding power) while motor standstill (power supplied at the Rated Current). : Maximum Torque load applied to Gear Output Shaft Permissible Torque Maximum Torque : Maximum Torque load applied to Gear Output Shaft when up/reduce the speed (i.e., start-up or shut-down of Load Inertia). Holding Torque at : Holding Torque under Automatic Current Cutback function is operated. Motor Standstill Electromagnetic Brake: Static friction torque generated by Electromagnetic Brake at motor standstill. (Power Off Activated Type Electromagnetic Brake) ## TS Geared Type Frame Size 42 mm ## TS Geared Type with Electromagnetic Brake Frame Size 42 mm #### ■ Specifications (RoHS) | | 0 | | | |-----|-------|---|---| | C 7 | LL US | · | 7 | | <u> </u> | | Duilt la Cantuallau Tuna | DIVERAGE TO TOO (A | DVCE 40 D TCT 0 A | DIVERTAGE D TOTA | DIVERSO DE TOOS | DVCC40 D TCOO A | | | | |-------------------------|----------------|--------------------------|---|-------------------------------|---|------------------|------------------|--|--|--| | Product N | ame | Built-In Controller Type | RKS543□ □D-TS3.6-♦ | RKS543□ □D-TS7.2-♦ | RKS543□ □D-TS10-♦ | RKS543□ D-TS20-♦ | RKS543□□D-TS30-♦ | | | | | | | Pulse Input Type | RKS543□ -TS3.6-♦ | RKS543□ -TS7.2-♦ | RKS543□ -TS10-♦ | RKS543□ -TS20-♦ | RKS543□ -TS30-♦ | | | | | Maximum Holdir | ng Torque | N⋅m | 0.5 | 1 | 1.4 | 2 | 2.3 | | | | | Rotor Inertia | | J∶kg⋅m² | 30×10 ⁻⁷
[45×10 ⁻⁷]* ¹ | | | | | | | | | Rated Current | | A / Phase | | | 0.35 | | | | | | | Basic Step Angle |) | | 0.2° | 0.1° | 0.072° | 0.036° | 0.024° | | | | | Gear Ratio | | | 3.6 | 7.2 | 10 | 20 | 30 | | | | | Permissible Toro | jue * 2 | N·m | 0.65 | 1.2 | 1.7 | 2 | 2.3 | | | | | Maximum Torqu | e*2 | N·m | 0.85 | 1.6 | 2 | 3 | 3 | | | | | Holding Torque at_ | Power ON | N⋅m | 0.26 | 0.53 | 0.74 | 1.48 | 2.2 | | | | | Motor Standstill | Electromagn | etic Brake N·m | 0.26 | 0.53 | 0.74 | 1.48 | 2.2 | | | | | Permissible Spec | ed Range | r/min | 0~833 | 0~416 | 0~300 | 0~150 | 0~100 | | | | | Backlash | | arc min | 45(0.75°) | 45(0.75°) 25(0.42°) 15(0.25°) | | | | | | | | D 0 l | Voltage / Fre | equency | | Single-Phase 100-120 VA | 0 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz | | | | | | | Power Supply -
Input | Input | Single-Phase 100-120 VAC | | | 2.1 | | | | | | | iliput | Current A | Single-Phase 200-240 VAC | | 1.3 | | | | | | | | Excitation Mode | | | Microstep | | | | | | | | | Control Power Si | upply*3 | | 24 VDC±5% 0.2 A | | | | | | | | | Electromagnetic | Brake*4 | Power Supply Input | | | 24 VDC±5%*5 0.08 A | | | | | | #### **Definition** → Refer to page 22 - Either **A** (single shaft), **B** (double shaft) or **M** (electromagnetic brake) indicating the configuration is entered where the box ☐ is located within the product name. Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where ☐ is located within the product name. - A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name. - *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. *2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor. - *3 For Built-in Controller package, the control power supply is required. *4 For pulse input package, a separate power supply for electromagnetic brakes is required. - *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. #### Speed -Torque Characteristics fs: Maximum Starting Frequency Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. ## TS Geared Type Frame Size 60 mm ## TS Geared Type with Electromagnetic Brake Frame Size 60 mm ### Specifications (RoHS) **191** € 1 | uilt-In Controller Type | RKS564□ □ D-TS3.6-♦ | RKS564□ D-TS7.2-♦ | RK\$564□ D-T\$10-♦ | RKS564□ □D-TS20-♦ | RKS564□ □D-TS30-♦ | | |--------------------------|--|--|----------------------------|----------------------|-------------------|--| | ulse Input Type | RKS564□ -TS3.6-♦ | RKS564□ -TS7.2-♦ | RK\$564□ -T\$10- | RKS564□ -TS20-♦ | RKS564□ -TS30-♦ | | | N⋅m | 1.8 | 3 | 4 | 5 | 6 | | | J∶kg·m² | 160×10 ^{.7}
[320×10 ^{.7}]*1 | | | | | | | A / Phase | | | 0.75 | | | | | | 0.2° | 0.1° | 0.072° | 0.036° | 0.024° | | | | 3.6 | 7.2 | 10 | 20 | 30 | | | N⋅m | 1.8 | 3 | 4 | 5 | 6 | | | N⋅m | 2.5 | 4.5 | 6 | 8 | 10 | | | N⋅m | 1 | 2 | 2.9 | 5 | 6 | | | tic Brake N·m | 1 | 2 | 2.9 | 5 | 6 | | | r/min | 0~833 | 0~416 | 0~300 | 0~150 | 0~100 | | | arc min | 35(0.59°) 15(0.25°) 10(0.17°) | | | | | | | uency | | Single-Phase 100-120 VA | AC, Single-Phase 200-240 V | AC -15~+10% 50/60 Hz | | | | Single-Phase 100-120 VAC | | | 4.0 | | | | | Single-Phase 200-240 VAC | | | 2.4 | | | | | | | | Microstep | | | | | | 24 VDC±5% 0.2 A | | | | | | | Power Supply Input | | | 24 VDC±5%*5 0.25 A | | | | | | Isle Input Type N·m J: kg·m² A / Phase N·m N·m N·m ic Brake N·m r/min arc min Jency Single-Phase 200-240 VAC | N·m 1.8 N·m 1.8 J : kg·m² A / Phase 0.2° 3.6 N·m 1.8 N·m 2.5 N·m 1 ic Brake N·m 1 r/min 0~833 arc min 35(0.59°) Jency Single-Phase 200-240 VAC | N-m | N-m | N-m | | #### Definition → Refer to page 22 - Either **A** (single shaft), **B** (double shaft) or **M** (electromagnetic brake) indicating the configuration is entered where the box ☐ is located within the product name. Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name. - *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. - *2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor. - *3 For Built-in Controller package, the control power supply is required. - *4 For pulse input package, a separate power supply for electromagnetic brakes is required. - *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. #### Speed -Torque Characteristics fs: Maximum Starting Frequency Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. ## TS Geared Type Frame Size 90 mm ## TS Geared Type with Electromagnetic Brake Frame Size 90 mm #### ■ Specifications (RoHS) **A** us C E | _ | | Built-In Controller Type | RKS596□ | RKS596□ D-TS7.2-♦ | RKS596□ D-TS10-♦ | RKS596□ D-TS20-♦ | RKS596□ D-TS30-♦ | | |---------------------|---|--------------------------|---|---|--------------------|------------------|------------------|--| | Product I | Name | Pulse Input Type | RKS596□ □-TS3.6-♦ | RKS596 TS7.2- | RK\$596□ □-T\$10-♦ | RKS596□ □-TS20-♦ | RKS596□ □-TS30-♦ | | | Maximum Holding | Maximum Holding Torque N·m | | 6 | 10 | 14 | 20 | 25 | | | Rotor Inertia | | J∶kg⋅m² | 1100×10 ⁻⁷
[2200×10 ⁻⁷]* ¹ | | | | | | | Rated Current | | A / Phase | | | 0.75 | | | | | Basic Step Angle | | | 0.2° | 0.1° | 0.072° | 0.036° | 0.024° | | | Gear Ratio | | | 3.6 | 7.2 | 10 | 20 | 30 | | | Permissible Torqu | ue*2 | N⋅m | 6 | 10 | 14 | 20 | 25 | | | Maximum Torque | * 2 | N·m | 9 | 15 | 20 | 35 | 45 | | | Holding Torque at | Power ON | N·m | 6 | 9 | 7.4 | 18.5 | 25 | | | Motor Standstill | Electromagne | etic Brake N·m | 6 | 9 | 7.4 | 18.5 | 25 | | | Permissible Spee | d Range | r/min | 0~833 | 0~416 | 0~300 | 0~150 | 0~100 | | | Backlash | | arc min | 25(0.42°) | 25(0.42°) 15(0.25°) 10(0.17° | | | | | | | Voltage / Fre | quency | | Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 5 | | | | | | Power Supply Input | Input | Single-Phase 100-120 VAC | 3 | .6 | | 4.9 | | | | iliput |
Current A | Single-Phase 200-240 VAC | 2.1 | | 3.0 | | | | | Excitation Mode | | | | | Microstep | | | | | Control Power Su | Control Power Supplye*3 24 VDC±5% 0.2 A | | | | | | | | | Electromagnetic Bra | akee*4 | Power Supply Input | 24 VDC±5%*5 0.42 A | | | | | | #### **Definition** → Refer to page 22 - Either **A** (single shaft), **B** (double shaft) or **M** (electromagnetic brake) indicating the configuration is entered where the box ☐ is located within the product name. Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where ☐ is located within the product name. - A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name. *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. - *2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor. - *3 For Built-in Controller package, the control power supply is required. - *4 For pulse input package, a separate power supply for electromagnetic brakes is required. - *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. #### Speed -Torque Characteristics fs: Maximum Starting Frequency Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. ## PS Geared Type Frame Size 42 mm ## PS Geared Type with Electromagnetic Brake Frame Size 42 mm #### ■ Specifications (RoHS) **c%**us ∈€ | Product Name | Built-In Controller Type | RKS545□ □D-PS5-◇ | RKS545□ D-PS7.2-♦ | RKS545□□D-PS10-♦ | RKS543□□D-PS25-♦ | RKS543□□D-PS36-♦ | RKS543□□D-PS50-♦ | | |----------------------------|--------------------------|--|--|------------------|------------------|--|------------------|--| | Product Name | Pulse Input Type | RKS545□ □ -PS5-◇ | RKS545□ -PS7.2-♦ | RKS545□ -PS10-♦ | RKS543□ -PS25-♦ | RK\$543□ -P\$36-◊ | RKS543□ -PS50-♦ | | | Maximum Holding Torque | N·m | 1 | 1 | .5 | 2.5 | 3 | | | | Rotor Inertia | J∶kg·m² | | 64×10 ⁻⁷
[79×10 ⁻⁷] * 1 | | | 30×10 ⁻⁷
[45×10 ⁻⁷] * 1 | | | | Rated Current | A / Phase | | | 0. | 35 | | | | | Basic Step Angle | | 0.144° | 0.1° | 0.072° | 0.0288° | 0.02° | 0.0144° | | | Gear Ratio | | 5 | 7.2 | 10 | 25 | 36 | 50 | | | Permissible Torque*2 | N⋅m | 1 | 1 | .5 | 2.5 | 2.5 | | | | Maximum Torque*2 | N⋅m | 1.5 | 2 6 | | | | | | | Holding Torque at Power ON | N·m | 0.74 | 1.07 | 1.49 | 1.85 | 2.6 | 3 | | | | netic Brake N·m | 0.74 | 1.07 | 1.49 | 1.85 | 2.6 | 3 | | | Permissible Speed Range | r/min | 0~600 | 0~416 | 0~300 | 0~120 | 0~83 | 0~60 | | | Backlash | arc min | 25(0.42°) | | | | | | | | Voltage / Fi | requency | Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz | | | | | | | | Power Supply Input | Single-Phase 100-120 VAC | | 1.9 | | 2.1 | | | | | Current A | Single-Phase 200-240 VAC | 1.2 | | | 1.3 | | | | | Excitation Mode | | Microstep | | | | | | | | Control Power Supply*3 | | 24 VDC±5% 0.2 A | | | | | | | | Electromagnetic Brake*4 | Power Supply Input | 24 VDC±5%*5 0.08 A | | | | | | | ● Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box ☐ is located within the product name. Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where ☐ is located within the product name. A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box 🔷 is located within the product name. *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. *2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor. *3 For Built-in Controller package, the control power supply is required. *4 For pulse input package, a separate power supply for electromagnetic brakes is required. *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. #### Speed -Torque Characteristics fs: Maximum Starting Frequency Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. ## PS Geared Type Frame Size 60 mm ## PS Geared Type with Electromagnetic Brake Frame Size 60 mm #### Specifications (RoHS) c**%** ∪s (€ | Product N | lama | Built-In Controller Type | RKS566□ D-PS5-♦ | RKS566□ D-PS7.2-♦ | RKS566□ D-PS10-♦ | RKS564□□D-PS25-♦ | RKS564□ D-PS36-♦ | RKS564□ D-PS50-♦ | | | |-------------------------|----------------|--------------------------|-----------------|---|------------------------|--|------------------|------------------|--|--| | Producti | iaille | Pulse Input Type | RKS566□ -PS5-♦ | RKS566□ -PS7.2-◊ | RKS566□ -PS10-♦ | RKS564□ -PS25-♦ | RKS564□ -PS36-♦ | RKS564□ -PS50-♦ | | | | Maximum Holdi | ng Torque | N·m | 3.5 | 4 | 5 | 8 | | | | | | Rotor Inertia | | J∶kg·m² | | 270×10 ⁻⁷
[430×10 ⁻⁷]*1 | | 160×10 ⁻⁷
[320×10 ⁻⁷] * ¹ | | | | | | Rated Current | | A / Phase | | | 0. | 75 | | | | | | Basic Step Angl | е | | 0.144° | 0.1° | 0.072° | 0.0288° | 0.02° | 0.0144° | | | | Gear Ratio | | | 5 | 7.2 | 10 | 25 | 25 36 50 | | | | | Permissible Tor | que * 2 | N⋅m | 3.5 | 4 | 5 | 8 | | | | | | Maximum Torqu | ıе * 2 | N⋅m | 7 | 9 | 11 | 16 | 16 20 | | | | | Holding Torque at | Power ON | N⋅m | 2.7 | 3.9 | 5 | 7.2 | | В | | | | Motor Standstill | Electromagn | netic Brake N·m | 2.7 | 3.9 | 5 | 7.2 | | В | | | | Permissible Spe | ed Range | r/min | 0~600 | 0~416 | 0~300 | 0~120 | 0~83 | 0~60 | | | | Backlash | | arc min | | 7(0.12°) | | | 9(0.15°) | | | | | D 0 1 | Voltage / Fre | equency | | Single-Phase 1 | 00-120 VAC, Single-Pha | ase 200-240 VAC -15~ | +10% 50/60 Hz | | | | | Power Supply -
Input | Input | Single-Phase 100-120 VAC | | 3.8 | | | 4.0 | | | | | прис | Current A | Single-Phase 200-240 VAC | | 2.4 | | | 2.4 | | | | | Excitation Mode | | | Microstep | | | | | | | | | Control Power S | upply*3 | | | | 24 VDC± | 5% 0.2 A | | | | | | Electromagnetic | Brake*4 | Power Supply Input | | | 24 VDC±59 | 24 VDC±5%*5 0.25 A | | | | | ● Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box 🗌 is located within the product name. Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 🗏 is located within the product name. A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box 🔷 is located within the product name. *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. *2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor. *3 For Built-in Controller package, the control power supply is required. *4 For pulse input package, a separate power supply for electromagnetic brakes is required. *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. #### Speed -Torque Characteristics fs: Maximum Starting Frequency Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. ## PS Geared Type Frame Size 90 mm ## PS Geared Type with Electromagnetic Brake Frame Size 90 mm #### Specifications (RoHS) **₽1**°us ∈€ | Product Name | Built-In Controller Type | RKS599□ | RKS599□ D-PS7.2-♦ | RKS599□ D-PS10-♦ | RKS596□ D-PS25-♦ | RKS596□ □D-PS36-◊ | RKS596□□D-PS50-♦ | |-----------------------------|--------------------------|--------------------|--|------------------------|----------------------|--|------------------| | Product Name | Pulse InputType | RKS599□ -PS5-♦ | RKS599□ -PS7.2-♦ | RK\$599□ -P\$10-♦ | RKS596□ -PS25-♦ | RK\$596□ -P\$36-♦ | RKS596□ -PS50-♦ | | Maximum Holding Torque | N·m | 14 | 2 | 0 | 36 37 | | | | Rotor Inertia | J∶kg·m² | | 2200×10 ⁻⁷
[3300×10 ⁻⁷] * 1 | | | 1100×10 ⁻⁷
[2200×10 ⁻⁷] * 1 | | | Rated Current | A / Phase | | | 0. | 75 | | | | Basic Step Angle | | 0.144° | 0.1° | 0.072° | 0.0288° | 0.02° | 0.0144° | | Gear Ratio | | 5 | 7.2 | 10 | 25 | 36 | 50 | | Permissible Torque*2 | N·m | N·m 14 20 37 | | | | | | | Maximum Torque*2 | N⋅m | 28 | 3 | 5 | 56 | 6 | 0 | | Holding Torque at Power ON | N·m | 12.5 | 18 | 20 | 18.5 | 26 | 37 | | Motor Standstill Electromag | netic Brake N·m | 12.5 | 18 | 20 | 18.5 | 26 | 37 | | Permissible Speed Range | r/min | 0~300 | 0~208 | 0~150 | 0~120 | 0~83 | 0~60 | | Backlash | arc min | | 7(0.12°) | | | 9(0.15°) | | | Voltage / F | requency | | Single-Phase 1 | 00-120 VAC, Single-Pha | ase 200-240 VAC -15~ | +10% 50/60 Hz | | | Power Supply Input | Single-Phase 100-120 VAC | | 3.5 | | | 4.9 | | | Current A | Single-Phase 200-240
VAC | | 2.2 | | | 3.0 | | | Excitation Mode | | | | Micro | ostep | | | | Control Power Supply*3 | | 24 VDC±5% 0.2 A | | | | | | | Electromagnetic Brake*4 | Power Supply Input | 24 VDC±5%*5 0.42 A | | | | | | **Definition** → Refer to page 22 A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box 🔾 is located within the product name. *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. *3 For Built-in Controller package, the control power supply is required. *4 For pulse input package, a separate power supply for electromagnetic brakes is required. *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. #### Speed -Torque Characteristics fs: Maximum Starting Frequency Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C. [●] Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box ☐ is located within the product name. Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where ☐ is located within the product name. ^{*2} Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor. ## Harmonic Geared Type Frame Size 42 mm, 60 mm, 90 mm Harmonic Geared Type with Electromagnetic Brake Frame Size 42 mm, 60 mm, 90 mm #### ■ Specifications (RoHS) **91**° us € € | Product Name | | Built-In Controller Type | RKS543□□D-HS50-♦ | RKS543□ D-HS100-♦ | RKS564□□D-HS50-♦ | RKS564□ _D-HS100-◊ | RKS596□ D-HS50-♦ | RKS596□ D-HS100-♦ | | |-------------------------|----------------------|--------------------------|------------------|------------------------|------------------------|------------------------|-----------------------|------------------------|--| | | | Pulse Input Type | RKS543□ -HS50-♦ | RKS543□ -HS100-♦ | RKS564□ -HS50-♦ | RKS564□ -HS100-♦ | RKS596□ -HS50-♦ | RKS596□ -HS100-◊ | | | Maximum Holding To | rque | N⋅m | 3.5 | 5 | 7 | 10 | 33 | 52 | | | Rotor Inertia | | J∶kg⋅m² | 47× | | | <10 ⁻⁷ | 1300×10 ⁻⁷ | | | | - Total martia | | o . kg m | [62×1 | 0 ⁻⁷]*1 | [355×1 | 10 ⁻⁷]*1 | [2400× | 10 ⁻⁷]*1 | | | Rated Current | | A / Phase | 0.3 | 35 | | 0. | 75 | | | | Basic Step Angle | | | 0.0144° | 0.072° | 0.0144° | 0.0072° | 0.0144° | 0.0072° | | | Gear Ratio | | | 50 | 100 | 50 | 100 | 50 | 100 | | | Permissible Torque | | N⋅m | 3.5 | 5 | 7 | 10 | 33 | 52 | | | Maximum Torque*2 | Maximum Torque*2 N·m | | 8.3 | 11 | 23 | 36 | 73 | 107 | | | Holding Torque at Power | er ON | N⋅m | 3.5 | 5 | 7 | 10 | 33 | 52 | | | Motor Standstill Elect | tromagn | etic Brake N·m | 3.5 | 5 | 7 | 10 | 33 | 52 | | | Permissible Speed Ra | ange | r/min | 0~70 | 0~35 | 0~70 | 0~35 | 0~70 | 0~35 | | | Lost Motion | | arc min | 1.5 maximum | 1.5 maximum | 0.7 maximum | 0.7 maximum | 0.7 maximum | 0.7 maximum | | | (Load Torque) | | | (±0.16 N·m) | (±0.20 N·m) | (±0.28 N·m) | (±0.39 N·m) | (±1.2 N·m) | (±1.2 N·m) | | | Power Supply Volta | ige / Fre | quency | | Single-Phase 10 | 00-120 VAC, Single-Pha | ase 200-240 VAC -15~ | +10% 50/60 Hz | | | | Input In | iput | Single-Phase 100-120 VAC | 2. | .1 | 4 | .0 | 4 | .9 | | | Curi | rent A | Single-Phase 200-240 VAC | 1. | .3 | 2 | .4 | 3 | .0 | | | Excitation Mode | | | Microstep | | | | | | | | Control Power Supply | * 3 | | 24 VDC±5% 0.2 A | | | | | | | | Electromagnetic Brak | :e*4 | Power Supply Input | 24 VDC±59 | % ^{≉5} 0.08 A | 24 VDC±59 | % ^{≉5} 0.25 A | 24 VDC±59 | % ^{≉5} 0.42 A | | **Definition** → Refer to page 22 - 🗅 Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box 🗌 is located within the product name. - Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where is located within the product name. A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name. - *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. - *2 Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor. - *3 For Built-in Controller package, the control power supply is required. - *4 For pulse input package, a separate power supply for electromagnetic brakes is required. - *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. The inertia represents a sum of the inertia of the harmonic gear converted to a motor shaft value, and the rotor inertia #### Speed -Torque Characteristics fs: Maximum Starting Frequency - Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor - For the Harmonic Gear operation, be sure to keep the temperature of the gear case under 70°C to prevent deterioration of grease applied to the gear. #### Driver Specification | | Built-in Controller type | Pulse-input Type | |-------------------------------------|---|--| | Maximum Input Pulse Frequency | - | Line Driver Output from controller: 500kHz (at 50% duty) Open-collector Output from controller: 250kHz (at 50% duty) | | Input Signal | Photocoupler input Input signal voltage : 11.4 VDC~26.4 VDC | Photocoupler, Open-collector output: 11.4 VDC~26.4 VDC (AWO, CS, FREE, ALM-RST) Photocoupler, Open-collector output: 3 VDC~5.25 VDC (CW (PLS) + 5 V, CCW (DIR) + 5 V) Photocoupler, Open-collector output: 21.6 VDC~26.4 VDC (CW (PLS) + 24 V, CCW (DIR) + 24 V) | | Output Signal | Photocoupler · Open-collector output
External use condition: 30 VDC maximum, 10 mA maximum | Photocoupler · Open-collector output External use condition: 30 VDC maximum, 10 mA maximum (READY, ALM, TIM) | | Number of Positioning Program | 64 | - | | Positioning Operation | One-shot operation, Linked operation, Linked operation 2, Sequential mode, Direct mode | - | | Other operation | Continuous Operation, JOG Operation, Return-To-Home Operation, Test Operation | - | | Control Module OPX-2A | 0 | - | | Data Setting Software MEXEO2 | 0 | - | #### ■ Built-In Controller Type RS-485 Communication Specifications | Protocol | Modbus protocol (Modbus RTU mode) | |---------------------------------|--| | Electrical
Characteristics | EIA-485 compliance Twisted-pair wire (TIA/EIA-568B CAT5e or greater recommended) is used up to a total extension length of 50 m. | | Transmission/
Reception Mode | Half-duplex communication Asynchronous mode (data: 8-bit, stop bit: 1-bit/2-bit, parity: none/odd/even) | | Baud Rate | 9600 bps/19200 bps/38400 bps/57600 bps/115200 bps | | Connection Type | Up to 31 units can be connected to one programmable controller (master equipment). | #### General Specifications | | | Motor | Dr | iver | | | |---|-------------------------------|---|--|--|--|--| | | | Motor | Built-In Controller Type | Pulse Input Type | | | | Thermal Class | S | 130 (B) | | _ | | | | Insulation Resistance | | 100 MΩ or more when 500 VDC megger is applied between the following places: · Case – Motor windings · Case – Electromagnetic brake windings ^{★1} | 100 MΩ or more when 500 VDC megge places:
· PE terminal – Power supply terminal
· Signal I/O terminal – Power supply ter | | | | | | | O ffichally the land the fills to find at a | Sufficient to withstand the following for | 1 minute: | | | | Dielectric Strength | | Sufficient to withstand the following for 1 minute: - Case – Motor windings 1.5 kVAC 50 Hz or 60 Hz - Case – Electromagnetic brake windings 1.5 kVAC 50 Hz or 60 Hz*1 | PE terminal – Power supply terminal
1.5 kVAC 50 Hz or 60 Hz
Signal I/O terminal – Power supply terminal
1.8 kVAC 50 Hz or 60 Hz | PE terminal – Power supply terminal
1.8 kVAC 50 Hz or 60 Hz
Signal I/O terminal – Power supply terminal
1.9 kVAC 50 Hz or 60 Hz | | | | Operating Ambient Temperature Environment (In | | -10~+50°C (non-freezing): Standard Type, TS and PS Geared Type 0~+50°C (non-freezing): Package with Encoder 0~+40°C (non-freezing): Harmonic geared type | 0~+55°C*²2 (non-freezing) | | | | | Operation) | Ambient Humidity | 85% or less (non-condensing) | | | | | | | Atmosphere | No corrosive gases, dust. Avoid contact with water or oil. | | | | | | Temperature | Rise | Temperature rise of the windings are 80°C or less. Measured at rated current, at standstill, five phases energized measured (by the resistance change method). |
- | | | | | Degree of Pro | tection | IP20 | IP10 | IP20 | | | | Stop Position | Accuracy*3 | ±3 ard | c minutes (±0.05°) | | | | | Shaft Runout | | 0.05 T.I.R (mm)*4 | | _ | | | | Radial Play*5 | | 0.025 mm Max. (Load 5 N) | | _ | | | | Axial Play*6 | | 0.075 mm Max. (Load 10 N) | | | | | | Concentricity
Mounting Pilo | for Shaft in the
t | 0.075 T.I.R (mm)*4 | | - | | | | Perpendicular
Mounting Sur | rity for Shaft of the
face | 0.075 T.I.R (mm)*4 | | - | | | - *1 Only for Built-in Controller Package *2 When attaching a heat sink 200 mm x 200 mm x 2 mm, made from aluminum plate or higher. *3 This value is measured at step angle 0.72°, under no load. (The value changes depends on the size of the load.) - *4 T.I.R. (Total Indicator Reading): The total dial gauge reading when the measurement section is rotated one revolution centered on the reference axis center. - *5 Radial Play: Displacement in shaft position in the radial direction, when a 5 N load is applied in the vertical direction to the tip of the motor's shaft. - *6 Axial Play: Displacement in shaft position in the axial direction, when a 10 N load is applied to the motor's shaft in the axial direction. Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected. ### Encoder Specifications | Resolution | 500 P/R | |---------------------|-------------| | Output mode | Incremental | | Output signal | 3 channels | | Output Circuit type | Line Driver | #### Permissible Radial Load and Permissible Axial Load Unit=N | | | | | | Permi | ssible Radia | al I nad | | UIIIL=I | | | |-----------------------|-------------|---------|--------------|--------------|-------|--------------|----------|------|--------------------------|-----|--------------------| | Type | Frame Size | Model | Gear Ratio | | | from tip of | | | Permissible Axial Load | | | | Турс | Traine Size | IVIOUEI | deal natio | 0 | 5 | 10 | 15 | 20 | I CITIIOSIDIC AXIAI LOAU | | | | | | RKS543 | | 0 | J J | 10 | 10 | 20 | 2.5 (3.9) [3.1] | | | | | 42 mm | RKS544 | - | 35 | 44 | 58 | 85 | _ | 3.1 (4.5) [3.7] | | | | | 12 11111 | RKS545 | - | 00 | '' | | 00 | | 3.7 (5.1) [4.3] | | | | - | | RKS564 | - | | | | | | 6.9 (9.8) [7.5] | | | | Standard Type | 60 mm | RKS566 | _ | 90 | 100 | 130 | 180 | 270 | 8.8 (11.8) [9.4] | | | | | | RKS569 | | | | | | | 13.7 (16.7) [14.7] | | | | | | RKS596 | 1 | | | | | | 18.6 (26.5) [19.6] | | | | | 85 mm | RKS599 | 1 | 260 | 290 | 290 340 | 40 390 | 480 | 29.4 (37.3) [30.4] | | | | | | | | RKS5913 | | | | | | | 40.2 (48.1) [41.2] | | | 42 mm | 42 mm | DI/CE 40 | 3.6, 7.2, 10 | 20 | 30 | 40 | 50 | - | 15 | | | | 42 11111 | RKS543 | 20, 30 | 40 | 50 | 60 | 70 | _ | 13 | | | | TC Coored Tune | 60 mm | RKS564 | 3.6, 7.2, 10 | 120 | 135 | 150 | 165 | 180 | 40 | | | | TS Geared Type | 00 111111 | KN3304 | 20, 30 | 170 | 185 | 200 | 215 | 230 | 40 | | | | | 00 mm | 90 mm | RK\$596 | 3.6, 7.2, 10 | 300 | 325 | 350 | 375 | 400 | 150 | | | | 30 111111 | KK3370 | 20, 30 | 400 | 450 | 500 | 550 | 600 | 130 | | | | | 42 mm | RKS545 | 5, 7.2, 10 | 73 | 84 | 100 | 123 | - | 50 | | | | | 42 11111 | RKS543 | 25, 36, 50 | 109 | 127 | 150 | 184 | _ | 30 | | | | | | | | RKS566 | 5 | 200 | 220 | 250 | 280 | 320 | | | | 60 mm | KK3300 | 7.2, 10 | 250 | 270 | 300 | 340 | 390 | 100 | | | | PS Geared Type | | RKS564 | 25, 36, 50 | 330 | 360 | 400 | 450 | 520 | | | | | | | RKS599 | 5, 7.2, 10 | 480 | 540 | 600 | 680 | 790 | | | | | | 90 mm | | 25 | 850 | 940 | 1050 | 1190 | 1380 | 300 | | | | | 30 11111 | RKS596 | 36 | 930 | 1030 | 1150 | 1310 | 1520 | 300 | | | | | | | 50 | 1050 | 1160 | 1300 | 1480 | 1710 | | | | | | 42 mm | RKS543 | _ | 180 | 220 | 270 | 360 | 510 | 220 | | | | Harmonic Geared Type | 60 mm | RKS564 | 50, 100 | 320 | 370 | 440 | 550 | 720 | 450 | | | | | 90 mm | RKS596 | | 1090 | 1150 | 1230 | 1310 | 1410 | 1300 | | | The values inside the brackets () represent the specification for the electromagnetic brake type. The values inside the brackets [] represent the specification for the encoder type. #### **Dimensions** (Unit = mm) #### Motors #### **♦** Standard Type #### Frame Size 42 mm | Product | Motor Product | L1 | L2 | Mass | CAD | | | |---------------------|-------------------|-------------|----|------|------|------|--| | Built-In Controller | Pulse Input | Name | LI | LZ | kg | UAD | | | RKS543A□D-♦ | RKS543A□-♦ | PKE543AC 34 | | _ | 0.26 | B996 | | | RKS543B <u></u> D-♦ | RKS543B <u></u> ♦ | PKE543BC | 34 | 49 | 0.20 | D990 | | | RKS544A D- | RKS544A□-♦ | PKE544AC | 40 | _ | 0.32 | B997 | | | RKS544B□D-♦ | RKS544B□-♦ | PKE544BC | 40 | 55 | 0.32 | D991 | | | RKS545AD- | RKS545A□-◇ | PKE545AC | 46 | - | 0.38 | B998 | | | RKS545B□D-♦ | RKS545B□-♦ | PKE545BC | 40 | 61 | 0.36 | D990 | | * Length of milling cut for double shaft type is 15±0.25. #### Frame Size 60 mm | Produc | t Name | Motor Product | L1 | L2 | Mass kg | CAD | |---------------------|--------------------|---------------|------|------|-----------|-------| | Built-In Controller | Pulse Input | Name | LI | LZ. | IVIASS NY | CAD | | RKS564A_D-♦ | RKS564A <u></u> -◇ | PKE564AC | 48.5 | - | 0.7 | B999 | | RKS564B_D-♦ | RKS564B <u></u> -♦ | PKE564BC | 40.3 | 69.5 | 0.7 | | | RKS566A_D-♦ | RKS566A | PKE566AC | 59.5 | - | 0.9 | B1000 | | RKS566B <u>D</u> -♦ | RKS566B <u></u> -♦ | PKE566BC | 39.3 | 80.5 | | БТООО | | RKS569A□D-♦ | RKS569A□-◇ | PKE569AC | 89 | ı | 1.4 | B1001 | | RKS569B <u></u> D-♦ | RKS569B <u></u> -♦ | PKE569BC | 09 | 110 | 1.4 | D1001 | #### Frame Size 85 mm | Produc | t Name | Motor Product | L1 | L2 | Mass kg | CAD | |-----------------------|--------------------|---------------|-----|-----|-----------|-------| | Built-In Controller | Pulse Input | Name | LI | LZ. | iviass ky | CAD | | RKS596A□D-♦ | RKS596A□-♦ | PKE596AC | 68 | _ | 1.9 | B1002 | | RKS596B□D-♦ | RKS596B□-♦ | PKE596BC | 00 | 100 | 1.9 | | | RKS599A□D-♦ | RKS599A <u></u> -♦ | PKE599AC | 00 | - | 3.0 | B1003 | | RKS599B_D-♦ | RKS599B <u></u> -♦ | PKE599BC | 98 | 130 | 3.0 | D1003 | | RKS5913A_D-♦ | RKS5913A <u></u> ♦ | PKE5913AC | 128 | - | 4.1 | B1004 | | RKS5913B □ D-♦ | RKS5913B□-♦ | PKE5913BC | 120 | 160 | 4.1 | D1004 | Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where □ is located within the product name. A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box ◊ is located within the product name. These dimensions are for double shaft models. For single shaft models, ignore the □ areas. #### ♦ Standard Type with Electromagnetic Brake #### Frame Size 42 mm | Produc | Motor Product | | Mass kg | CAD | | |---------------------|---------------|----------|---------|-----------|-------| | Built-In Controller | Pulse Input | Name | _ | iviass ky | UAD | | RKS543M□D-♦ | RKS543M□-♦ | PKE543MC | 64 | 0.40 | B1005 | | RKS544M D- | RKS544M□-♦ | PKE544MC | 70 | 0.46 | B1006 | | RKS545M□D-♦ | RKS545M□-♦ | PKE545MC | 75 | 0.52 | B1007 | Frame Size 60 mm | Product Name | | Motor Product | L | Mass kg | CAD | |--------------------------|-------------|---------------|------|---------|-------| | Built-In Controller | Pulse Input | Name | _ | maco ng | 0,15 | | RKS564MD- | RKS564M□-♦ | PKE564MC | 83.5 | 1.0 | B1008 | | RKS566M□D-♦ | RKS566M□-♦ | PKE566MC | 94.5 | 1.2 | B1009 | | RKS569M [□] D-♦ | RKS569M□-♦ | PKE569MC | 124 | 1.7 | B1010 | #### Frame Size 85 mm | Produc | Product Name Motor Product | | | Mass kg | CAD | |---------------------|----------------------------|-----------|-----|-----------|-------| | Built-In Controller | Pulse Input | Name | | IVIASS NY | CAD | | RKS596M□D-♦ | RKS596M □ -♦ | PKE596MC | 118 | 2.7 | B1011 | | RKS599M□D-♦ | RKS599M□-♦ | PKE599MC | 148 | 3.8 | B1012 | | RKS5913M□D-♦ | RKS5913M□-♦ | PKE5913MC | 178 | 4.9 | B1013 | ● Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where is located within the product name. • A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. #### **♦** Standard Type with Encoder #### Frame Size 42 mm | Product Name Motor Product Name | | L | Mass kg | CAD | |---------------------------------|-------------------------|----|---------|-------| | RKS543R_D2-♦ | PKE543RC2 | 56 | 0.32 | B1083 | | RKS544R_D2- | RD2- ♦ PKE544RC2 | | 0.38 | B1084 | | RKS545R_D2-♦ | PKE545RC2 | 68 | 0.44 | B1085 | #### Frame Size 60 mm | Product Name | Motor Product Name | L | Mass kg | CAD | |--------------|--------------------|------|---------|-------| | RKS564R D2- | PKE564RC2 | 70.5 | 0.76 | B1086 | | RKS566R_D2- | PKE566RC2 | 81.5 | 0.96 | B1087 | | RKS569R D2- | PKE569RC2 | 111 | 1.5 | B1088 | #### Frame Size 85 mm | Product Name | | Motor Product Name | L | Mass kg | CAD | |--------------|---------------|--------------------|-----|---------|-------| | | RKS596RD2-♦ | PKE596RC2 | 90 | 2.0 | B1089 | | | RK\$599R D2- | PKE599RC2 | 120 | 3.1 | B1090 | | | RKS5913R D2-♦ | PKE5913RC2 | 150 | 4.2 | B1091 | ■ Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where is located within the product name. ■ A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. #### **♦ TS** Geared Type #### Frame Size 42 mm | Produc | t Name | Motor Product | Coor Potio | Mass kg | CAD | |---------------------|------------------------|---------------|----------------------|---------|-------| | Built-In Controller | Pulse Input | Name | Name Gear Ratio | | GAD | | RKS543A_D-TS | RKS543A <u></u> -TS□-♦ | PKE543AC-TS□ | 3.6, 7.2, 10, 20, 30 | 0.41 | B1051 | | RKS543B□D-TS□-♦ | RKS543B□-TS□-◇ | PKE543BC-TS□ | | 0.41 |
БТОЭТ | * Length of milling cut for double shaft type is 15±0.25. #### Frame Size 60 mm | Produc | t Name | Motor Product | Gear Ratio | Mass kg | CAD | |---------------------|----------------|----------------|----------------------|-----------|-------| | Built-In Controller | Pulse Input | Name | ueai nauu | IVIASS NY | GAD | | RKS564AD-TSD- | RKS564A-TS- | PKE564AC-TS□•♦ | 3.6, 7.2, 10, 20, 30 | 1.1 | B1052 | | RKS564B□D-TS□-♦ | RKS564B□-TS□-◇ | PKE564BC-TS□•♦ | | | | • Mounting Screw: M4×60 P0.7 (4 screws are included with the product) #### Frame Size 90 mm | Produc | Product Name Motor Product | | Gear Ratio | Maga ka | CAD | |---------------------|----------------------------|--------------|----------------------|---------|-------| | Built-In Controller | Pulse Input | Name | Gedi Hallo | Mass kg | CAD | | RKS596A□D-TS□-♦ | RKS596A□-TS□-◇ | PKE596AC-TS□ | 3.6, 7.2, 10, 20, 30 | 2.1 | B1053 | | RKS596B□D-TS□-♦ | RKS596B□-TS□-♦ | PKE596BC-TS□ | | 3.1 | D1000 | Mounting Screw: M8×90 P1.25 (4 screws are included with the product) - Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where 🔲 is located within the product name. - ■A value indicating the Gear Ratio is entered where the box ☐ is located within the product name. - A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box 🛇 is located within the product name. [•] These dimensions are for double shaft models. For single shaft models, ignore the ______ areas. #### **♦ TS** Geared Type with Electromagnetic Brake #### Frame Size 42 mm | Produc | ct Name | Motor Product | Gear Ratio | Mass kg | CAD | |-----------------|---------------------|---------------|----------------------|-----------|-------| | Pulse Input | Built-In Controller | Name | deal hallo | IVIASS NY | | | RKS543M D-TS□-♦ | RKS543M□-TS□-◇ | PKE543MC-TS | 3.6, 7.2, 10, 20, 30 | 0.55 | B1054 | #### Frame Size 60 mm | Produc | t Name | Motor Product | Coor Potio | Mass kg | CAD | |-----------------|---------------------|---------------|----------------------|---------|-------| | Pulse Input | Built-In Controller | Name | Gear Ratio | wass kg | CAD | | RKS564M□D-TS□-♦ | RKS564M□-TS□-♦ | PKF564MC-TS | 3.6, 7.2, 10, 20, 30 | 1.4 | B1055 | Mounting Screw: M4×60 P0.7 (4 screws are included with the product) #### Frame Size 90 mm | Produc | t Name | Motor Product | Coor Dotio | Maga ka | CAD | |-----------------|---------------------|---------------|----------------------|---------|-------| | Pulse Input | Built-In Controller | Name | Gear Ratio | Mass kg | CAD | | RKS596M□D-TS□-♦ | RKS596M□-TS□-♦ | PKE596MC-TS□ | 3.6, 7.2, 10, 20, 30 | 3.9 | B1056 | Mounting Screw: M8×90 P1.25 (4 screws are included with the product) - Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 📃 is located within the product name. - ■A value indicating the Gear Ratio is entered where the box ☐ is located within the product name. - A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \Diamond is located within the product name. #### ◇PS Geared Type #### Frame Size 42 mm | Product Name | | Motor Product | Gear Ratio | 11 | L2 | Mass kg | CAD | | |---------------------|----------------|---------------|------------|------------|------|-----------|-------|-------| | Built-In Controller | Pulse Input | Name Gear Ra | deal hallo | LI | LZ | IVIASS NY | CAD | | | RKS545A□D-PS□-♦ | RKS545A□-PS□-◇ | PKE545AC-PS□ | 5, 7.2, 10 | 5 70 10 | 73.5 | _ | 0.50 | D1057 | | RKS545B□D-PS□-♦ | RKS545B□-PS□-◇ | PKE545BC-PS□ | | 73.5 | 88.5 | 0.58 | B1057 | | | RKS543A□D-PS□-♦ | RKS543A□-PS□-◇ | PKE543AC-PS□ | 25, 36, 50 | 25, 36, 50 | 86 | - | 0.61 | B1058 | | RKS543B□D-PS□-♦ | RKS543B□-PS□-♦ | PKE543BC-PS□ | | | | 101 | 0.01 | D1030 | *Length of milling cut for double shaft type is 15±0.25. #### Frame Size 60 mm | Product Name | | Motor Product | Gear Ratio | L1 | L2 | Mass kg | CAD | | |---------------------|----------------|-----------------|------------|----------|-------|-----------|-------|-------| | Built-In Controller | Pulse Input | Name Gear Ratio | deal hallo | LI | LZ | IVIASS NY | CAD | | | RKS566A□D-PS□-♦ | RKS566A□-PS□-♦ | PKE566AC-PS□ | 5, 7.2, 10 | 92 | - | 1.3 | B1059 | | | RKS566B□D-PS□-♦ | RKS566B□-PS□-♦ | PKE566BC-PS□ | | 92 | 92 | 113 | 1.3 | B1039 | | RKS564A□D-PS□-♦ | RKS564A□-PS□-◇ | PKE564AC-PS□ | 25, 36, 50 | 05 07 50 | 101.5 | _ | 1.4 | B1060 | | RKS564B□D-PS□-♦ | RKS564B□-PS□-♦ | PKE564BC-PS□ | | 101.5 | | 122.5 | | | | 114.110 0.120 00 11.111 | | | | | | | | | |-------------------------|------------------------|---------------|------------|-------|-------|-----------|-------|-------| | Product Name | | Motor Product | Gear Ratio | 11 | L2 | Mass kg | CAD | | | Built-In Controller | Pulse Input | Name | Gear Ratio | LI | LZ. | IVIASS NY | GAD | | | RKS599A□D-PS□-♦ | RKS599A <u></u> -PS□-♦ | PKE599AC-PS□ | 5, 7.2, 10 | 145 | - | 4.4 | B1061 | | | RKS599B□D-PS□-♦ | RKS599B□-PS□-♦ | PKE599BC-PS□ | | 145 | 177 | | | | | RKS596A□D-PS□-♦ | RKS596A□-PS□-♦ | PKE596AC-PS□ | 25, 36, 50 | 142.5 | - | 4.1 | D1000 | | | RKS596B D-PS□-♦ | RKS596B□-PS□-◇ | PKE596BC-PS | | | 142.5 | 174.5 | 4.1 | B1062 | - Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where 🗌 is located within the product name. - lacktriangle A value indicating the Gear Ratio is entered where the box \Box is located within the product name. #### ◇PS Geared Type with Electromagnetic Brake #### Frame Size 42 mm | Product Name | | Motor Product | Gear Ratio | | Mass kg | CAD | |---------------------|----------------|---------------|------------|-------|-----------|-------| | Built-In Controller | Pulse Input | Name | ueai naliu | L | IVIASS KY | GAD | | RKS545M_D-PS | RKS545M□-PS□-♦ | PKE545MC-PS□ | 5, 7.2, 10 | 103 | 0.72 | B1063 | | RKS543M□D-PS□-♦ | RKS543M□-PS□-♦ | PKE543MC-PS□ | 25, 36, 50 | 115.5 | 0.75 | B1064 | #### Frame Size 60 mm | Product Name | | Motor Product | Gear Ratio | | Mass kg | CAD | |---------------------|----------------|---------------|------------|-----|-----------|-------| | Built-In Controller | Pulse Input | Name | ueai naliu | L | IVIASS KY | CAD | | RKS566M□D-PS□-♦ | RKS566M□-PS□-♦ | PKE566MC-PS□ | 5, 7.2, 10 | 127 | 1.6 | B1065 | | RKS564M□D-PS□-♦ | RKS564M□-PS□-◇ | PKE564MC-PS□ | 25, 36, 50 | 136 | 1.7 | B1066 | | Product Name | | Motor Product | Gear Ratio | | Mass kg | CAD | | |--------------|---------------------|----------------|--------------|------------|---------|-----------|-------| | E | Built-In Controller | Pulse Input | Name | ueai naliu | L | iviass ky | CAD | | RKS5 | 99M□D-PS□-♦ | RKS599M□-PS□-♦ | PKE599MC-PS□ | 5, 7.2, 10 | 195 | 5.2 | B1067 | | RKS5 | 96M□D-PS□-♦ | RKS596M□-PS□-♦ | PKE596MC-PS□ | 25, 36, 50 | 192 | 4.9 | B1068 | - Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 📃 is located within the product name. - A value indicating the Gear Ratio is entered where the box ☐ is located within the product name. A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. #### #### Frame Size 42 mm | Product Name | | Motor Product | Gear | Maga ka | CAD | |---------------------|------------------------|---------------|---------|---------|-------| | Built-In Controller | Pulse Input | Name | Ratio | Mass kg | CAD | | RKS543A□D-HS□-♦ | RKS543A <u></u> -HS□-♦ | PKE543AC-HS□ | 50, 100 | 0.47 | B1033 | | RKS543B□D-HS□-♦ | RKS543B□-HS□-♦ | PKE543BC-HS□ | 50, 100 | 0.47 | БТОЗЗ | - *1 Length of milling cut for double shaft type is 15±0.25. - *2 The position of the output shaft relative to the screw holes on the rotating part is arbitrary. #### Frame Size 60 mm | Product Name | | Motor Product | Gear | Maga ka | CAD | |---------------------|----------------|---------------|---------|---------|-------| | Built-In Controller | Pulse Input | Name | Ratio | Mass kg | CAD | | RKS564A_D-HS | RKS564A□-HS□-◇ | PKE564AC-HS□ | 50, 100 | 1.2 | B1034 | | RKS564B□D-HS□-♦ | RKS564B□-HS□-♦ | PKE564BC-HS□ | 30, 100 | 1.2 | D1034 | part is arbitrary. | Product Name | | Motor Product | Gear | Mass kg | CAD | |---------------------|----------------|----------------|---------|-----------|-------| | Built-In Controller | Pulse Input | Name | Ratio | IVIASS KY | CAD | | RKS596A_D-HS□-♦ | RKS596A□-HS□-◇ | PKE596AC-HS□ | EQ 100 | 2.0 | B1035 | | DVCEO4D D UC | DVCEO4D HC A | DVE FOARC LIST | 50, 100 | 3.9 | D1033 | - Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 📙 is located within the product name. - lacktriangle A value indicating the Gear Ratio is entered where the box \Box is located within the product name. - A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box 🗘 is located within the product name. These dimensions are for double shaft models. For single shaft models, ignore the areas. #### ♦ Harmonic Geared Type with Electromagnetic Brake #### Frame Size 42 mm | Product Name Motor Product | | Gear Mass kg | | CAD | | |----------------------------|----------------|--------------|---------|-----------|-------| | Built-In Controller | Pulse Input | Name | Ratio | IVIASS NY | CAD | | RKS543M_D-HS | RKS543M□-HS□-♦ | PKE543MC-HS□ | 50, 100 | 0.61 | B1036 | $*$ The position of the output shaft relative to the screw holes on the rotating part is arbitrary. #### Frame Size 60 mm | Product Name | | Motor Product | Gear | Mass kg | CAD | |---------------------|----------------|---------------|---------|-----------|-------| | Built-In Controller | Pulse Input | Name | Ratio |
IVIASS NY | GAD | | RKS564M D-HS - | RKS564M□-HS□-♦ | PKE564MC-HS□ | 50, 100 | 1.5 | B1037 | part is arbitrary. | Product Name | | Motor Product | Gear | Mass ka | CAD | |---------------------|----------------|---------------|---------|---------|-------| | Built-In Controller | Pulse Input | Name | Ratio | Mass Ky | UAD | | RKS596M□D-HS□-♦ | RKS596M□-HS□-♦ | PKE596MC-HS□ | 50, 100 | 4.8 | B1038 | - Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where □ is located within the product name. - ●A value indicating the Gear Ratio is entered where the box □ is located within the product name. - A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \Diamond is located within the product name. #### Cable for Motor (Included), Cable for Electromagnetic Brake (Included), Cable for Encoder (Included) #### ♦ Only with the type supplied with a connection cable #### Common to All Types #### Cable for Motor | Cable Type | Length L (m) | |---------------------|--------------| | Cable for Motor 1 m | 1 | | Cable for Motor 2 m | 2 | | Cable for Motor 3 m | 3 | #### • Cable for Electromagnetic Brake (Only for electromagnetic brake type) | Cable for Motor | Cable Type | | | |---------------------|------------|--|--| | Cable for Motor 1 m | 1 | | | | Cable for Motor 2 m | 2 | | | | Cable for Motor 3 m | 3 | | | #### • Cable for Encoder (Only for encoder type) | Cable for Motor | Cable Type | |---------------------|------------| | Cable for Motor 1 m | 1 | | Cable for Motor 2 m | 2 | | Cable for Motor 3 m | 3 | #### Drivers #### ♦ Built-In Controller Type #### Accessories Connector for Power Input Terminal (CN1) Connector: MC1,5/4-STF-3,5 (PHOENIX CONTACT GmbH & Co.,KG.) Connector for Sensor Signal (CN5) Connector: FK-MC0,5/5-ST-2,5 (PHOENIX CONTACT GmbH & Co.,KG.) Connector for Input Signal (CN8) Connector: FK-MC0,5/9-ST-2,5 (PHOENIX CONTACT GmbH & Co.,KG.) Connector for Output Signal (CN9) Connector: FK-MC0,5/7-ST-2,5 (PHOENIX CONTACT GmbH & Co.,KG.) Connector for Regeneration Unit/Main Power Supply (CN3) Connector: FKCT2,5/3-ST-5,08 (PHOENIX CONTACT GmbH & Co.,KG.) ### ♦ Pulse Input Type Mass: 0.8kg CAD Standard Type with Electromagnetic Brake: B1014, Standard Type: B1015 # Connection and Operation (Built-In Controller Type) #### Names and Functions of Driver Parts #### ☐ Signal Monitor Displays #### **♦ LED Indicators** | Indication | Color | Function | When Activated | | | |------------|-------|---|--|--|--| | PWR | Green | Power Supply Indication Lights when 24 VDC power is on. | | | | | ALM | Red | Alarm Indication | Blinks when protective functions are activated. | | | | C-DAT | Green | Communication Indication | tion Lights when communication data is received or sent. | | | | C-ERR | Red | Communication Error Indication | Lights when there is an error with communication data. | | | | CHARGE | Red | Power On Indication | Lights when main power is supplied. | | | #### 2 Address Number Setting Switch (ID) | Indication | Switch Name | Function | |------------|-------------------------------|---| | ID | Address Number Setting Switch | Set the address number for RS-485 communication (Factory Setting: 0). | #### 3 Baud Rate Setting Switch (BAUD) | Indication | Switch Name | Function | | | |------------|--------------------------|---|--|--| | BAUD | Baud Rate Setting Switch | Set the baud rate for RS-485 communications (Factory Setting: 7). | | | #### ♦ Setting the Baud Rate for RS-484 Communications | No. | Baud Rate (bps) | |-----|---------------------------------------| | 0 | 9600 | | 1 | 19200 | | 2 | 38400 | | 3 | 57600 | | 4 | 115200 | | 5~6 | Not used | | 7 | 625000 (Connect to Network Converter) | | 8~F | Not used | #### 4 Termination Resistor Setting Switches (TERM.) | Indication | No. | Function | | | | | |------------|-----|---|--|--|--|--| | TERM. | 1 | Set the termination resister (120 Ω) for RS-485 communication (Factory setting: OFF). | | | | | | I ENIVI. | 2 | OFF : No termination resister ON : Set the termination resister | | | | | ^{*} Please use the same settings for both No. 1 and No. 2. #### 5 Function Setting Switches (SW1) | Indication | No. | Function | | | | | |------------|-----|---|--|--|--|--| | SW1 1 | | Set the address number in combination with the address number setting switch (ID) (Factory setting: OFF). | | | | | | SWI | 2 | Set the protocol for RS-485 communication (Factory setting: OFF). | | | | | #### **♦** RS-485 Communication Protocol Setting | Destination No. | Connect to Network convertor | Modbus RTU Mode | |-----------------|------------------------------|-----------------| | 2 | 0FF | ON | #### 6 Input Signal Connector (CN8) | Indication | Pin No. | Signal Name | Initial Value | | | | |------------|----------------------------|-------------|-----------------|--|--|--| | 1 | | IN0 | HOME | Perform the return-to-home operation. | | | | | 2 | IN1 | START | Perform the positioning operation. | | | | | 3 | IN2 | MO | | | | | CN8 4 | 4 | IN3 | M1 | The operating data number is selected using 3 bits. | | | | UNO 5 | | IN4 | M2 | | | | | | 6 | IN5 | FREE | Stop motor excitation and release the electromagnetic brake. | | | | | 7 IN6 STOP Stop the motor. | | Stop the motor. | | | | | 8 IN7 | | IN7 | ALM-RST | Reset the current alarm. | | | ^{*} Assigned functions are set by means of the parameter settings. The above is the initial value. For details, refer to the User's Manual. #### The following input signals can be assigned to input terminals IN0~7. | | Input Signal | | | | | | | | |--------------|--------------|----------|--------------|--------|--------|---------|---------|--------| | 0 : Not used | 5: SSTART | 10: MS2 | 17: AW0 | 32: R0 | 37: R5 | 42: R10 | 47: R15 | 52: M4 | | 1: FWD | 6: +J0G | 11: MS3 | 18: STOP | 33: R1 | 38: R6 | 43: R11 | 48: M0 | 53: M5 | | 2: RVS | 7: -J0G | 12: MS4 | 24: ALM-RST | 34: R2 | 39: R7 | 44: R12 | 49: M1 | | | 3: HOME | 8: MS0 | 13: MS5 | 25: P-PRESET | 35: R3 | 40: R8 | 45: R13 | 50: M2 | | | 4: START | 9: MS1 | 16: FREE | 27: HMI | 36: R4 | 41: R9 | 46: R14 | 51: M3 | | #### 7 Output Signal Connector (CN9) | Indication | Pin No. | Signal Name | Initial Value | | | |------------|---------|-------------|---------------|--|--| | CN9 | 1 | OUT0 | HOME-P | Output when the motor is home. | | | | 2 | OUT1 | MOVE | Output while the motor is under operation. | | | | 3 | OUT2 | AREA1 | Output when the motor is in area 1. | | | CIVE | 4 | OUT3 | READY | Output when driver operation preparations have finished. | | | | 5 | 0UT4 | WNG | The driver's warning status is output. | | | | 6 | OUT5 | ALM | The driver's alarm status is output (Point B). | | ^{*} Assigned functions are set by means of the parameter settings. The above is the initial value. For details, refer to the User's Manual. #### The following output signals can be assigned to output terminals OUT0~5. | | | | | Input Signal | | | | | |-------------|-----------|------------|---------|--------------|-------------|------------|-------------|---------| | 0: Not used | 7: -J0G_R | 16: FREE_R | 36: R4 | 43: R11 | 50: M2_R | 63: SLIT_R | 73: AREA1 | 85: ZSG | | 1: FWD_R | 8: MS0_R | 17: AW0_R | 37: R5 | 44: R12 | 51: M3_R | 65: ALM | 74: AREA2 | 86: MBC | | 2: RVS_R | 9: MS1_R | 18: STOP_R | 38: R6 | 45: R13 | 52: M4_R | 66: WNG | 75: AREA3 | | | 3: HOME_R | 10: MS2_R | 32: R0 | 39: R7 | 46: R14 | 53: M5_R | 67: READY | 80: S-BSY | | | 4: START_R | 11: MS3_R | 33: R1 | 40: R8 | 47: R15 | 60: +LS_R | 68: MOVE | 82: MPS | | | 5: SSTART_R | 12: MS4_R | 34: R2 | 41: R9 | 48: M0_R | 61: -LS_R | 70: HOME-P | 83: STEPOUT | | | 6: +J0G_R | 13: MS5_R | 35: R3 | 42: R10 | 49: M1_R | 62: HOMES_R | 72: TIM | 84: OH | | #### 8 Sensor Signal Connector (CN5) | Indication | Pin No. | Signal Name | Initial Value | |------------|---------|-------------|------------------------------| | | 1 | +LS | +Side Limit Sensor Input | | CN5 | 2 | -LS | -Side Limit Sensor Input | | | 3 | HOMES | Mechanical Home Sensor Input | | | 4 | SLIT | Slit Sensor Input | | | 5 | IN-COM2 | Common for Sensor | #### 9 24 VDC Input/Electromagnetic Brake Connection Terminal (CN1) | | | S . | , | |------------|--------|--|--| | Indication | 1/0 | Terminal Name | Content | | 24V+ | Input | 24 VDC Power Input Terminal+ | The power supply for the driver's control circuit terminal. Always connect | | 24V- | IIIput | 24 VDC Power Input Terminal- | while operating. | | MB1 | Output | Electromagnetic Brake Connection Terminal- | Connect with the electromagnetic brake line of an electromagnetic brake type | | MB2 | Output | Electromagnetic Brake Connection Terminal+ | motor. | ### Connection Diagram ○Connection to Peripheral Equipment Included Sold separately Data Setting Software 24 VDC Power Supply*3 Be sure to connect when using an electromagnetic brake. MEXE02 Control Module OPX-2A) 888888 ՛⊕ 24 VDC Connect to CN1 To connect PC with driver, please use communication cable for the Data Setting GND Software (**CC05IF-USB**, sold separately). Connect to CN1 Cable for Electromagnetic Brake* Connect to CN4 Cable used to connect electromagnetic brake and driver Output signal : Connect to CN9 Connect to CN2 Cable for Motor*1 Cable used to connect Input
signal: Connect to CN8 motor and driver. Sensor signal : Connect to CN5 Controller*2 Connect to CN3 *1 The user can choose from Package with Cable (1 m, 2 m or 3 m) or Package without Cable. If the user needs a cable longer than 3 m or a flexible cable, please select an appropriate cable from the accessories (sold separately). Keep the wiring distance between the motor and driver to 20 m max. Circuit Breaker*2 or Ground Fault Interrupt Circuit This must be placed, in order to protect wiring on primary side. Power Supply Voltage*2 Single-Phase 100-120 VAC 50/60 Hz Single-Phase 200-240 VAC 50/60 Hz - *2 Not Supplied. - *3 Not Supplied. If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies. Noise Filter*2 User can use this to prevent noise. This can help to reduce noise generated by Power Supply or Driver. ## \Diamond Connecting to a Host Controller • Connecting to a Current Sink Output Circuit #### Note Use input signals at 24 VDC. Use output signals at 26.4 VDC/10 mA or less. If the current exceeds 10 mA, connect an external resistor R₀ to adjust current value to less than 10 mA. • The saturation voltage of the output signal is 3 VDC max. [•] Provide a minimum distance of 100 mm between the signal lines and power lines (Power supply lines, motor lines). Do not run the signal lines in the same duct as power lines nor bundle them with power lines. If noise generated by the motor cable or power supply cable causes a problem with the specific wiring or layout, attach shield the cable or ferrite core. #### ♦ Connecting to a Host Controller Connecting to a Current Source Output Circuit Use 24 VDC for the input signal. Use 26.4 VDC or less for the output signal, and 10 mA or less for the current. If the current exceeds 10 mA, connect an external resistor R₀ to reduce the current to less than 10 mA. Output saturated voltage should be less than 3 V. Signal lines should be kept at least 100 mm away from power lines (power supply lines and motor lines). Do not run the signal lines in the same duct or bundle them together. If noise generated by the motor cables or power supply cables causes a problem, try shielding the cables or using ferrite cores. # Connection and Operation (Pulse Input Type) #### Names and Functions of Driver Parts #### ☐ Signal Monitor Display #### | Indication | Color | Function | Lighting Condition | |------------|-------|-------------------------|--| | POWER | Green | Power Supply Indication | When the main power supply is input | | ALARM | Red | Alarm Indication | When protective functions are activated (Blink). | #### | Blink Count | Function | Operating Condition | ALM-RST
Release by Input | Motor Excitation | |-------------|--|--|-----------------------------|------------------| | 2 | Main circuit overheating | The internal temperature of the driver exceeds 85°C. | Yes | | | 3 | Overvoltage | The internal voltage of the driver exceeds the permissible value | No | | | 4 | Command pulse abnormality | The value of the command pulse becomes abnormal | Yes | | | 5 | Overcurrent | The motor, cable and driver out put circuit shorted out | No | | | 6 | Undervoltage | Power supply is instantaneously shut down
Undervoltage | | No holdina | | 7 | Automatic control of electromagnetic brake abnormality | 24 VDC power supply is not connected The electromagnetic brake is not connected The electromagnetic brake is mis-wired | Yes | No Holding | | | Electrolytic capacitor abnormality | The electrolytic capacitor of the main circuit is damaged. | |] | | 9 | EEPROM abnormality | The saved data of the driver is damaged. | No | | | Lighting | CPU abnormality | CPU malfunctions | | | #### 2 24 VDC Input Terminals/Electromagnetic Brake Connection Terminals | Indication | 1/0 | Terminal Name | Content | |------------|-------|--|---| | 24 V+ | Input | 24 VDC Input Terminal + | Connects the 24 VDC power for electromagnetic brake. | | 24 V- | Input | 24 VDC Input Terminal – | Connects the 24 VDG power for electromagnetic brake. | | MB1 | Input | Electromagnetic Brake
Connection Terminal (Black) | Connect the electromagnetic hydra usin of the meter with the electromagnetic hydra | | MB2 | Input | Electromagnetic Brake
Connection Terminal (White) | Connect the electromagnetic brake wire of the motor with the electromagnetic brake. | #### 3 Function Setting Switch (SW1) | Indication | No. | Function | |------------|-----|---| | R1/R2 | 1 | Sets up the step angle in combination with the step angle setting switch. | | 2P/1P | 2 | Switches between 1-pulse input mode and 2-pulse input mode. [2P] for the 2-pulse input mode [1P] for the 1-pulse input mode | ### 4 Current Setting Switch | Indication | Switch Name | Function | |------------|----------------------------------|---| | RUN | Operating Current Setting Switch | Sets the motor's operating current. The current value is set by the ratio of rated output current (%). | | STOP | Stop Current Setting Switch | Sets the stopped current of the motor. The current value is set by the ratio of rated output current (%). | ## 5 Step Angle Setting Switch | Indication | Function | |------------|---| | STEP | Sets up step angle of the motor in combination with the function setting switch (SW1) | | Function | Function Setting Switch: R1 | | | | | | | |--|-----------------------------|----------------|---------------------|--|--|--|--| | Step Angle Setting Switch (STEP) Scale | Resolution [P/R] | Step Angle [°] | Microsteps/
Step | | | | | | 0 | 500 | 0.72 | 1 | | | | | | 1 | 1000 | 0.36 | 2 | | | | | | 2 | 1250 | 0.288 | 2.5 | | | | | | 3 | 2000 | 0.18 | 4 | | | | | | 4 | 2500 | 0.144 | 5 | | | | | | 5 | 4000 | 0.09 | 8 | | | | | | 6 | 5000 | 0.072 | 10 | | | | | | 7 | 10000 | 0.036 | 20 | | | | | | 8 | 12500 | 0.0288 | 25 | | | | | | 9 | 20000 | 0.018 | 40 | | | | | | A | 25000 | 0.0144 | 50 | | | | | | В | 40000 | 0.009 | 80 | | | | | | С | 50000 | 0.0072 | 100 | | | | | | D | 62500 | 0.00576 | 125 | | | | | | E | 100000 | 0.0036 | 200 | | | | | | F | 125000 | 0.00288 | 250 | | | | | | Function Setting Switch: R2 | | | | | | | | |--|------------------|----------------|---------------------|--|--|--|--| | Step Angle Setting Switch (STEP) Scale | Resolution [P/R] | Step Angle [°] | Microsteps/
Step | | | | | | 0 | 200 | 1.8 | 0.4 | | | | | | 1 | 400 | 0.9 | 0.8 | | | | | | 2 | 600 | 0.6 | 1.2 | | | | | | 3 | 800 | 0.45 | 1.6 | | | | | | 4 | 1200 | 0.3 | 2.4 | | | | | | 5 | 1600 | 0.225 | 3.2 | | | | | | 6 | 3200 | 0.1125 | 6.4 | | | | | | 7 | 6000 | 0.06 | 12 | | | | | | 8 | 6400 | 0.05625 | 12.8 | | | | | | 9 | 7200 | 0.05 | 14.4 | | | | | | Α | 8000 | 0.045 | 16 | | | | | | В | 12000 | 0.03 | 24 | | | | | | С | 12800 | 0.028125 | 25.6 | | | | | | D | 16000 | 0.0225 | 32 | | | | | | E | 25600 | 0.0140625 | 51.2 | | | | | | F | 200000 | 0.0018 | 400 | | | | | #### 6 I/O Signal Connector (CN5) | | | | , | |------------|--------|------------|---| | Indication | 1/0 | Pin Number | Content | | READY | | 1 | Outputs when operation of the driver has been prepared. | | ALM | Output | 2 | Output alarm status of the driver (B contact). | | TIM | | 3 | Outputs when excitation state of the motor is at step "0" position. | | OUT-COM | | 4 | Output common | | AW0 | | 5 | Stops excitation of the motor. | | CS | | 6 | Switches the step angle. | | FREE | Input | 7 | Stops excitation of the motor. With electromagnetic brake type, the electromagnetic brake is also released. | | ALM-RST | | 8 | Resets the current alarm. | | IN-COM | | 9 | Input common | #### 7 Pulse Signal Connector (CN4) | Indication | Pin Number | Content | |-----------------|------------|---| | CW (PLS) +24 V | 1 | CW Pulse Input (Pulse Input)
[+24 V] | | CW (PLS) +5 V | 2 | CW Pulse Input (Pulse Input) | | CW (PLS) - | 3 | [+5 V or line driver] | | CCW (DIR) +24 V | 4 | CCW Pulse Input (Rotation Direction Input)
[+24 V] | | CCW (DIR) +5 V | 5 | CCW Pulse Input (Rotation Direction Input) | | CCW (DIR) - | 6 | [+5 V or line driver] | #### Connection Diagram - *1 There are 2 types available, one with the cable which connects the motor and driver (1 m, 2 m, 3 m) and the other without any. If you need cables longer than 3 m or flexible extension cable, select from the accessories (Sold separately). When wiring the motor and the motor, keep a maximum distance of 20 m. - *2 Not Supplied. - *3 Not Supplied. If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (Sold separately), the 24 VDC±4% specification applies. ### ○Connection to Programmable Controller • Connection Diagram for Current Sink Output Circuit When pulse input is Line Driver - Use input signal at 12~24 VDC. - Use output signal at 12-24 VDC 10 mA max. When the current value exceeds 10 mA, connect the external resistor Ro to keep 10 mA max. - Output saturated voltage should be less than 3V. - Provide a minimum distance of 100 mm between the signal lines and power lines (Power supply lines, motor lines). - Do
not run the signal lines in the same duct as power lines or bundle them with power lines. - If noise generated by the motor cable or power supply cable causes a problem with the specific wiring or layout, shield the cable or use ferrite cores. # • Connecting Diagram for Current Source Output Circuit When pulse input is Line Driver - Use input signal at 12~24 VDC. - Use output signal at 12~24 VDC 10 mA max. When the current value exceeds 10 mA, connect the external resistor R₀ to keep 10 mA max. - Output saturated voltage should be less than 3V. - Provide a minimum distance of 100 mm between the signal lines and power lines (Power supply lines, motor lines). Do not run the signal lines in the same duct as power lines or bundle them with power lines. olf noise generated by the motor cable or power supply cable causes a problem with the specific wiring or layout, shield the cable or use ferrite cores. # ■ Motor and Driver Combinations Product names for motor and driver combinations are shown below. #### Built-In Controller Type | oduct Name Driver Product Name | |---| | lc | | C RKSD503-D | | lC | | <u>lc </u> | | <u>lC</u> | | C RKSD507-D | | IC RKSD307-LD | | lC | | □C | | 1C | | IC RKSD503-D | | 1C | | 1C | | 1C | | IC BYODEOZ TO | | IC RKSD507-D | | 1C | | MC | | C2 | | C2 RKSD503-D | | C2 RKSD507-D | | C2 | | RC2 | | C-TS3.6 | | C-TS7.2 | | C-TS10 RKSD503-D | | C-TS20 | | C-TS30 | | C-TS3.6 | | C-TS7.2 | | C-TS10 | | C-TS20 | | C-TS30 | | C-TS3.6 | | IC-TS7.2 | | IC-TS10 | | C-TS20 | | C-TS30 | | IC-TS3.6 | | 1C-TS7.2 | | 1C-TS10 RKSD503- | | 1C-TS20 | | 1C-TS30 | | 1C-TS3.6 | | IC-TS7.2 | | IC-TS10 | | 1C-TS20 | | 1C-TS30 | | | | IC-TS3.6 | | IC-TS7.2 | | IC-TS10 | | 1C-TS20
1C-TS30 | | 10 | [■] Either **A** (Single shaft) or **B** (Double shaft) indicating the motor shaft configuration is entered where the box ☐ is located within the product name. Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. If the package do not include the cable, ♦ is not exists in the product name. | Time | Due do et Nove e | Mateu Dradust News | Daireas Deadreat Name | | |-----------------------|-------------------------------|--------------------|-----------------------|--| | Туре | Product Name | Motor Product Name | Driver Product Name | | | | RKS545 D-PS5- | PKE545□C-PS5 | | | | | RKS545 D-PS7.2- | PKE545□C-PS7.2 | _ | | | | RKS545 D-PS10- | PKE545□C-PS10 | RKSD503-D | | | | RKS543 D-PS25-♦ | PKE543 C-PS25 | _ | | | | RKS543 D-PS36- | PKE543 C-PS36 | | | | | RKS543 D-PS50- | PKE543 C-PS50 | | | | | RKS566 D-PS5- | PKE566 C-PS5 | | | | | RKS566 D-PS7.2- | PKE566 C-PS7.2 | | | | PS Geared Type | RKS566 D-PS10- | PKE566 C-PS10 | | | | ,, | RKS564 D-PS25- | PKE564 C-PS25 | | | | | RKS564 D-PS36- | PKE564 C-PS36 | | | | | RKS564 D-PS50- | PKE564 C-PS50 | RKSD507-D | | | | RKS599 D-PS5- | PKE599□C-PS5 | _ | | | | RKS599 D-PS7.2- | PKE599□C-PS7.2 | _ | | | | RKS599 D-PS10- | PKE599 C-PS10 | 4 | | | | RKS596 D-PS25- | PKE596□C-PS25 | _ | | | | RKS596 □ D-PS36-♦ | PKE596 C-PS36 | - | | | | RKS596□□D-PS50-♦ | PKE596 C-PS50 | | | | | RKS545M_D-PS5-♦ | PKE545MC-PS5 | | | | | RKS545M_D-PS7.2-\(\triangle\) | PKE545MC-PS7.2 | | | | | RKS545M_D-PS10- | PKE545MC-PS10 | RKSD503-D | | | | RKS543M_D-PS25- | PKE543MC-PS25 | | | | | RKS543M_D-PS36- | PKE543MC-PS36 | _ | | | | RKS543M_D-PS50- | PKE543MC-PS50 | | | | | RKS566MD-PS5- | PKE566MC-PS5 | _ | | | | RK\$566M D-P\$7.2- | PKE566MC-PS7.2 | _ | | | PS Geared Type with | RKS566MD-PS10- | PKE566MC-PS10 | - | | | Electromagnetic Brake | RKS564MD-PS25- | PKE564MC-PS25 | _ | | | | RKS564M_D-PS36- | PKE564MC-PS36 | - | | | | RKS564MD-PS50- | PKE564MC-PS50 | RKSD507-D | | | | RKS599M_D-PS5- | PKE599MC-PS5 | | | | | RKS599M_D-PS7.2- | PKE599MC-PS7.2 | | | | | RKS599M_D-PS10- | PKE599MC-PS10 | _ | | | | RKS596M_D-PS25- | PKE596MC-PS25 | _ | | | | RKS596M_D-PS36- | PKE596MC-PS36 | _ | | | | RKS596M_D-PS50- | PKE596MC-PS50 | | | | | RKS543 D-HS50- | PKE543 C-HS50 | RKSD503-D | | | | RKS543□D-HS100-♦ | PKE543 C-HS100 | | | | Harmonic Geared Type | RKS564 D-HS50- | PKE564□C-HS50 | 4 | | | | RKS564 D-HS100- | PKE564 C-HS100 | RKSD507-D | | | | RKS596 D-HS50- | PKE596□C-HS50 | | | | | RKS596 D-HS100- | PKE596□C-HS100 | | | | | RKS543M_D-HS50-♦ | PKE543MC-HS50 | RKSD503-D | | | Harmonic Geared Type | RKS543M_D-HS100-\(\triangle\) | PKE543MC-HS100 | | | | with Electromagnetic | RKS564M_D-HS50- | PKE564MC-HS50 | | | | Brake | RKS564M_D-HS100- | PKE564MC-HS100 | RKSD507-D | | | | RKS596M_D-HS50-♦ | PKE596MC-HS50 | | | | | RKS596M_D-HS100- | PKE596MC-HS100 | | | [■] Either **A** (Single shaft) or **B** (Double shaft) indicating the motor shaft configuration is entered where the box ☐ is located within the product name. Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. If the package do not include the cable, ♦ is not exists in the product name. #### Pulse Input Type | Туре | Product Name | Motor Product Name | Driver Product Nam | | |---------------------------|----------------------------|--------------------|--------------------|--| | | RKS543□□-◇ | PKE543□C | | | | | RKS544□□-◇ | PKE544□C | RKSD503- | | | | RKS545□□-◇ | PKE545□C | | | | | RK\$564□□-◇ | PKE564□C | | | | tandard Type | RK\$566□□-◇ | PKE566□C | | | | | RK\$569□□-◇ | PKE569□C | DIVODEOZ 🗖 | | | | RKS596□□-◇ | PKE596□C | RKSD507- | | | | RKS599□□-◇ | PKE599□C | 7 | | | | RKS5913□□-◇ | PKE5913□C | 7 | | | | RKS543M □ -♦ | PKE543MC | | | | | RKS544M □ -♦ | PKE544MC | RKSD503M- | | | | RKS545M □ -♦ | PKE545MC | 7 | | | | RKS564M □ -♦ | PKE564MC | | | | tandard Type with | RKS566M <u></u> ♦ | PKE566MC | 1 | | | lectromagnetic Brake | RK\$569M◇ | PKE569MC | | | | | RKS596M□-♦ | PKE596MC | RKSD507M- | | | | RKS599M□-♦ | PKE599MC | 1 | | | | RKS5913M□-♦ | PKE5913MC | | | | | RKS543□-TS3.6-♦ | PKE543□C-TS3.6 | | | | | RKS543□□-TS7.2-♦ | PKE543□C-TS7.2 | 1 | | | | RKS543□□-TS10-♦ | PKE543□C-TS10 | RKSD503- | | | | RKS543□□-TS20-♦ | PKE543□C-TS20 | | | | | RKS543□-TS30-♦ | PKE543□C-TS30 | | | | | RKS564TS3.6-♦ | PKE564□C-TS3.6 | _ | | | | RKS564TS7.2-♦ | PKE564□C-TS7.2 | | | | S Geared Type | RK\$564T\$10-\(\) | PKE564□C-TS10 | - | | | - 404.04 .,p0 | RKS564□□-TS20-♦ | PKE564□C-TS20 | 1 | | | | RKS564□-TS30-♦ | PKE564□C-TS30 | - | | | | RKS596□-TS3.6-♦ | PKE596□C-TS3.6 | RKSD507- | | | | RKS596□-TS7.2-♦ | PKE596□C-TS7.2 | - | | | | RKS596□-TS10-♦ | PKE596□C-TS10 | - | | | | RKS596□-TS20-♦ | PKE596□C-TS20 | \dashv | | | | RKS596□□-TS30-♦ | PKE596□C-TS30 | + | | | | RKS543MTS3.6-\(\triangle\) | PKE543MC-TS3.6 | | | | | RKS543MTS7.2-\(\triangle\) | PKE543MC-TS7.2 | + | | | | RKS543MTS10- | PKE543MC-TS10 | RKSD503M- | | | | RKS543MTS20- | PKE543MC-TS20 | TIRODOCCIVI _ | | | | RKS543MTS30- | PKE543MC-TS30 | - | | | | RKS564M -TS3.6- | PKE564MC-TS3.6 | | | | | RKS564M -TS7.2- | PKE564MC-TS7.2 | = | | | S Geared Type with | RKS564M -1510- | PKE564MC-TS10 | = | | | lectromagnetic Brake | RKS564M -TS20- | PKE564MC-TS20 | + | | | | RKS564MTS30- | PKE564MC-TS30 | - | | | | | PKE596MC-TS3.6 | RKSD507M- | | | | RKS596M TS3.6- | | - | | | | RKS596M TS7.2- | PKE596MC-TS7.2 | 4 | | | | RKS596MTS10- | PKE596MC-TS10 | | | | | RKS596MTS20- | PKE596MC-TS20 | | | | | RKS596M <u>□</u> -TS30-♦ | PKE596MC-TS30 | | | ■ Either **A** (Single shaft) or **B** (Double shaft) indicating the motor shaft configuration is entered where the box ☐ is located within the product name. Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. If the package do not include the cable, ♦ is not exists in the product name. | Туре | Product Name | Motor Product Name | Driver Product Name | | |-------------------------------|----------------------------|--------------------|---------------------|--| | | RKS545□ -PS5-♦ | PKE545□C-PS5 | | | | | RKS545□□-PS7.2-♦ | PKE545□C-PS7.2 | | | | | RKS545□□-PS10-♦ | PKE545□C-PS10 | DI/ODEO0 | | | | RKS543□□-PS25-♦ | PKE543□C-PS25 | RKSD503- | | | | RKS543□□-PS36-♦ | PKE543□C-PS36 | | | | | RKS543□□-PS50-♦ | PKE543□C-PS50 | | | | | RKS566□□-PS5-◇ | PKE566□C-PS5 | | | | | RKS566□□-PS7.2-♦ | PKE566□C-PS7.2 | | | | D 60 17 | RKS566□□-PS10-♦ | PKE566□C-PS10 | | | | PS Geared Type | RKS564□□-PS25-◇ | PKE564□C-PS25 | | | | | RKS564□□-PS36-♦ | PKE564□C-PS36 | | | | | RKS564□□-PS50-♦ | PKE564□C-PS50 | D.(00.505. | | | | RKS599□□-PS5-◇ | PKE599□C-PS5 | RKSD507- | | | | RKS599□□-PS7.2-♦ | PKE599□C-PS7.2 | | | | | RKS599□□-PS10-♦ | PKE599□C-PS10 | 1 | | | | RKS596□□-PS25-◇ | PKE596□C-PS25 | 1 | | | | RKS596□□-PS36-◇ | PKE596□C-PS36 | 1 | | | | RKS596□□-PS50-♦ | PKE596□C-PS50 | | | | | RKS545M □ -PS5-♦ | PKE545MC-PS5 | | | | | RKS545M □ -PS7.2-♦ | PKE545MC-PS7.2 | | | | | RKS545M□-PS10-♦ | PKE545MC-PS10 | | | | | RKS543M □ -PS25-♦ | PKE543MC-PS25 | RKSD503M- | | | | RKS543M □ -PS36-♦ | PKE543MC-PS36 | | | | | RKS543M □ -PS50-♦ | PKE543MC-PS50 | 1 | | | | RKS566M□-PS5-♦ | PKE566MC-PS5 | | | | | RKS566M□-PS7.2-♦ | PKE566MC-PS7.2 | | | | PS Geared Type with | RK\$566M□-P\$10-♦ | PKE566MC-PS10 | | | | Electromagnetic Brake | RKS564M -PS25- | PKE564MC-PS25 | |
| | | RKS564M□-PS36-♦ | PKE564MC-PS36 | | | | | RKS564MII-PS50- | PKE564MC-PS50 | | | | | RKS599M□-PS5-◇ | PKE599MC-PS5 | RKSD507M- | | | | RKS599M □ -PS7.2-♦ | PKE599MC-PS7.2 | | | | | RKS599M□-PS10-♦ | PKE599MC-PS10 | | | | | RKS596M □ -PS25-♦ | PKE596MC-PS25 | | | | | RKS596M □ -PS36-♦ | PKE596MC-PS36 | | | | | RKS596M □ -PS50-♦ | PKE596MC-PS50 | 1 | | | | RKS543□□-HS50-♦ | PKE543□C-HS50 | DI (OD FOO | | | | RKS543□□-HS100-♦ | PKE543□C-HS100 | RKSD503- | | | Harmonia Carred True | RKS564□□-HS50-♦ | PKE564□C-HS50 | | | | Harmonic Geared Type | RKS564□□-HS100-♦ | PKE564□C-HS100 | DIVODECE T | | | | RKS596□□-HS50-♦ | PKE596□C-HS50 | RKSD507- | | | | RKS596□□-HS100-♦ | PKE596□C-HS100 | 1 | | | | RKS543M□-HS50-♦ | PKE543MC-HS50 | DIKOD SKITT T | | | | RKS543MHS100-\(\triangle\) | PKE543MC-HS100 | RKSD503M- | | | Harmonic Geared Type | RKS564M□-HS50-♦ | PKE564MC-HS50 | | | | with Electromagnetic
Brake | RKS564MHS100-\ | PKE564MC-HS100 | | | | DIANE | RKS596MHS50- | PKE596MC-HS50 | RKSD507M- | | | | | | 1 | | [■] Either **A** (Single shaft) or **B** (Double shaft) indicating the motor shaft configuration is entered where the box ☐ is located within the product name. Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. If the package do not include the cable, ♦ is not exists in the product name. # Accessories (Sold Separately) # Connection Cable Sets (ROHS), Flexible Connection Cable Sets (ROHS) Extension Cable Sets (ROHS), Flexible Extension Cable Sets (ROHS) Cable connects the Motor to Driver for **RKII** series, we provide both of "with cable package (1 m, 2 m or 3 m)" and "without cable package", the user can choose either meet the requirement. If the user need a cable longer than 3 m or flexible cable, please select an appropriate cable from among the accessories (sold separately). Keep the wiring distance between the motor and driver to 20 m max. ### System Configuration Connect the motor and driver without using the cable which came with the product. Use a connection cable set Use a flexible cable set if the cable will be bend. ○ For Standard Type or Standard Type with Electromagnetic Brake - * Electromagnetic Brake Cable is required for the Motor with Electromagnetic Brake. - **♦ For Motor with Encoder** - Connect and extend the Motor and Driver by using cable included in package Use the Extension Cable Set combination with the cable came with the product. Use a flexible cable set if the cable will be bend. - For Standard Type or Electromagnetic Brake Motor - * Electromagnetic Brake Cable is required for the Motor with Electromagnetic Brake. - Keep the total cable length below 20 m when connecting a cable included in the RK II Series and an extension cable. - The cable on the Electromagnetic Brake or Encoder cannot be connected to the driver directly. To connect to the driver, connection cable (accessory, sold separately) is needed. Otherwise please select the package which comes with the connection cable (The package includes connection cable). # Connection Cable Sets (Rolls), Flexible Connection Cable Sets (Rolls) ♦ For Electromagnetic Brake Motor 10 15 20 ### Product Line #### Connection Cable Sets Motor Cable | Product Name | Length L (m) | |--------------|--------------| | CC010VPF | 1 | | CC020VPF | 2 | | CC030VPF | 3 | | CC050VPF | 5 | | CC070VPF | 7 | | CC100VPF | 10 | | CC150VPF | 15 | | CC200VPF | 20 | | | - | - | |--------------|---------------------|-----------| | Motor Cable | Electromagnetic Bra | ake Cable | | Product Name | Length L (m) | | | CC010VPFB | 1 | | | CC020VPFB | 2 | | | CC030VPFB | 3 | | | CC050VPFB | 5 | | | CC070VPFB | 7 | | **♦ For Encoder Motor** | Motor Cable | Encode | er Cable | |--------------|--------------|----------| | Product Name | Length L (m) | | | CC010VPFE | 1 | | | CC020VPFE | 2 | | | CC030VPFE | 3 | | | CC050VPFE | 5 | | | CC070VPFE | 7 | | | CC100VPFE | 10 | | | CC150VPFE | 15 | | | CC200VPFE | 20 | | | | | | #### Flexible Connection Cable Sets | Motor Cable | | |--------------|--------------| | Product Name | Length L (m) | | CC010VPR | 1 | | CC020VPR | 2 | | CC030VPR | 3 | | CC050VPR | 5 | | CC070VPR | 7 | | CC100VPR | 10 | | CC150VPR | 15 | | CC200VPP | 20 | ♦ For Electromagnetic Brake Motor CC100VPFB CC150VPFB CC200VPFB **♦ For Encoder Motor** | Motor Cable E | Electromagneti | Brake | Cabl | |---------------|----------------|-------|------| | Product Name | Length L (m) | | | | CC010VPRB | 1 | | | | CC020VPRB | 2 | | | | CC030VPRB | 3 | | | | CC050VPRB | 5 | | | | CC070VPRB | 7 | | | | CC100VPRB | 10 | | | | CC150VPRB | 15 | | | | CC200VPRB | 20 | | | | Motor Cable | Encoder | Cable | |--------------|--------------|-------| | Product Name | Length L (m) | | | CC010VPRE | 1 | | | CC020VPRE | 2 | | | CC030VPRE | 3 | | | CC050VPRE | 5 | | | CC070VPRE | 7 | | | CC100VPRE | 10 | | | CC150VPRE | 15 | | | CC200VPRE | 20 | | # Extension Cable Sets (Rolls), Flexible Extension Cable Sets (Rolls) ### Product Line Extension Cable Sets Motor Cable | Product Name | Length L (m) | |--------------|--------------| | CC010VPF | 1 | | CC020VPF | 2 | | CC030VPF | 3 | | CC050VPF | 5 | | CC070VPF | 7 | | CC100VPF | 10 | | CC150VPF | 15 | Flexible Extension Cable Sets Motor Cable | Product Name | Length L (m) | |--------------|--------------| | CC010VPR | 1 | | CC020VPR | 2 | | CC030VPR | 3 | | CC050VPR | 5 | | CC070VPR | 7 | | CC100VPR | 10 | | CC150VPR | 15 | ♦ For Electromagnetic Brake Motor | | • | |----------------|---------| | omagnotic Brak | co Cabl | | Motor Cable | Electromagnetic Bra | |--------------|---------------------| | Product Name | Length L (m) | | CC010VPFBT | 1 | | CC020VPFBT | 2 | | CC030VPFBT | 3 | | CC050VPFBT | 5 | | CC070VPFBT | 7 | | CC100VPFBT | 10 | | CC150VPFBT | 15 | | | | ○ For Electromagnetic Brake Motor | Motor Cable | Electromagnetic Brake Cable | |--------------|-----------------------------| | Product Name | Length L (m) | | Product Name | Length L (m) | |--------------|--------------| | CC010VPRBT | 1 | | CC020VPRBT | 2 | | CC030VPRBT | 3 | | CC050VPRBT | 5 | | CC070VPRBT | 7 | | CC100VPRBT | 10 | | CC150VPRBT | 15 | **♦ For Encoder Motor** | Motor Cable | Encode | r Cable | |--------------|--------------|---------| | Product Name | Length L (m) | | | CC010VPFET | 1 | | | CC020VPFET | 2 | | | CC030VPFET | 3 | | | CC050VPFET | 5 | | | CC070VPFET | 7 | | | CC100VPFET | 10 | | | CC150VPFET | 15 | | | Motor Cable | Encode | r Cable | |--------------|--------------|---------| | Product Name | Length L (m) | | | CC010VPRET | 1 | | | CC020VPRET | 2 | | | CC030VPRET | 3 | | | CC050VPRET | 5 | | | CC070VPRET | 7 | | | CC100VPRET | 10 | | | CC150VPRET | 15 | | ### **Dimensions** Unit = mm (in.) #### Connection Cable #### #### #### #### Extension Cable #### #### #### **♦** Encoder Cable ### Notes on Use of a Flexible Cable ① Do not allow the cable to bend at the cable connector. ② For the bending radius, use at six times or more of the cable diameter. - 3 The cable wired from the motor or the cable comes as a set of the motor should not be bended. Use a flexible motor cable, if the cable will be bend. - Flexible Connection Cable - Flexible Extension Cable # Flexible Couplings Flexible Couplings compatible for **RKII** series are available. The user can select easily depending on size/purpose of the motor or gear. ### Coupling Selection | Motor Type Coupling Type | Standard Type | TS Geared Type PS Geared Type Harmonic Geared Type | Purpose | |--------------------------|---------------|--|--| | MCV Coupling | 0 | _ | High accuracy positioning, control vibration | | MC Coupling | 0 | - | High accuracy positioning | | MCS Coupling | 0 | 0 | High strength and High accuracy positioning | ### Models and characteristics of coupling #### MCV Couplings One piece contains antivibration rubber and aluminum base alloy. High in torsional stiffness because it has same characteristics for both normal rotation and reverse rotation, suitable for high accuracy positioning operation for stepping motor. #### - An antivibration rubber reduces the vibration generated at the motor. - High response. - No backlash. - Electrical insulating properties. #### MC Couplings One piece slits-designed coupling. Because of its high torsional stiffness and low inertia, the suitable for high-speed positioning operation and high-response control. #### \Diamond Features - No backlash. - Low inertia. - High torsional stiffness, high response. - Two types Set screw type and clamping type are available. Set Screw Type Clamping Type #### MCS Couplings This coupling has three pieces structure contains an Aluminum Hub, a spider (material: polyurethane). The simple structure can transmit high-torque such as torque on geared type reliably. #### ♦ Features - High strength (usable for geared motor) is now available. - No backlash. - Controls the vibration generated by the motor. # Selecting a Coupling #### Standard Type The following examples explain the procedures in selecting a coupling by driven shaft diameter and product name. Example: Product Name: **RKS566AC-1** Driven Shaft Diameter: φ8 mm - 1. The coupling type that matches RKS566AC-1 from the coupling selection table is MCV25 or MC25. - 2. The inner diameter of the coupling according to the motor shaft will be **10** (ϕ 10 mm), and will be **8** (ϕ 8 mm) according to the driven shaft diameter. - 3. In the coupling product name, smaller inner diameters come before larger ones, thus the coupling product name will be **MCV250810**, **MC250810S** (Set screw type) or **MC250810C2** (clamping Type). - When
the inner diameter is 66.35 mm, the number is 06A. For example, when the coupling type is MCV25, the motor shaft diameter is 10 (φ10 mm), and the driven shaft diameter is 06A (φ6.35 mm), the coupling product name will be MCV2506A10. #### TS Geared Type, PS Geared Type and Harmonic Geared Type The following examples explain the procedures in selecting a coupling by driven shaft diameter and product name. Example: Product Name: **RK\$545AC-P\$10-1** Driven Shaft Diameter: φ12 mm - 1. The coupling type that matches RKS545AC-PS10-1 from the coupling selection table is MCS30. - 2. The inner diameter of the coupling according to the motor shaft will be 10 (φ10 mm), and will be 12 (φ8 mm) according to the driven shaft diameter - 3. In the coupling product name, smaller inner diameters come before larger ones, thus the coupling product name will be MCS301012. - When the inner diameter is φ6.35 mm, the number is **F04**. For example, when the coupling type is **MCS30**, the motor shaft diameter is **06** (φ6 mm), and the driven shaft diameter is **F04** (φ6.35 mm), the coupling product name will be **MCS3006F04**. # MCV Couplings ®HS ### Product Line | Product Name | |--------------| | MCV15□ | | MCV19□ | | MCV25□ | | MCV30□ | ■ A number indicating the coupling inner diameter is entered where the box is located within the product name. ### Product Number Code # MCV 30 10 14 | 1 | 2 | 3 | 4 | |---|---|---|---| | | | | | | 1 | MCV Couplings | |---|--| | 2 | Outer Diameter of Coupling | | 3 | Inner Diameter d1 (smaller inner diameter) (06A represents ϕ 6.35 mm) | | _ | L D: 1 10 // : 1: 1) | Inner Diameter d2 (larger inner diameter) For inner diameter d1, the smaller of the motor shaft diameter or the driven shaft diameter is entered. For inner diameter d2, the larger of the motor shaft diameter or the driven shaft diameter is entered. # **■**Coupling Selection Table | | | | | Motor | Shaft | | | Dr | iven Sha | ıft Diam | eter n | nm | | | |---------------|------------|-----------------------------|---------------|----------|-------|----|----|----|----------|----------|--------|-----|-----|-----| | Type | Frame Size | Product Name | Coupling Type | Diameter | | 04 | 05 | 06 | 06A | 80 | 10 | 12 | 14 | 15 | | | | | | m | m | ф4 | ф5 | ф6 | ф6.35 | ф8 | ф10 | ф12 | ф14 | ф15 | | | 42 mm | RKS543
RKS544
RKS545 | MCV15 | 06 | ф6 | • | • | • | | | | | | | | Standard Type | 60 mm | RKS564
RKS566
RKS569 | MCV25 | 10 | ф10 | | | • | • | • | • | • | | | | | 85 mm | RKS596
RKS599
RKS5913 | MCV30 | 14 | ф14 | | | | | • | • | • | • | • | For more detail, refer to our website or contact to the customer center. http://www.orientalmotor.co.th/ # MC Couplings ®HS ### Product Line Set screw type Product Name MC16□S MC25□S MC32□S MC40□S Clamping Type Product Name MC16□C2 MC25□C2 MC32□C2 MC40□C2 \blacksquare A number indicating the coupling inner diameter is entered where the box \square is located within the product name. # Product Number Code # MC 25 08 10 S 1 2 3 4 | 1 | MC Couplings | |---------|--| | 2 | Outer Diameter of Coupling | | 3 | Inner Diameter d1 (smaller inner diameter) (06A represents ϕ 6.35 mm) | | 4 | Inner Diameter d2 (larger inner diameter) | | <u></u> | Fastening method S : Set Screw Type | For inner diameter d1, the smaller of the motor shaft diameter or the driven shaft diameter is entered. For inner diameter d2, the larger of the motor shaft diameter or the driven shaft diameter is entered. # Coupling Selection Table | | Type Frame Size Product Name Coupling Type | | Motor Shaft | | | | | Driven Shaft Diameter mm | | | | | | | | | | | |---------------|--|----------------------------|-------------|-------|-----|----|----|--------------------------|-------|----|-----|-----|-----|-----|--|--|--|--| | Type | | | Dian | neter | 04 | 05 | 06 | 06A | 08 | 10 | 12 | 14 | 15 | | | | | | | | | | | m | ım | ф4 | ф5 | ф6 | ф6.35 | ф8 | ф10 | ф12 | ф14 | ф15 | | | | | | | 42 mm | RKS543
RKS544
RKS545 | MC16 | 06 | ф6 | 0 | 0 | 0 | | 0 | | | | | | | | | | Standard Type | 60 mm | RKS564
RKS566
RKS569 | MC25 | 10 | ф10 | | | 0 | 0 | 0 | 0 | 0 | | | | | | | | | 85 mm | RKS596 | MC32 | 14 | ф14 | | | | | | 0 | 0 | 0 | 0 | | | | | | | | RKS599
RKS5913 | MC40 | 14 | ф14 | | | | | | 0 | 0 | 0 | 0 | | | | | O Common for the Set Screw Type and the Clamping Type For more detail, refer to our website or contact to the customer center. Only for Set Screw Type # MCS Couplings RoHS # Product Line | Product Name | |--------------| | MCS20 | | MCS30□ | | MCS40 | | MCS55 | | MCS65 | \blacksquare A number indicating the coupling inner diameter is entered where the box \Box is located within the product name. ## Product Number Code MCS 30 08 12 1 2 3 4 | 1 | MCS Couplings | | |---|--|---| | 2 | Outer Diameter of Coupling | | | 3 | Inner Diameter d1 (smaller inner diameter) | (FO4 represents ϕ 6.35 mm) | | 4 | Inner Diameter d2 (larger inner diameter) | (FO4 represents ϕ 6.35 mm) | [•] For inner diameter d1, the smaller of the motor shaft diameter or the driven shaft diameter is entered. For inner diameter d2, the larger of the motor shaft diameter or the driven shaft diameter is entered. # **■**Coupling Selection Table | | _ | | | 0 " | Moto | r Shaft | | | | | | Driven | Shaft | Diamet | er mm | | | | | | |-------------------------|---------------|--------------|-------------------------|------------------|------|---------|----|----|-------|----|-----|--------|-------|--------|-------|-----|-----|-----|-----|-----| | Type | Frame
Size | Product Name | Gear Ratio | Coupling
Type | Diar | neter | 05 | 06 | F04 | 08 | 10 | 12 | 14 | 15 | 16 | 18 | 20 | 22 | 24 | 25 | | | 5126 | | | Турс | m | ım | ф5 | ф6 | ф6.35 | ф8 | ф10 | ф12 | ф14 | ф15 | ф16 | ф18 | ф20 | ф22 | ф24 | ф25 | | TS Geared Type | 42 mm | RKS543 | 3.6, 7.2, 10,
20, 30 | MCS20 | 06 | ф6 | • | • | • | • | • | | | | | | | | | | | | 60 mm | RKS564 | 3.6, 7.2, 10,
20, 30 | MCS30 | 10 | ф10 | | • | • | • | • | • | • | • | • | | | | | | | | 90 mm | RKS596 | 3.6, 7.2, 10,
20, 30 | MCS55 | 18 | ф14 | | | | | | • | • | • | • | • | • | • | • | | | | | mm RKS545 | 5 | MCS20 | 10 | ф10 | • | • | | • | | | | | | | | | | | | | 42 mm | | 7.2 , 10 | MCS30 | 10 | ф10 | | • | | | | | | | | | | | | | | | R | RKS543 | 25, 36, 50 | MCS40 | 10 | ф10 | | | | | | | • | | | | | | | | | | | . RKS566 | 5 | MCS40 | 12 | ф12 | | | | | | | | | | | | | | | | PS Geared Type | 60 mm | KK3300 | 7.2, 10 | MCS55 | 12 | ф12 | | | | | | | | | | | | | | | | | | RKS564 | 25, 36, 50 | MCS55 | 12 | ф12 | | | | | | | • | | | | | | • | | | | | RKS599 | 5 | MCS55 | 18 | ф18 | | | | | | | | | | | | | | | | | 90 mm | RR3377 | 7.2, 10 | MCS65 | 18 | ф18 | | | | | | | | | | | | | | | | | | RKS596 | 25, 36, 50 | MCS65 | 18 | ф18 | | | | | | | | | | | | | | | | Harmonic
Geared Type | 42 mm | RK\$543 | 50, 100 | MCS40 | 10 | ф10 | | | | • | • | • | • | • | • | • | • | | | | For more detail, refer to our website or contact to the customer center. http://www.orientalmotor.co.th/ # **Motor Mounting Brackets** ® Brackets Mounting brackets are convenient for installation and securing a stepping motor and geared stepping motor. #### Product Line #### Standard Type Material: Aluminum Alloy | Product Name | Motor Frame Size | Applicable
Product | | | | | | | |--------------|------------------|-----------------------------|--|--|--|--|--|--| | PAFOP | 42 mm | RKS543
RKS544 | | | | | | | | PALOP | 42 11111 | RKS545 | | | | | | | | PAL2P-5 | 60 mm | RKS564
RKS566
RKS569 | | | | | | | | PAL4P-5 | 85 mm | RKS596
RKS599
RKS5913 | | | | | | | The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction. #### TS Geared Type Material: Aluminum Alloy | | - | | |--------------|------------------|-----------------------| | Product Name | Motor Frame Size | Applicable
Product | | SOLOB | 42 mm | RKS543 | | SOL2M4 | 60 mm | RKS564 | | SOL5M8 | 90 mm | RKS596 | ### PS Geared Type Material: SS400 Surface Treatment: electroless nickel plating | Product Name | Motor Frame Size | Applicable
Product | |--------------|------------------|-----------------------| | PLA60G | 60 mm | RKS564
RKS566 | | PLA90G | 90 mm | RKS596
RKS599 | [■]The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction. #### Harmonic Geared Type Material: SS400 Surface Treatment: Eectroless nickel plating | Product Name | Motor Frame Size | Applicable
Product | |--------------|------------------|-----------------------| | PLA60H | 60 mm | RK\$564 | | PLA90H | 90 mm | RKS596 | Fixed portion on mounting bracket is slotting shaped, it make easy to adjust tension of belt after mounting the motor. The other shapes of mounting bracket are also available. For more detail, please contact to our branch/ sales office or visit our website. http://www.orientalmotor.co.th/ # Motor Mounting Direction The motor cable comes out at right angles to the motor. Orient the motor so that the cable faces either upward or sideways. For PLA60G, PLA90G, PLA60H, PLA90H: The cable can face downward. #### How to mount the motor **11 PAL2P-5** PAL4P-5 SOL2M4、SOL5M8 - ①Use the screws provided to secure the motor to the mounting bracket. - 2 Attach the motor from the direction shown by the arrow (B). 2 PALOP、SOLOB - ①Use the screws provided to secure the motor to the mounting bracket. - ② Attach the motor from the direction shown by the arrow 3 PAFOP - ①Use the screws provided to secure the motor to the mounting bracket. - 2) Attach motor from the direction shown by
either arrow (A) or arrow (B). - ①Use the screws provided to secure the motor to the mounting bracket. - ②Attach the motor from the direction shown by the arrow - *Motor mounting hole on PLA90H is processed with tapping. Insert the screw from direction B. These mounting brackets can be perfectly fitted to the pilot of the stepping motors. (Except for PALOP) Motor Mounting Screws are included. Motor Mounting Screws are included. # **Dimensions** (Unit = mm) #### PALOP Mass: 35 g **CAD** B139 62 50±0.3 <u>4×M</u>4 Mounting Screws : M3 Length 10 mm Included 4 pieces ## **PAFOP** Mass : 30 g **CAD** B140 Mounting Screws : M3 Length 7 mm Included 4 pieces #### PAL2P-5 Mass : 110 g Mounting Screws: M4 Length 12 mm Included 4 pieces #### PAL4P-5 Mass : 250 g **CAD** B145 Mounting Screws : M5 Length 16 mm Included 4 pieces #### **SOLOB** Mass : 85 g CAD B267 #### SOL2M4 Mass : 135 g CAD A321 # **DIN** rail mounting bracket ®HS Use to mount the driver on DIN rail. DIN rail should be mounted on highly thermal conductive flat metal plate (comparable to 200 mm x 200 mm x 2 mm). Be sure to keep the ambient temperature of the driver 0~+40°C. # The cable to connect the PC with data setting software and driver installed. #### Product Line | Product Name | Applicable Product | |--------------|--------------------------| | CC05IF-USB | Built-in Controller Type | ### Connection between Computer and Driver ● To connect with PC, exclusive device driver should be installed. #### Data Setting Software MEXE02 Data Setting Software can be downloaded from our website. Also we provide Data Setting Software with CD-ROM. For more detail, please contact our website or contact our branch/sales office. http://www.orientalmotor.co.th/ # Operating Environment #### Operating Systems Microsoft Windows 2000 Professional Service Pack 4 Rollup 1 provided by Microsoft Corp. must be applied. To confirm application of Rollup 1, please check it at "Add or Remove Programs." For following OS, supports only 32-bit (x86) or 64-bit (x64) version. - Microsoft Windows XP Home Edition Service Pack 3 - Microsoft Windows XP Professional Service Pack 2 - Microsoft Windows XP Professional Service Pack 3[★] - Microsoft Windows Vista Home Basic Service Pack 2 - Microsoft Windows Vista Home Premium Service Pack 2 - INICIOSOIL WILLOWS VISLA FIORTIE FTEITHUITT SELVICE FACK - Microsoft Windows Vista Business Service Pack 2 - •Microsoft Windows Vista Ultimate Service Pack 2 - •Microsoft Windows Vista Enterprise Service Pack 2 - •Microsoft Windows 7 Starter Service Pack 1 - •Microsoft Windows 7 Home Premium Service Pack 1 - •Microsoft Windows 7 Professional Service Pack 1 - •Microsoft Windows 7 Ultimate Service Pack 1 - Microsoft Windows 7 Enterprise Service Pack 1 - * Supports 32-bit (x86) version only #### Computer | Recommended CPU*1 | Intel Core Processor 2 GHz or more (The OS must be supported.) | |----------------------|--| | Display | high resolution video adapter and monitor, XGA (1024x768) or more. | | Recommended Memory*1 | 32-bit (x86) version: 1 GB or more
64-bit (x64) version: 2 GB or more | | Hard Disk*2 | Available disk space of 30 MB or more | | USB Port | USB 1.1 1 port | | Disk Device | CD-ROM drive (use for installation of software) | ^{*1} The OS operating conditions must be satisfied. Please refer to our website for the latest update of operating environment. #### Note The required volume of memory or hard disk may vary depending on the system environment. ^{*2} Microsoft .NET Framework 2.0 Service Pack 2 is required to use **MEXEO2**. If it is not already installed, it will be installed automatically, in which case up to 500 MB of additional space is required. [•] Windows and Windows Vista are registered trademark of Microsoft Corporation in the United States and other countries. Pentium is a trademark of Intel Corporation. # Control Module ROHS The internal driver parameter settings and data settings can be established and changed. They can also be used for speed and I/O monitoring, teaching, and so on. #### Product Line | Product Name | Applicable Product | |--------------|--------------------------| | OPX-2A | Built-in Controller Type | # **Driver Cable** # **General-Purpose Cables** ® General-purpose multiconductor cable wich is convenient for connection between the driver and the host controller. #### Product Line | | _ | |--------------|------------| | Product Name | Length (m) | | CC16D005B-1 | 0.5 | | CC16D010B-1 | 1.0 | | CC16D015B-1 | 1.5 | | CC16D020B-1 | 2.0 | # **Dimensions** (Unit = mm) # **RS-485 Communication Cable** ® The cable to link drivers when the driver is being operated under multi-axis mode, it also connect the network converter and driver. #### Product Line | Product Name | Length (m) | Applicable Product | |--------------|------------|--------------------------| | CC002-RS4 | 0.25 | Built-in Controller Type | # **Network Convertors ® IRON** Network converter is a transducer from the host communication protocol to our unique RS-485 communication protocol. By using this network converter, our RS-485 compatible products can be controlled under host communication environment. #### Product Line | Network Type | Product Name | |------------------------------|--------------| | CC-Link Compatible | NETC01-CC | | MECHATROLINK - II Compatible | NETC01-M2 | | MECHATROLINK - Ⅲ Compatible | NETC01-M3 | | EtherCAT Compatible | NETC01-ECT | NETC01-CC NETC01-M2 NETC01-M3 NETCO1-ECT